
Model-based Performance Instrumentation of
Distributed Applications

Jan Schaefer1,2, Jeanne Stynes2, Reinhold Kroeger1

1 Wiesbaden University of Applied Sciences
Distributed Systems Lab

Kurt-Schumacher-Ring 18, D-65197 Wiesbaden, Germany
{jan.schaefer,kroeger}@informatik.fh-wiesbaden.de

2 Cork Institute of Technology
Department of Computing

Rossa Avenue, Bishopstown, Cork, Ireland
jeanne.stynes@cit.ie

Abstract. Problems such as inconsistent or erroneous instrumentation
often plague applications whose source code is manually instrumented
during the implementation phase. Integrating performance instrumenta-
tion capabilities into the Model Driven Software Development (MDSD)
process would greatly assist software engineers who do not have de-
tailed knowledge of source code instrumentation technologies. This pa-
per presents an approach that offers instrumentation support to soft-
ware designers and developers. A collection of instrumentation patterns
is defined to represent typical instrumentation scenarios for distributed
applications. A UML profile derived from these patterns is then used to
annotate UML models. Based on suitable code generation templates, the
annotated models are transformed into instrumented source code for dif-
ferent instrumentation APIs. A prototypical implementation, including
an adaptation to Web services, was evaluated in a lab environment.

1 Introduction

In recent years, Model Driven Software Development (MDSD) has become in-
creasingly popular3 because several MDSD tools have reached a sufficient level
of maturity. In MDSD, code generators are used to generate application source
code from technical models based on transformation templates. Using this ap-
proach, source code for specific types of platforms and applications can be cre-
ated efficiently. Today, several Open Source MDSD code generator frameworks
are available and used in professional projects, in particular AndroMDA4 and
openArchitectureWare5 have become popular in recent years. Because of diverse
application requirements, extensions containing specific templates and UML pro-
files for these frameworks are constantly being developed. So far, these extensions
3 http://www.voelter.de/data/articles/cgn.pdf
4 http://www.andromda.org
5 http://www.openarchitectureware.org



cover mainly middleware infrastructure aspects (e.g. for EJB, CORBA, Spring,
Hibernate). Extensions supporting mandatory application management aspects
like security and performance are still rare.

Performance is an important aspect of applications, even more so in hetero-
geneous distributed systems. Thus, continuous performance tests, performance
validation – especially after modifications or redesigns – and Service Level Man-
agement (SLM) at runtime are necessary tasks during the lifecycle of applica-
tions. This can be achieved by applying Performance Instrumentation, which
can be defined as the process of adding non-functional code to an application to
provide performance analysis information at runtime.

Instrumentation is usually performed during the implementation and testing
phases, when software developers analyse the application’s source code. Once
relevant positions have been identified (e.g. based on their importance for the ap-
plication), instrumentation statements are inserted into the source code. Manual
instrumentation always carries the potential of errors or unwanted side-effects:
the instrumentation might be incomplete, too detailed (and therefore slow down
the application) or too sparse. Tools supporting developers during the instru-
mentation process greatly reduce the probability that these common mistakes
will occur. More importantly, enhanced tool support removes the developers’
need to acquire detailed knowledge of the applied instrumentation technology
before the instrumentation process is carried out.

An instrumentation has to be integrated with the underlying application
architecture, which can become a time-consuming and difficult task if the per-
formance aspect is not considered until the end of the development process.
Unfortunately this occurs frequently even though application performance and
responsiveness are major acceptance factors for end users. Once applications
are deployed or have evolved over time, there may exist immobile technical or
architectural dependencies that must be observed if monitoring capabilities or
performance-related changes have to be implemented. Such dependencies can be
avoided by implementing performance monitoring capabilities as early as possi-
ble, preferably before the first pieces of source code are written. In this paper,
logging and performance measurements (e.g. execution times of work units) are
considered as the primary goals of performance instrumentation.

