
Facilitating Complex Web Service Interactions
Through a Tuplespace Binding

Daniel Wutke, Daniel Martin, and Frank Leymann

Institute of Architecture of Application Systems
University of Stuttgart

Universitaetsstrasse 38, 70569 Stuttgart, Germany
{wutke,martin,leymann}@iaas.uni-stuttgart.de

http://www.iaas.uni-stuttgart.de

Abstract The SOAP messaging framework, as one key technology of
the Web service technology standard stack, defines a standardized mes-
sage format for Web service interactions, a set of rules governing their
processing and a mechanism that describes how SOAP messages can
be transmitted over different network transport protocols, called SOAP
bindings. The most prominent example for a Web service transport today,
is the Hypertext Transfer Protocol (HTTP), which however suffers from
certain drawbacks such as being inherently synchronous in nature and not
providing decoupling of message sender and receiver in reference or time.
In this paper, we present tuplespace technology as an alternative Web
service transport that is characterized by a number of properties that are
not found in current Web service transports: asynchronism, strong decou-
pling of sender and receiver and support for advanced message exchange
patterns, such as one-to-many interactions, directly on the transport level.
We describe the representation of SOAP messages in tuple form and
exemplify how to use the operations provided by the tuplespace interface
to realize certain Web service message exchange patterns.1

Key words: Web Services, Message Exchange Patterns, Tuplespaces,
Web Service Binding

1 Introduction

Web service technology has gained broad acceptance in research and industry due
to enabling loosely coupled interactions between communication partners which
can be conducted over potentially multiple different network transport protocols
while retaining end-to-end quality of services. Web services are defined by a
set of specifications that enable standards-based service description, discovery,
invocation, and composition through the use of WSDL, UDDI, SOAP, BPEL
and others.

1 This work is funded by the European Commission under the TripCom project
(IST-4-027324-STP).

http://www.iaas.uni-stuttgart.de


2 Daniel Wutke, Daniel Martin, Frank Leymann

The SOAP messaging framework [1] defines a standardized XML-based mes-
sage format and a set of rules that govern how SOAP processing nodes along
the message path from initial sender to ultimate receiver should process a SOAP
message. In addition, SOAP defines a mechanism to bind SOAP messages to
different network protocols to enable their transmission between SOAP processing
nodes over a network through so-called SOAP bindings. For this purpose, they
define a serialization of the SOAP infoset in such a way that it can be transmitted
by a sender over the chosen network transport protocol and reconstructed by
the receiver (or the next hop/node in case of multi-hop interactions). Further-
more, they describe how the services of the underlying transport protocol (i.e.
its interface) are used to transmit the chosen serialization of the SOAP infoset
between SOAP processing nodes and describe potential failure scenarios that can
be anticipated within the binding.

Tuplespaces have their origin in the Linda coordination language, defined
in [2] as a parallel programming extension for programming languages for the
purpose of separating coordination logic from program logic. A tuplespace is
conceptually similar to a piece of memory shared among all participants of an
interaction which provides clients with synchronized access to tuples (i.e. an
ordered list of typed fields) via a simple interface: tuples can be stored (using
the out operation), retrieved destructively (in) and retrieved non-destructively
(rd). Tuples are retrieved associatively using a template matching mechanism,
i.e. by providing values of a subset of the typed fields of the tuple to be read.

The remainder of the paper is organized as follows: first we motivate the
work presented by elaborating on certain unique properties of tuplespaces when
compared to existing Web service transports (Section 2). Subsequently, the SOAP
binding for the tuplespace transport is presented, consisting of (i) a description of
how the information contained in a SOAP envelope can be mapped to tuples to
facilitate their transmission over a JavaSpaces transport (Section 3) and (ii) how
message exchange patterns can be mapped to Linda communication primitives
(Section 4). Section 5 concludes the paper.

