
Rapid Prototyping of Routing Protocols
with Evolving Tuples

Drew Stovall and Christine Julien

Mobile and Pervasive Computing Group
University of Texas at Austin, Austin TX 78712, USA,

{dstovall,c.julien}@mail.utexas.edu

Abstract. Developing software for dynamic pervasive computing net-
works can be an intimidating prospect. While much research has focused
on developing and describing algorithms and protocols for these envi-
ronments, the process of deploying these technologies is far from mature
or streamlined. Furthermore, the heterogeneity of pervasive computing
platforms can make the deployment task unapproachable. In this paper,
we describe the evolving tuples model and demonstrate how a simple
protocol can be quickly and easily developed. Since the evolving tuples
infrastructure serves as a unifying base across heterogeneous platforms,
the resulting implementation inherently supports cross-platform deploy-
ment, a common scenario for pervasive computing.

1 Introduction

Since the introduction of ubiquitous computing [14], much research has studied
the coordination and collaboration of devices embedded in environments. As
predicted, sensing and computing devices are been developed and deployed, and
we are continually developing smaller, better, and longer lasting versions. Our
rooms, halls, cars, and even parks will eventually be augmented with a plethora
of devices to provide and consume all sorts of information.

However, the heterogeneity of devices can impede the creation and main-
tenance of applications. The variety of platforms to be supported requires an
enormous number of protocol and application implementations. This inevitably
leads to environments of incompatible, incomplete, and proprietary systems. Ad-
ditionally, physical access to the devices to update hardware and software leads
to massive efforts, making them impractical if not impossible.

Once deployed, this variety of hardware and software is a stumbling block
to successful application maintenance. Small alterations to network protocols or
node behaviors can cascade into significant code changes. The work required to
recompile and redeploy new features can slow development. To address these
issues, we introduce the evolving tuples model through which developers can
make changes to protocols and applications, run different versions side-by-side,
and add features without the cost of traditional redeployment.



In this paper we present the evolving tuples model and examine its use in pro-
totyping behavior for pervasive computing environments. A simple route discov-
ery protocol is described in detail to give a practical example of the work, showing
the simplicity of prototyping applications using the evolving tuples model.

2 Background

Originally introduced as part of the Linda [6] system, a tuple is simply an ordered
list of typed data fields. Tuples are collected in a bag-like data-structure called
a tuple space. The addition and removal of a tuple from a tuple space is atomic,
making it a natural mechanism for buffered communication between parallel
processes.

In Linda, a process removing a tuple from the tuple space provides a pattern
to which candidate tuples are compared. These patterns take the form of an
ordered sequence of actual or formal values. A tuple that matches a pattern has
the same number of fields as the pattern, equal values for any actuals, and the
same type as any formals.

While forming a simple mechanism for passing data between processes, this
design requires that data producers and consumers are maintained together.
Any change in tuple format will require a similar change in the patterns used by
existing processes. Since a pervasive computing environment typically consists
of devices that are not under the control of a single entity, we must assume
that tuple formats and tuple patterns will change independently. In our evolving
tuples, as in LighTS [1] and ELights [9], fields are tagged with names, enabling
us to decouple the tuple and pattern definitions.

Using tuple space systems, data can be effectively communicated between
processes administrated by different organizations. However, behavior must still
be specified a priori so that an application generating tuples can provide the right
data to the consumers. Evolving tuples reduce this level of coupling by directly
embedding some of the behavior we expect from nodes into the tuple itself.
Specifically, rather then pre-defining the data manipulation recipe to nodes,
evolving tuples allow tuple creators to stipulate this behavior at runtime.

3 The Evolving Tuples Model

In this section, we describe the evolving tuples model, consisting of three major
components: the tuple format, the evolution process, and the standard deploy-
ment. A formal specification of many aspects of this model can be found in [12].

3.1 Evolving Tuple Format

In addition to the name element described in the previous section, the evolving
tuples model adds a formula element to each tuple field. A field’s formula specifies
how the value is automatically updated or evolved. An evolving tuple is thus a
set of tuple fields which comprise a name, a type, a value, and a formula.



A field’s formula imparts behavior to the tuple as it passes through the
network. Previous to the evolving tuples framework, tuple values were either
immutable or altered only according to protocols already deployed to network
nodes. Though it can be empty or null (�), a field’s formula is nominally an
arithmetic expression. A few simple logical functions are also provided [12].

These formulas can reference the values of peer fields by name. We also allow
expressions to access values of a dictionary-like construct called the evolution
context. The evolution context serves as a lookup table for sensor readings, con-
figuration information, and other context related to the tuple’s current location.
To access values provided by the evolution context, formulas prefix the value’s
name with “ec.” to differentiate them from references to peer fields.

