
Recovery Mechanisms for Semantic Web
Services

Kevin Wiesner, Roman Vacuĺın, Martin Kollingbaum, and Katia Sycara ?

The Robotics Institute, Carnegie Mellon University
{kwiesner,rvaculin,mkolling,katia}@cs.cmu.edu

Abstract. Web service-based applications are widely used, which has
inevitably led to the need for proper mechanisms for the web service
paradigm that can provide sustainable and reliable execution flows. In
this paper we revise recovery techniques in OWL-S and show how se-
mantic annotations may ensure seamless web service provision in a so-
phisticated way, such as, exploiting the ontology-based description of
processes in order to dynamically find alternative services as substitutes
for failed services. We also discuss the consequences of these semantic-
enabled approaches and point out required changes for integration in
OWL-S.

Key words: Semantic Web, Web Services, Recovery, OWL-S

1 Introduction

The web services (WS) paradigm is widely used and many enterprises deploy
their business processes as web services. Typically, web service-based processes
tend to operate in rapidly changing environments where two main concerns need
to be addressed. First, the business process has to fulfill the goals for which it
was designed. Second, the process must respond to changes in its operating en-
vironment by adapting to them in order to guarantee long-term sustainability.
These two concerns are orthogonal. Current WS and business process standards
focus on the first issue. Constructs for control and data flow specifications are
typically based on some form of process algebra and thus, allow an easy design of
structured processes that are particularly suitable for stable environments. Ex-
ception and recovery mechanisms are used to deal with unusual situations and
changes. Current web service recovery mechanisms are highly inflexible. BPEL
[1], for instance, uses compensation handlers with explicitly defined compen-
sation actions (i.e., service calls). This provides only one solution for recovery
at a particular time. Other possible solutions that might exist are not taken
into account. Since the environment is changing constantly, the availability and
reachability of services may vary over time. With conventional approaches to
recovery and exception handling, it is not possible to adapt to such changes. A
? This research was supported in part by Darpa contract FA865006C7606, by AFOSR

FA9550-07-1-0039, and by funding from France Telecom.



2 Wiesner et al.

compensation containing a non-reachable service, for example, results in an in-
consistent state of the system in the case of a failure, even though other services
could be used as compensation for the failed process.

These shortcomings reveal a need for stronger and more flexible recovery
mechanisms that allow a process to adapt while simultaneously respecting the
design of the original process. Semantic Web Services (SWS) appear to be ideal
for achieving this. The SWS standards introduce means for providing service
specifications with rich semantic annotations that facilitate flexible dynamic
discovery, invocation and composition of services. This paper focuses on how
techniques such as dynamic discovery and composition can be exploited in the
context of recovery and process adaptation. For example, SWS can take ad-
vantage of the dynamic discovery of either equivalent services (as a replace-
ment) or other appropriate services, that may help to recover from a failure
(e.g. for compensation), instead of relying on explicitly specified recovery solu-
tions. In our previous work [2] OWL-S was extended with exception handling
and basic recovery mechanisms. This paper revises recovery techniques intro-
duced previously, and further presents new semantic-enabled mechanisms. We
propose ReplaceByEquivalent and Advanced Back & Forward Recovery actions,
which try to dynamically discover alternatives for erroneous tasks. Next, the
Automatic Compensation technique exploits the semantic information to undo
finished processes.

This paper is organized as follows: in Sect. 2 the existing exception han-
dling and recovery in OWL-S is presented, followed by the introduction of new
semantic-enabled mechanisms in Sect. 3. Next, these approaches and their con-
sequences are discussed in Sect. 4 and related work is summarized in Sect. 5. In
Sect. 6 we conclude and give an outlook on future work.

2 OWL-S and Recovery

OWL-S [3] is a description language for Semantic Web Services, based on OWL
[4], that defines services through three kinds of information: the Service Pro-
file describes what the service does in terms of its capabilities and is used for
discovering and selecting suitable providers; the Process Model specifies how
clients can interact with the service by defining the requester-provider interac-
tion protocol; the Grounding links the Process Model to the specific execution
infrastructure. For exception handling and recovery, the Process Model is of par-
ticular importance. Its elementary unit is an atomic process, which represents
one indivisible operation. Processes are specified by means of their inputs, out-
puts, preconditions, and effects (IOPEs). Atomic processes can be combined into
composite processes by using control constructs (e.g. sequence, split, etc.). All
processes and control constructs must be strictly nested in order to ensure that
every process or control construct has a defined parent.

To support basic fault handling and recovery, the OWL-S Process Model was
extended in [2]. In addition to the IOPEs, every process can define fault handlers,
standard event handlers, constraint violation handlers (CV-handlers), and com-



Recovery Mechanisms for SWS 3

pensation (FECCs). Fault handlers are used to respond to standard failures in
the form of an exception event during the execution. The CV-handlers augment
the basic fault handling by allowing a designer to define what situations during
execution are supposed to trigger an erroneous state and how to recover from it.
This is achieved by combining event expressions known from event algebras for
specifying arbitrary event patterns [5] in the condition part of a CV-Handler,
and recovery actions in the action part of a CV-Handler. The event conditions
defined in CV-handlers are treated as hard constraints that lead to an abnormal
execution state. In contrast, event handlers are used to express soft constraints.
If the event condition of an event handler is met, its actions are processed with-
out changing the execution state. In the compensation block, actions which are
supposed to undo the effects of a process in case of a failure can be specified.