Based on Pooley’s definition [1] of Software Performance Engineering, a
performance engineering process integrating instrumentation with the MDSD
methodology can be defined as follows: UML application models are annotated
with an UML instrumentation profile. The resulting annotated models are trans-
formed into instrumented source code using specific templates developed for a
MDSD framework. This enables software designers to define performance mon-
itoring capabilities in UML application models during the design phase with-
out detailed knowledge of the instrumentation technologies that are used in the
generated code. If standardised instrumentation APIs such as log4j 6 and Ap-
plication Response Measurement7 (ARM) are targeted during code generation,

6 http://logging.apache.org/log4j
7 http://www.opengroup.org/arm



the runtime performance data produced by the instrumented application can be
processed easily by enterprise management systems such as IBM Tivoli8 or HP
Business Technology Optimization Software9. Therefore, the focus of this paper
is on modelling and transformation of performance annotations.

This introduction is followed by a presentation of the state of the art in appli-
cation performance instrumentation in section 2. Section 3 introduces the unique
instrumentation approach developed for this paper. A performance engineering
process incorporating this approach is presented in section 4, followed by its pro-
totypical implementation in section 5 and a case study in section 6. This paper
closes with a conclusion and a look at possible future work in section 7.

2 Related Work

Instrumentation can be required and performed during almost any phase of an
application’s lifecycle. This section introduces common approaches to software-
based instrumentation that support developers in the process.

Apart from the risk of erroneous instrumentation, manual source code in-
strumentation can lead to a possibly unwanted mixture of functional (business
logic) and non-functional (instrumentation) source code. Thus, instrumentation
approaches using Aspect-Oriented Programming (AOP), where no instrumenta-
tion code has to be written repeatedly once templates are created, have been
implemented in recent years [2] [3]. However, aspect compilers such as AspectJ
which are used by these approaches often support granularity at method invoca-
tion level only. Another drawback is the lack of correlation functionality (i.e., the
absence of facilities for semantically related instrumentation points to reference
each other). This is not a problem for independent logging instrumentation but,
especially in distributed systems, end-to-end monitoring based on related mea-
surements can be mandatory to track requests on their way through complex
workflows. Also, current AOP-based instrumentation approaches can be used
only from the implementation phase on.

Binary code instrumentation is necessary if the source code of the to be
instrumented application is not available or must not be modified. This approach
is often used in conjunction with the Java programming language [4], because
Java offers standardised interfaces for modifications to bytecode even at runtime
(e.g. engaging bytecode running in the Java Virtual Machine (JVM) [5] [6]).
Although arbitrary positions in binary code can be addressed in general, this
instrumentation approach suffers from similar limitations as AOP. Correlation
facilities are not provided, and obviously this approach can only be used if binary
code for the targeted application already exists. The abstraction ability of binary
code (or machine code for that matter) is too limited because it is supposed to
be a concrete (platform-specific) implementation of the application.

In recent years, the need for instrumentation led to the development of mid-
dleware frameworks that already contain fixed instrumentation capabilities as
8 http://www.ibm.com/software/tivoli
9 http://www.managementsoftware.hp.com



developed by the vendor. For example, IBM instrumented10 their DB2 Universal
Database11 (version 8.2 or later) and WebSphere Application Server12 (version
5.1.1.1 or later). And starting with Java 5, even the standard edition JVM con-
tains Java Management Extensions13 (JMX), which support state monitoring of
applications at runtime.

Another approach suited to instrumenting framework-based client/server ap-
plications uses the widely supported message handler framework (also known as
interceptor or listener framework). It is part of the CORBA [7] and Java API
for XML Web Services (JAX-WS) [8] specifications and supported by applica-
tion servers such as the Apache Tomcat14 and JBoss15 application servers. This
approach relies on instrumented components that are plugged into the frame-
works by configuration transparently to the application [9] [10]. This approach
can even be combined with legacy middleware technologies if supported by a
connector such as an Enterprise Service Bus (ESB).