3.2 Evolution

When a tuple is evolved, each of its field’s formulas are evaluated, and the existing
value is replaced with the result. Since formulas combine both the previous value
and the values provided in the evolution context, the new value is viewed as an
evolution of the field’s value. If a field count has a formula of count + 1, the
current value of the field would be incremented during an evolution.

3.3 Standard Deployment Model

The Evolving Tuples Model includes a reference design that represents the con-
ceptual flow of tuples through each node. While the details of any particular
implementation may differ, the externally observable behaviors of each should
match those of this reference design. This model contains four components: the
receive process and three tuple spaces: inbound, outbound, and application. The
model is depicted in Fig. 1.

Basic Tuple Exchange. Applica-

Fig. 1. Flow chart of receive process

tions create, initialize, and deposit tuples
into the outbound tuple space. Since mes-
sages require a destination, the reference
model requires, at a minimum, a desti-
nation field. The field’s value should be
initialized to the address of a neighboring
node or to the broadcast address. A sys-
tem process monitors the outbound tuple
space, removing tuples and transmitting them to their destinations. If a trans-
mission fails, the tuple is redeposited into the outbound tuple space where it can
be selected at a later time for another attempt.

When a host receives a tuple, it is placed in the inbound tuple space. The
Receive process removes and evolves each tuple. If, after evolution, the tuple is
destined for this node (via the destination field), a copy of the tuple is deposited
in the application tuple space. If the tuple needs to be forwarded, the Receive
process deposits a copy of the tuple in the outbound tuple space.



Broadcast and Duplicate Elimination. The use of the reserved broadcast
address (typically -1) in a tuple’s destination field designates that the tuple
should be sent to every neighboring node. When using this address, the evolving
tuples deployment model requires the use of a unique id field in the tuple to
prevent the host from reprocessing tuples it has seen before. Because the tuple
id is simply another field in the tuple, it is possible to alter the value of this id
using the field’s formula. When a tuple’s id field is changed, it becomes a “new”
tuple which will be processed by nodes that have already processed a previous
incarnation.

4 A Routing Protocol

In this section we demonstrate how route discovery can be performed using the
evolving tuples model. In a network of interconnected nodes, a route from one
node to another can be found by flooding the network with a “route discovery
message”. If each node attaches its own address to a list of addresses in the
message, a complete hop-by-hop route will be created. When the target node
receives the message, a reply message is broadcast across the network to discover
a route back to the source. A more complete discussion of route discovery for
pervasive networks can be found in [8].

To build a route discov- Name Value Formula
source 0 �
target 2 �
route 0 append(route, ec.node)

destination -1 if (source == ec.node, ec.node, -1)
id 0.0 if (ec.node == target, newUuid(), id)

Table 1. Route Discovery Tuple

ery tuple, we start with the
source and target fields to hold
the addresses of the source
node and the target node re-
spectively. No formula is spec-
ified since these are constants
throughout the process. The route field carries the accumulated route to which
each intermediate node appends its own address (ec.node). The tuple’s destina-
tion field is used to propagate the tuple to the next node. With one exception,
the tuple is always broadcasted and thus the value is usually assigned to the
reserved broadcast address -1. When the tuple is being evolved on the source
node, we assign the destination to the source’s address (source) to prevent it
from further propagation.

Since nodes discard tuples that contain

Fig. 2. Example network

id’s that have already been processed (to
avoid duplicates), we must change the tuple’s
id when it arrives at the target before it is
re-flooded back to the source. We accomplish
this using a simple if statement. When the id
formula is evaluated on the target node, the
value is replaced with a new id generated by
the newUuid() function.

The original tuple deposited by the application is shown in Table 1 (field
types have been removed for brevity). In this example, the initiating application



resides on a node with address 0 and is attempting to discover a route to a node
with address 2. If nodes 0, 1, and 2 are interconnected as shown in Fig. 2, the
evolution of the tuple’s values are shown in Table 2.

When the tuple in Table 1 is deposited into node 0’s outbound tuple space, it
is broadcasted to neighboring nodes (i.e., Node 1). As the tuple moves through
this simple network and is evolved, its fields’ values change.

When the tuple is evolved Tuple Field Node 0 Node 1 Node 2 Node 1 Node 0
id 0.0 0.0 2.0 2.0 2.0

source 0 0 0 0 0
target 2 2 2 2 2
route 0 01 012 0121 01210

destination -1 -1 -1 -1 0

Table 2. Tuple Values (after evolution on the node
heading the column)

on node 1, only the route field
is changed, and the tuple is
broadcasted again. When the
tuple is evolved in node 2, both
the route and id fields are
updated. By changing the id
field, we allow the tuple to be
received again by node 1 when node 2 broadcasts it again. Node 1 again updates
only the route field, and the tuple is passed on to node 0. Here the destination
field is set to 0 to prevent any further flooding of the tuple.