The following recovery actions were introduced in [2] to enable essential re-
covery in OWL-S:

Compensation: For every process, compensation can be defined. The actions
specified in the compensation are used to undo the effects of the previously
performed process. Compensation can be triggered either by Compensate,
which invokes the compensation of the corresponding process, or by Com-
pensateProcess, which enables to perform compensation for another process.

Retry: Retry simply restarts the same process again (which is especially useful
for communication failures). It can be used in fault and CV-handlers to
restore a normal execution flow after a failure has occurred. It either retries
to execute the corresponding process n-times, or until the specified time
expires (timeout).

Replace: Two replace operations are provided to replace a process by an al-
ternative one which is supposed to achieve the same goal: ReplaceBy simply
replaces the failed process with an alternative one explicitly specified in the
process model. In contrast, ReplaceProcessBy replaces any arbitrary process
with another one, which makes it possible to change the overall workflow.

Skip: The Skip action can be used in all FECC handlers to skip a process that
has become dispensable as long as it has not been started yet.

Terminate: All running activities are stopped and performed tasks on the same
level are undone. Subsequently, the same is done for parent levels. Termi-
nation is realized in two ways. HardTerminate terminates all running proc-
cess without allowing compensation, whereas SoftTerminate compensates
finished processes before terminating.

3 Semantic-Enabled Recovery

In this section, new recovery actions enabled by computer-interpretable descrip-
tions of services are introduced in order to enhance and improve our existing
mechanisms [2]. The following operations distinguish themselves in providing a
flexible and adaptable way to recover from failures. We achieve this by exploiting
mainly existing semantic annotations in OWL-S. The actions either replace or
roll back the process with the help of dynamically discovered services.



4 Wiesner et al.

ReplaceByEquivalent: The described Replace action recovers through a re-
placement, either specified in advance or selected by a human agent. We defined
a more flexible operation, ReplaceByEquivalent, which dynamically adapts to
the current situation, by using the information about the service capabilities.
The OWL-S Process Model specifies inputs, outputs, preconditions, and effects,
which we utilize to find an alternative service with the help of existing algorithms
for automatic web service discovery (matchmaking) [6]. Since the replacement
service is not selected in advance but discovered during run-time, the chances
of a successful recovery and completion of the overall process are substantially
increased.

Advanced Back & Forward Recovery: A possible operation for recovery is
the Back & Forward Recovery (BFR). After a failure, first a rollback is performed
for all finished processes on the same level (of the process hierarchy) where the
failure occured (Back phase). If the parent is non-vital for the overall outcome,
the execution can continue in spite of the failure (Forward phase). If the parent is
vital, the Back phase is repeated until the parent is non-vital, so that eventually
Forward can be performed. In the worst case, i.e. when all tasks are vital, a
complete rollback is performed. However, OWL-S does not support such an
operation currently, since all processes are considered to be vital. A parameter
indicating whether a process is Vital/Non-Vital can be easily added, and so
recovery can be neglected for non-vital processes. Independently, we introduced
a variation of the BFR operation, Advanced Back & Forward Recovery (ABFR).
The basic BFR goes back in the process hierarchy until a non-vital parent is
found. The advanced variation of this makes use of the ReplaceByEquivalent in
such a way that for each parent that is vital an alternative service is searched
for. If an appropriate service exists, it is executed as a replacement and normal
execution is resumed. If no replacement is found, ABFR continues just as the
original approach and goes one step higher in the hierarchy. The following pseudo
code demonstrates the ABFR algorithm:

if hasParent(process) = false then
abortExecution

else
compensateSiblings
if parentOf(process) 6= vital then

continueExecution
else

successfulReplaced ⇐ ReplaceByEquivalent(process)
if successfulReplaced 6= true then

ABFR(parentOf(process))

Automatic Compensation: The definition of the Process in OWL-S contains
information about the effects of a service. This can be exploited to discover an
automatic compensation. If a service with the effects ε need to be compensated
and no compensation has been specified, it is searched for a service with the
effects ε−1 which undoes all changes. In particular, we assume that a service
without effects does not need to be compensated. This simplifies the recovery.



Recovery Mechanisms for SWS 5

4 Discussion

Although replacing an erroneous service with a dynamically discovered alterna-
tive by using an operation like ReplaceByEquivalent can significantly increase
the robustness of workflows, it also adds some degree of non-determinism to
it. Unbeknownst to the user, malicious services could be executed. In contrast,
searching for an alternative only in a local, controlled environment (e.g. within
a company’s intranet) would not really exploit the potential of such recovery
operations; consequently, a central pool with trusted services is a possible solu-
tion. The same applies for ABFR as well. Furthermore, the latter poses another
problem. ABFR might go back several steps in the hierarchy before finding a
replacement, which would lead to a substantial change of the original service. In
this case, the user may perform a largely different service than he wanted or the
process designer intended him to run. This, however, can be bypassed by spec-
ifying tasks as replaceable/non-replaceable. As a result, the process designer is
able to ensure that some core processes cannot be replaced. This also facilitates
a way to specify recovery operations in a more general way. Instead of specifying
recovery actions for each process separately, the expressivity of FECC handlers
can be exploited. A CV-handler might associate the ReplaceByEquivalent with
an event expression like ServiceInvocationException∧replaceable, so that each
service that cannot be invoked is automatically replaced.