All these instrumentation alternatives cannot be integrated with the MDSD
process because they do not feature modelling capabilities. However, several
approaches for integrating performance aspects with UML models have been
developed. The definition of the UML Profile for Schedulability, Performance,
and Time16 (UML-SPT, now known as MARTE) sparked a vast collection of
research projects with the intention to implement the SPE requirements [11]. So
far, work based on the UML-SPT primarily focussed on systems with strict tim-
ing and performance constraints (e.g. real-time systems). The process of creating
a complete application model with performance annotations for each component
can become very time-consuming. Nevertheless, this is common practice, espe-
cially for developing embedded systems. This design detail may be mandatory
for simulating and validating system properties prior to implementation [12],
but it removes the advantage of relieving developers during the instrumenta-
tion process if the supporting solution increases the modelling effort drastically.
In addition, the modelling effort required for complying with the UML-SPT is
greater than what is required for basic application monitoring.

Performance prediction is based on models like Petri Nets [13] [14], Queue-
ing Models or Markov Chains [15] [16]. These approaches focus on stochastic
methods for predicting qualitative (correctness) and quantitative (performance)
applications properties or even complex systems. Pooley proposes generating
such models from UML models, which is used seldom in a traditional software
development process as software designers and developers are usually unfamiliar
with this task. Furthermore, in order to be of practical relevance, queueing mod-
els have to be calibrated based on runtime measurement data, which must be

10 http://www.ibmsystemsmag.com/i5/june05/features/9060p3.aspx
11 http://www.ibm.com/db2
12 http://www.ibm.com/websphere
13 http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement
14 http://tomcat.apache.org
15 http://www.jboss.org/products/jbossas
16 http://www.omg.org/technology/documents/formal/schedulability.htm



collected using some sort of monitoring anyway [17]. If the sample data used for
this purpose is too limited or generally inappropriate, the results of the subse-
quent analysis will not reflect the real system behaviour. Thus, queueing models
cannot replace but can complement a concrete instrumentation.

3 Model-based Performance Instrumentation

As mentioned in section 1, this paper focuses on the integration of logging and
performance measurement capabilities with the MDSD process. This section
presents the approach to integrate an abstract representation of instrumentation
information with application models.

3.1 Instrumentation Patterns

Figure 1 presents a service invocation as an instrumentation scenario example
which could be instrumented by defining two related execution time measure-
ments. The server-side measurement corresponds to the execution time of the
service (t2→3), the client-side measurement represents the response time visible
to the client (t1→4). If these measurements were linked, they would allow an
analysis of execution and response time of each processed request.

������ ���	�
�

������

��������

�

�

�

�

Fig. 1. Instrumentation Scenario

This paper defines a collection of Instrumentation Patterns representing ab-
stract instrumentation scenarios. By referring to this pattern collection, software
designers can determine possible instrumentation scenarios in their application
models. The pattern collection offers additional guidance to designers because
the relationships between determined instrumentation points might not always
be recognisable.

The pattern collection can be split into two groups: Basic Patterns and Com-
plex Patterns [18]. Basic patterns are the building blocks of complex patterns. In
addition to the patterns introduced in this paper, new patterns can be defined
based on either basic or complex patterns.

Instrumentation points and their purpose are described in more detail by
their Role in a pattern. Each pattern defines a set of roles detailing the respon-
sibilities of the associated points (e.g. instrumentation points can take either
“start” or “stop” role in a measurement). An instrumentation point can be part
of multiple basic patterns, which themselves can be part of multiple complex
patterns.



The instrumentation of an application – the collection of all its pattern in-
stances – can be seen as a directed graph: instrumentation points are vertices
of this graph and their connecting edges can be annotated to further describe
the relationships between the instrumentation points. A pattern (a subgraph)
is described by one (basic pattern) or more (complex pattern) tuples. Basic
instrumentation patterns describe simple workflow elements that can occur in
applications. Figure 2 displays the three basic patterns defined by this paper.

�

�

�

�

�

�

�

�

�

���	
 ������ ��
�	

Fig. 2. Basic Instrumentation Patterns

The Event Pattern is the simplest instrumentation pattern. It is used for
defining single, unrelated instrumentation points. Thus, it is usually represented
by a log or status message (see example A in figure 2). The name of the only
role in this pattern is source, because the point in this pattern is the source of
the event.