2 Tuplespace binding for Web services

As of today, HTTP [3] is still the most widely accepted Web service transport.
Due to the nature of HTTP being designed for direct, synchronous client-server
interactions, it shows certain drawbacks with regard to decoupling sender and
receiver in reference and time. As a result of tight referential coupling when
conducting Web service interactions over HTTP, the sender of a message is
required to explicitly address the concrete address (also referred to as endpoint)
where a particular service implementation can be reached. If the location of the
service implementation changes, a corresponding change has to be performed
on the client. Furthermore, due to HTTP not offering decoupling in time, both
message sender and receiver have to be available at the same time. If e.g. the
receiver of a Web service invocation request is not available at the time of request
sending, the message cannot be received and thus not processed. To overcome



Facilitating WS Interactions Through a Tuplespace Binding 3

aforementioned shortcomings with regard to decoupling message sender and
receiver in reference and time, a number of SOAP bindings have been proposed
that build on messaging network transport protocols such as SMTP, XMPP or
JMS which all employ the mechanism of store-and-forward to achieve decoupling
in time (the sender hands over the message to transmit to the messaging system
which delivers it as soon as the “next hop” becomes available). In addition,
message recipients are addressed by logical identifiers instead of concrete addresses
(e.g. an e-mail address in case of SMTP or a queue/topic name in JMS) which
enables referential decoupling.

Although tuplespaces are in their use and behavior somewhat similar to
messaging technology (see e.g [4] for a comparison), they are characterized by
certain unique properties. In contrast to message-oriented middleware, where
sender and receiver communicate by exchanging messages over queues and topics
identified by logical addresses, in tuplespaces data is exchanged by senders
publishing the data they want to communicate to a shared space (the counterpart
to a queue/topic in messaging) on which potentially multiple receivers are listening.
Data is consumed by the receiver in an associative manner, meaning that the
receiver of a data tuple describes its content by example, e.g. the data types of
certain tuple fields or their value. As a result, tuplespace-based communication
is based on a pull mechanism (i.e. the receivers actively select what they want to
receive by template-based consumption of tuples) as opposed to a push mechanism
employed in messaging (i.e. the sender addresses a certain queue/topic, from
which it expects the receiver to consume). Furthermore, in tuplespace-oriented
communication, data is regarded as a published object instead of a message
directed to a certain receiver. This means that when a sender publishes a piece
of information to a tuplespace, the (one single) data tuple is available for all
receivers listening on the tuplespace (which in particular also includes the sender
of the tuple). This enables certain communication patterns that are difficult
to realize based on other – e.g. messaging-based – Web service transports such
as the Request-for-bid pattern described later in the paper. For instance, after
publication of a message, the sender of the message can destructively consume the
message again, update its contents and re-publish it. In addition, data can easily
be directed to a set of receivers (similar to broadcast/multicast communication)
or processed by a set of potential competing consumers in style of the replicated-
worker pattern [5].

3 Mapping SOAP messages to tuples

To enable communication of SOAP envelopes over a network transport protocol,
(i) the SOAP envelope to be transmitted needs to be encapsulated in an object
that can be transmitted using the communication primitives of the respective
transport protocol and (ii) information necessary for message identification,
delivery and correlation has to be added and made accessible to evaluation by
the transport. In case of tuplespace-based communication, data is encapsulated
in tuples; the individual tuple fields are defined as follows. The field identified