5 Related Work

The approach introduced in [7], is based on long-lived transactions (LLTs). A
LLT can be broken up into several sub-transactions, which are then executed as
an atomic unit and can be compared to traditional transactions. Only complete
executions are accepted, so some sub-transactions have to be undone in the case
of failures. This is solved by providing a compensation for each of them and
executing those in the reverse order. E.g. WS-BPEL [1] exploits this method for
its error handling. In [8], Greenfield et al. discuss this approach in detail.

Intended especially for distributed transactions, several mechanisms for Web
service transactions have evolved, as Business Transaction Protocol (BTP), WS-
Tx1. These approaches provide protocols enabling a two-phase commit as in
traditional transactions, but also leaving applications in full control of single
steps. A failure in a sub-transaction does not inevitably lead to an abortion of
the actual transaction. In [9], Papazoglou gives an extensive overview. Curbera
et al. [10] suggest a combination of WS-BPEL and WS-Tx. The incorporation
of both is discussed in [11].

Workflow transaction approaches (such as in [12]) primarily focus on ensuring
a consistent state from a business point of view, i.e. achieving the business goal.
In case of a failure, the execution returns to the most recent consistent state and
tries to continue the execution in order to complete the workflow.
1 WS-Tx (WS-Transaction) includes WS-Coordination, WS-AtomicTransaction, and

WS-BusinessActivity.



6 Wiesner et al.

6 Conclusions & Future Work

In this paper we revised current recovery techniques in OWL-S and presented
new mechanisms enabled by the semantic layer. We introduced a new kind of
recovery actions that exploit the semantic annotation of SWS to facilitate dy-
namic discovery of alternative or auxiliary web services. We proposed that se-
mantic web services can be a key technology in achieving reliable and adaptable
service executions. We are curently working on the implementation of semantic-
enabled recovery actions mechanisms in the OWL-S Virtual Machine [13]. We
plan to extend the process specification to support features like (non)-vital as
well as (non)-replaceable. Additionally, we will investigate further possibilities of
semantic-enabled recovery actions.

References

1. Alves, A., et al.: Web Services Business Process Execution Language Version 2.0.
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html (April 2007)

2. Vacuĺın, R., Wiesner, K., Sycara, K.: Exception handling and recovery of semantic
web services. In: The Fourth International Conference on Networking and Services,
IEEE Computer Society (March 2008)

3. The OWL Services Coaltion: Semantic Markup for Web Services (OWL-S).
http://www.daml.org/services/owl-s/1.1/

4. Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D., Patel-
Schneider, P., Stein, L., et al.: OWL Web Ontology Language Reference. W3C
Recommendation, http://www.w3.org/TR/owl-ref/ (Feb 2004)

5. Vacuĺın, R., Sycara, K.: Specifying and Monitoring Composite Events for Semantic
Web Services. In: The 5th IEEE European Conference on Web Services, IEEE
Computer Society (November 2007)

6. Sycara, K., Paolucci, M., Ankolekar, A., Srinivasan, N.: Automated discovery,
interaction and composition of Semantic Web services. Web Semantics: Science,
Services and Agents on the World Wide Web 1(1) (2003) 27–46

7. Garcia-Molina, H., Salem, K.: Sagas. SIGMOD Rec. 16(3) (1987) 249–259
8. Greenfield, P., Fekete, A., Jang, J., Kuo, D.: Compensation is Not Enough. Pro-

ceedings of the 7th International Enterprise Distributed Object Computing Con-
ference (EDOC) (2003)

9. Papazoglou, M.: Web Services and Business Transactions. World Wide Web 6(1)
(2003) 49–91

10. Curbera, F., Khalaf, R., Mukhi, N., Tai, S., Weerawarana, S.: The Next Step in
Web Services. Communications of the ACM 46(10) (2003) 29–34

11. Sauter, P., Melzer, I.: A Comparison of WS-BusinessActivity and BPEL4WS Long-
Running Transaction. Kommunikation in Verteilten Systemen (KiVS), ser. Infor-
matik Aktuell. Springer (2005) 115–125

12. Eder, J., Liebhart, W.: Workflow recovery. Proceedings of the First IFCIS Inter-
national Conference on Cooperative Information Systems (1996) 124–134

13. Paolucci, M., Ankolekar, A., Srinivasan, N., Sycara, K.P.: The DAML-S virtual
machine. In Fensel, D., Sycara, K.P., Mylopoulos, J., eds.: International Semantic
Web Conference. Volume 2870 of Lecture Notes in Computer Science., Springer
(2003) 290–305