The Trigger Pattern defines an event that sets off an arbitrary number of
other events. A triggered event is causally dependent on its trigger event. The
trigger event and the triggered event can be processed by a single system com-
ponent or by multiple (distributed) components. Triggers support synchronous
and asynchronous application execution scenarios. (see example B/C in figure 2).
The are two roles in this pattern: activator and receiver. A trigger event also can
be blocked (e.g. in a queue).

The Action Pattern defines two related Events (a start and a stop Event)
which are processed by a single system component or a pair of related com-
ponents. An Action spans a certain period of an application’s execution time
(see example D in figure 2) and can be seen as a specialisation of the Trigger
pattern. The Action pattern also has two roles, namely start and stop.

The RPC Pattern shown in figure 3 is an example of a complex pattern.
[19] contains a more detailed description of the pattern collection including the
Multitrigger and Sequence patterns. The RPC pattern represents a synchronous
or asynchronous message exchange. The activities on client and server component
can be seen as related work units. Thus, the server-side activity is semantically



�

�

�

�

�

�

�����	


��	��	�

����
�����
��
���
�

�����������
��
���
�

Fig. 3. RPC Pattern

nested in the client-side activity. This describes a classic Remote Procedure Call
(RPC) interaction in which server activities are triggered by client invocations.
This pattern is a composition of four basic patterns: two Actions (client-side
activity and server-side activity) and two Triggers (request and response).

3.2 UML Instrumentation Profile

The abstract graphical pattern representation must be mapped to appropriate
UML entities to enable software designers to use these patterns in application
models. The UML Instrumentation Profile shown in figure 4 represents a map-
ping of the patterns introduced in section 3.1 to UML. The stereotypes in this
profile contain abstract instrumentation information required for logging and
performance measurements.

������������		


������

������������

�����������������
�����������������
�����������������

������������		

�����
�����������

������������		

������
�����������

������ ���������!������!���

������������		

!������
�����������

Fig. 4. Basic instrumentation stereotypes

The abstract Pattern stereotype contains shared tagged values, which are re-
quired by all basic and complex instrumentation patterns. The id attribute (or



tagged value) contains a unique (human-readable) name of the Instrumentation
Entity, which can be either a point or a pattern. The id can be used to name the
entity. The message attribute contains a message describing the entity. Depend-
ing on the instrumentation APIs provided by the code generator, the message
might reemerge in the generated instrumentation code. roles is an enumeration
literal containing the role(s) that an entity takes in patterns (see section 3.1).
The role merely can be used to supply additional detail to instrumented enti-
ties which allows the code generator to generate specific instrumentation code
(e.g. for a selected middleware platform). The severity is also an enumeration
literal and defines the importance level of the output of this instrumented en-
tity. Based on the common features of today’s logging frameworks, the abstract
pattern supports the levels Info, Debug, Warn, Error, Fatal and Trace. The
default importance level is set to Debug.

The Event stereotype does not introduce additional tagged values. It can
be attached to UML operations. During code generation, the Event is typically
implemented by a logging statement.

The Action stereotype introduces an additional tagged value named instru-
mentationType. The instrumentation type is an enumeration literal that can be
set to either Logging or Measurement. Depending on its value, source code for
logging or response time measuring will be generated.

The Trigger stereotype and the complex stereotypes are not graphically rep-
resentable in UML class diagrams, which have been investigated for this paper,
using UML notation. This diagram type supports static associations between
classes, but it is impossible to mark source and target instance of an opera-
tion invocation nor patterns spanning multiple UML entities. The case study in
section 6 discusses this limitation further.

4 Performance Engineering Process

This section introduces a performance engineering process, illustrated in fig-
ure 5, that is compatible with the Software Performance Engineering approach
described by Pooley in [1]. It is based on UML, the UML instrumentation profile
as introduced in section 3.2 and the openArchitectureWare (oAW) MDSD code
generation framework for Java source code generation, but the methodology can
be transferred to other frameworks and programming languages easily. For illus-
tration purposes, the subsequent description uses oAW-specific terminology.