4 Daniel Wutke, Daniel Martin, Frank Leymann

by the Content property contains a representation of the actual SOAP envelope,
comprising both SOAP headers and SOAP body. The encoding of the SOAP
message is specified by the Content type property. In most cases, the preferred
content type is “application/soap+xml” where the SOAP message is transferred
as a XML string in UTF-8 encoding; however other encodings are possible such
as e.g. “multipart/related” in case of a MIME encoded SOAP message with
binary attachments. The MEP property identifies the message exchange pattern
that governs the exchange of the respective message. Possible values for this
property are e.g. the identifiers of the WSDL 2.0 specification [6]. Each tuple
with an encapsulated SOAP message is uniquely identified via the Message ID
property. If the SOAP envelope contains a WS-Addressing [7] header block, the
WS-Addressing Message ID is propagated to the tuple level to allow its use for
template matching. To enable correlation of messages as part of interactions that
involve more that one message exchange between communication partners, the
Correlation ID property of a message can contain the Message ID of another
message which is “in relation” to the given message. How a message relates to the
message with the given correlation ID is defined through the Relationship type
property. Valid values for the relationship type property are dependent on the
message exchange pattern the message belongs to; WS-Addressing relationship
type values are reused where possible. To enable addressing one particular Web
service provider in case multiple Web service providers are connected to the same
tuplespace, the Service name property must contain the name of the destination
service in form of a Uniform Resource Identifier (URI). To allow service providers
to correctly dispatch incoming SOAP messages to a service implementation (if
the service provider for instance offers more than one operation), the SOAP
action property conveys the semantics of the SOAP message in the content
property in form of a URI. The Binding version property describes the version
of the binding to be used to allow for further development and extension of the
binding while still retaining backwards compatibility in implementations. In case
the message encapsulated in the content property is a SOAP fault, the Is fault
property contains a boolean true value, otherwise it has the value of a boolean
false. Propagating this information to the tuple level enables e.g. convenient
retrieval of all fault or non-fault messages. In case a SOAP processor encounters
any errors while processing the SOAP message, e.g. while parsing the message
the Unprocessable property is set to a boolean value true. This facilitates simple
retrieval of unprocessable messages by administrators for debugging purposes
and can be used to prevent repeated consumption of unprocessable messages.

4 Mapping WS interaction patterns to Linda
coordination primitives

In the following paragraphs, the mapping of Web service message exchange
patterns (MEP) to sequences of tuplespace operation calls is exemplified through
the In-out MEP described as part of the WSDL 2.0 specification [6] and the



Facilitating WS Interactions Through a Tuplespace Binding 5

custom Request-for-bid MEP that leverages the advanced functionality provided
by the tuplespace transport.

Service Requester Service Provider
out tinake

in-only / one-wayRequest y y

in-out / request-reply
out in

outin
Response/

Fault

Request
Service 

Requester
Service 
Provider

write take

writetake
in-optional-out

Request

Response/
Service ProviderService Requester

writetake

write take

p
Fault

Request
Service Provider

writetake
robust in-only

Request

Fault

Service Requester

Obviously, using in for consumption of 
messages simulates messaging technology

Variants starting with out are inverted versions 
of those patterns presented here.

messages simulates messaging technology. 
An alternative implementation would be to non-
destructively consume the messages (rd) and 
instead of removing them from the space, only 
mark them as “processed” by adding an 
additional triple to the message graph root.