5 Related Work

Early tuple space designs [6] and implementations [2] for Linda targeted parallel
processing environments. Specifically, the atomic insertion and removal oper-
ations on tuple spaces relied on locks provided by shared memory. Lime [11]
introduced distributed tuple spaces that provided the same atomicity guaran-
tees across a truly global tuple space spanning many devices in mobile ad hoc
networks. This adaptation of tuple spaces allows for an abstract representation
of the network underlying a pervasive application but requires that tuples be de-
livered to consumers without interacting with the “lower levels” of the network.
We believe that exposing cross-layer information to tuples in our approach allows
for more powerful applications at the cost of a more complex representation.

Mobile agent systems also combine behavior with the data that traverses the
network. In an effort to provide a wide range of functionality, undue burden is
placed on either the developer or the hosts. Systems like Agilla [5] require the
developer to understand very low-level programming languages, while systems
like TOTA [10] and MARS [3] require hosts to support high-level languages (i.e.,
Java). We feel that the evolving tuples model strikes a balance between the skills
required to use the system and the capabilities required of the network hosts.

While rooted in different technologies, there are a number of efforts to ease
development for pervasive computing applications. Visual programming tech-
niques [13] reduce the learning curve for new developers. Other approaches [7]
provide abstraction to manage complexities. Still others address recompilation
and redeployment head on through more complex hardware [4].



6 Conclusions and Future Work

We have presented the evolving tuples model and shown how it can be used
to implement a simple route discovery protocol. As we continue to evaluate the
model, we anticipate exposing a variety of other domains to which the evolving
tuples model is well suited. We feel that our model has the potential to make
developing pervasive computing applications more approachable and fruitful.

7 Acknowledgments

The authors would like to thank the Center for Excellence in Distributed Global
Environments for providing research facilities and the collaborative environment.
This research was funded in part by NSF Grant #CNS-0626777 and AFOSR
Grant #FA9550-07-1-0157. The views and conclusions herein are those of the
authors and do not necessarily reflect the views of the sponsoring agencies.

References

1. D. Balzarotti, P. Costa, and G. P. Picco. The LighTS tuple space framework and
its customization for context-aware applications. Int’l Journal on Web Intelligence
and Agent Systems (WAIS), 5(2), 2007.

2. P. Butcher. A behavioural semantics for Linda-2. Software Engineering Journal,
6(4):196–204, 1991.

3. G. Cabri, L. Leonardi, and F. Zambonelli. MARS: A programmable coordination
architecture for mobile agents. IEEE Internet Computing, 4(4):26–35, 2000.

4. M. Dyer, J. Beutel, and T. K. et al. Deployment support network - a toolkit for
the development of WSNs. In Proc. of EWSN, pages 195–211, Jan. 2007.

5. C.-L. Fok, G.-C. Roman, and C. Lu. Rapid development and flexible deployment of
adaptive wireless sensor network applications. In Proc. of ICDCS, pages 653–662,
June 2005.

6. D. Gelernter and A. J. Bernstein. Distributed communication via global buffer. In
Proc. of PODC, pages 10–18, 1982.

7. R. Handorean, J. Payton, C. Julien, and G.-C. Roman. Coordination middleware
supporting rapid deployment of ad hoc mobile systems. In Proc. of ICDCS Work-
shops, pages 362–368, May 2003.

8. D. B. Johnson and D. A. Maltz. Dynamic source routing in ad hoc wireless net-
works. In Mobile Computing, volume 353. Kluwer Academic Publishers, 1996.

9. C. Julien and G.-C. Roman. EgoSpaces: Facilitating rapid development of context-
aware mobile applications. IEEE Trans. on Soft. Eng., 32(5):281–298, May 2006.

10. M. Mamei and F. Zambonelli. Programming pervasive and mobile computing
applications with the TOTA middleware. In Proc. of PerCom, pages 263–273,
2004.

11. A. L. Murphy, G. P. Picco, and G.-C. Roman. Lime: A coordination middleware
supporting mobility of hosts and agents. ACM TOSEM, 15(3):279–328, July 2006.

12. D. Stovall and C. Julien. Resource discovery with evolving tuples. In Proc. of
ESSPE, pages 1–10, Sept. 2007.

13. T. Weis, M. Knoll, A. Ulbrich, G. Muhl, and A. Brandle. Rapid prototyping for
pervasive applications. IEEE Pervasive Computing, 6(2):76–84, Apr.-June 2007.

14. M. Weiser. The computer for the 21st century. Scientific American, Sept. 1991.