Before the instrumentation process is started, the instrumentation profile is
imported into the software designer’s UML modelling tool. During creation and
analysis of the UML application models, the designer can annotate designated
instrumentation points using the stereotypes of the instrumentation profile. Once
this process has been finished, the instrumented model is exported to XMI.

The code generation workflow of the oAW framework is configured to im-
port and parse the instrumented model using the profile metamodel. The oAW
code generator component generates pure Java source code for uninstrumented
UML elements (using generic JavaBasic Templates provided by the Fornax Plat-



form17) and instrumentation code for instrumented elements (using custom In-
strumentation Templates developed for processing stereotyped UML elements).
Figure 5 also exemplifies a UML class extended with the Event stereotype and
the resulting instrumented Java source code.

����������	

����

	������	�����	
�������

�
�

������	�
����

���
��������

���	�
�������������

����

	������	���
����������	

����

���������
���������

	������	�����	
���������

��������
�	
��������	�

�����	���������
����������	�
������������	
��
����	
��
��������	������
��	����������
����
�
���������������
���

������� �������
���	
!"��
�����������������������	��
���������	�� �������
�����!#$%&�����'����
�!""��
����#$%&����!(��	
)�����	������
��	��������("*
���
��������!��������������������������������������

������������	
������	�����������
����������

�
�

��	������

��������	��
 ���


�	�����	�
!"����

��������#��#��	����

	���$#�������

��������

�%��	��

Fig. 5. Performance Engineering Process

Once the generated instrumented application source code is completed by im-
plementing the application’s business logic, the Instrumented Application gen-
erates Performance Data at runtime, which can be processed (i.e. displayed,
analysed) using a Management System. In case common instrumentation APIs
and libraries are used for generating the instrumentation code, existing enterprise
management systems can be used for the analysis.

The approach presented in this paper does not dictate following the MDSD
approach during development of all application components. Modelling and in-
strumentation can also take place in the beginning only, followed by more tra-
ditional source code-based development afterwards. However, the presented ap-
proach can be integrated seamlessly into a MDSD process.

5 Prototypical Implementation

An overview of the oAW-based code generation process has already been given
in section 4. Custom instrumentation templates have been developed for gener-
ating instrumentation code. oAW features an AOP mechanism supporting the
extension of existing templates. The instrumentation templates extend the For-
nax JavaBasic templates just as the instrumentation profile extends UML. The
oAW workflow presented in figure 5 is clarified by figure 6.
17 http://www.fornax-platform.org



���������	�
���
���������

�������	������

������������������
��������������
���������

���������
��������������


���������������
���������

�������
��������������


���������������
���������

���������������
���������

��������������������

Fig. 6. oAW Code Generator Instrumentation Extension

The instrumentation extension developed for oAW contains templates that
support code generation for the logging and time measurement instrumentation
goals. The prototypical implementation creates a source code representation of
the instrumentation patterns introduced in section 3.1 to the well-known log4j
(for logging) and ARM 4.0 (for measuring) APIs. ARM is a widely acknowl-
edged Open Group standard for performance measurements within distributed
applications. Within ARM, Response Times are execution time measurements of
work units termed ARM Transactions within distributed applications. To avoid
dependencies on global time, each measurement has to start and end within the
same process. However, the standard allows the correlation of semantically re-
lated measurements, even across host boundaries. For this purpose, ARM defines
ARM Correlators, which are unique tokens assigned to each ARM transaction.
ARM is capable of recording single ARM transactions, which is a requirement
for the instrumentation of critical applications, and supports direct integration
of applications with enterprise management systems. This creates a comprehen-
sive end-to-end monitoring capability, including the measurement of application
performance, availability, usage and end-to-end transaction response times. To
effect this integration, ARM calls must be present in the application source code,
which are processed by an ARM library during application execution. ARM de-
fines C and Java APIs.