(a) In-out MEP

Service 
P id 1Response 1

out

in

request for bid
Provider 1

out

Request

Service 

espo se

Response 2

Service 
Requester in rd

rd

in

in

Provider 2
Response 2

out

Ser ice Pro ider continuous updateI f ti
read

write

Service Requester Service Provider continuous updateInformation

take

Service Requester Service Provider 2
read

one to many
Request

Service Provider 1
read

write

one-to-many
Service Provider 3

read

(b) Request-for-bid MEP

Figure 1. Web service MEPs mapped to Tuplespace operations

The In-out MEP as shown in Figure 1(a) comprises two message exchanges.
First, the service requester sends a request message to the service provider. The
service requester addresses the service provider either directly using the WS-
Addressing Destination property which is propagated to the tuple level as the
Service name property or indirectly using the Action property. This information is
either extracted from the WSDL description of the Web service to be addressed or
exchanged via out-of-band mechanisms and defined by the Web service requester.
The request message is stored in the tuplespace by the service requester using
the out operation and retrieved by the service provider using a blocking in
operation. While certain tuplespace implementations such as JavaSpaces support
asynchronous notifications as an alternative to blocking and non-blocking tuple
consumption operations, a presentation of the message exchange patterns which
makes use of these is left out for the sake of simplicity. The template used by the
service provider to retrieve request messages matches on the Service name and the
Action property of the request message. The destructive consumption operation
(in) is used rather than its non-destructive variant (rd), since the message should
be delivered to the service provider only once. When the request message has
been processed by the service provider, it constructs a corresponding response or
fault message by extracting the Message ID information (and the Reply Endpoint
WS-Addressing header if found in the SOAP message encapsulated in the request
tuple) from the request message. The Correlation ID property of the response
message is set to the Message ID of the request message to relate the response
message to the original request message and the Relationship type property is set
to the URI representing a response message in a request-response interaction. The
Web service provider stores the created response (or fault) message encapsulated
in the content field of the response tuple in the tuplespace using the out operation.
The service requester retrieves a response message for its original request message
by issuing a blocking in operation, waiting for a message that contains the



6 Daniel Wutke, Daniel Martin, Frank Leymann

necessary correlation information that identifies the message as a response to the
client’s original request message.

The Request-for-bid MEP as shown in Figure 1(b) is an example for a complex
Web service MEP that can be implemented effiently on top of a tuplespace. It
is a composite pattern that consists of a One-to-many interaction and multiple
In-out interactions. First, as part of the one-to-many interaction, potentially
multiple service providers non-destructively consume a request message (rd);
each service provider processes the request message and evaluates whether to
send a corresponding response message to the service requester. If a service
provider decides to respond to the request message, it acts as described in the
In-out pattern. The MEP is terminated by the service requester by destructively
retrieving (in) the request message from the tuplespace.

5 Conclusions

In this paper, we have motivated and presented a SOAP Web service binding
for a tuplespace transport. We have payed special attention to pointing out
which properties of tuplespaces motivate their use as a Web service transport.
Furthermore with the example of the In-out and Request-for-bid MEPs, we have
demonstrated the suitability of the presented transport to efficiently implement
both the standard Web service message exchange patterns described in the WSDL
2.0 specification, as well as custom, more complex message exchange patterns.
A more extensive description of the binding, further MEPs and a prototypical
implementation of the proposed Web service tuplespace binding based on the
JavaSpaces interface by SUN Microsystems is available in [8].

References

1. Gudgin, M., Hadley, M., Moreau, J.J.: SOAP Version 1.2 Part 1: Messaging Frame-
work. W3C Recommendation 27 April 2007 (2007)

2. Gelernter, D.: Generative Communication in Linda. ACM Transactions on Program-
ming Languages and Systems 7(1) (1985) 80–112

3. Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-Lee,
T.: RFC 2616: Hypertext Transfer Protocol HTTP/1.1. Jun 1 999

4. Martin, D., Wutke, D., Scheibler, T., Leymann, F.: An EAI Pattern-Based Compar-
ison of Spaces and Messaging. In proc. of EDOC 2007 (2007)

5. Freeman, E., Hupfer, S., Arnold, K.: JavaSpaces Principles, Patterns, and Practice.
Pearson Education (1999)

6. Chinnici, R., Gudgin, M., Moreau, J.J., Schlimmer, J., Weerawarana, S.: Web
Services Description Language (WSDL) Version 2.0 Part 1: Core Language. W3C
Working Draft 26 (2004)

7. Gudgin, M., Hadley, M., Rogers, T.: Web Services Addressing 1.0 - Core. W3C
Recommendation (May 2006)

8. Schwind, A.: Space-Based Web Services: Konzepte und prototypische Implemen-
tierung mit Linda-Spaces. Master Thesis, DIP-2692, Universität Stuttgart, Fakultät
Informatik, Elektrotechnik und Informationstechnik, Germany (Dec 2007)


	Lecture Notes in Computer Science
	Authors' Instructions
	1 Introduction
	2 Tuplespace binding for Web services
	3 Mapping SOAP messages to tuples
	4 Mapping WS interaction patterns to Linda coordination primitives
	5 Conclusions