Both code generators retrieve the required instrumentation statements from
textual code templates. These templates have been developed based on the Ve-
locity18 template engine, so the targeted instrumentation APIs can be exchanged
without modifying the code generators’ source code. For Events, logging state-
ments are placed at the beginning of generated methods stubs; for Actions, two
measurement statements are placed at beginning and end of method stubs. ARM
measurement data map to the corresponding instrumented source code locations
containing start() and stop() calls on the transaction object. Therefore, a re-
sponse time value as defined in the ARM 4.0 API can only express the time
span referenced by two instrumentation points located in the same application
instance and thus on the same host.

18 http://velocity.apache.org



Depending on the instrumentation stereotypes and tagged values of each
instrumentation point detected in a parsed UML model, the instrumentation
templates invoke the appropriate code generator for generating either measuring
or logging statements. The positions, in which these statements are placed, are
shown in figure 7.

���������	���

���������	���


	��	��	������

�����������
��������	
�������

�������	���

�
����������
���

��	����������
������������


	����	������
�

����������
���

���������	���

���������	���

Fig. 7. Instrumentation Code Insertion Positions

6 Case Study: Web Services

The performance engineering process has been applied to several examples in a
lab environment (i.e. without real-world application and work load). One exam-
ple is presented in this section to demonstrate the applicability of the process
to modern middleware-oriented applications and the flexibility of the developed
prototype.

As discussed in section 3.2, complex patterns like the RPC pattern cannot be
applied to UML class diagrams graphically. On the other hand, the RPC pattern as
presented in section 3.1 is essential when instrumenting distributed applications.
In order to solve this conflict, an adaptation has been developed which uses roles
to textually represent the RPC pattern in UML class diagrams, so that the code
generator can generate appropriate instrumentation code.

For the adaptation to Web service facilities, the client-side and the server-side
Actions were outfitted with their respective roles (as introduced in section 3.1)
in the UML diagram, which were then interpreted by the code generation tem-
plates appropriately. First, JAX-WS-based Web service communication, which
is supported by major Web service frameworks such as Apache Axis 2 19, Apache
CXF 20 and even Java 6 21, was analysed for facilities supporting ARM corre-
lation of distributed measurements. Figure 8 shows the resulting exchange of a

19 http://ws.apache.org/axis2
20 http://incubator.apache.org/cxf
21 http://java.sun.com/javase



correlation token (CT) between client and Web service based on the Web ser-
vice context and message handler facilities. The generated instrumentation code
inserts an ARM correlator into the Web service context, which is attached as
metadata to the outgoing request by a message handler. On the service side, an-
other message handler extracts the correlator and puts it into the context. The
generated instrumentation code for the service then uses the received correlator
as parent correlator for its ARM measurement.

�������
�	�
�

�������
�	�
�

�����
���
���
��������
���
����������	

����

����	�	��� ����	�	���

���	������

�

���	������

�

�����������
����	�

�����������

������
�����������

�

������
����������

�

�������

������

�������

������

 ��������� ��������� �� ��

��

����������������������
�����
�� �����������

Fig. 8. JAX-WS Facilities in Web Service Interaction

The case study showed that the model-based instrumentation approach can
be applied to middleware-oriented applications, although adaptation is required
for each additional framework to be supported. The amount of modifications
required for adapting the code generator, however, was small so this does not
pose a grave disadvantage. A look at the MDSD template collection hosted by
Fornax confirms that the adaptation requirement is a general limitation of MDSD
code generation: generic templates result in generated source code that requires
comprehensive manual additions (thus limiting the benefit of code generation),
and specific templates are limited in their applicability. There simply is no generic
yet flexible solution appropriate for a broad palette of instrumentation scenarios.

Although the prototype is based on and integrated with openArchitecture-
Ware, the presented approach can also be implemented in alternative MDSD
code generation frameworks, programming languages and middlewares. Depend-
ing on the extension capabilities of the target platforms, the oAW-independent
Java code generators and velocity templates might even be reusable.

7 Conclusion and Future Work

This paper presented an approach to model-based performance instrumentation
of distributed applications in accordance with Pooley and modern MDSD-based
software engineering processes. The performance aspect has been integrated into
the MDSD process so that software designers can continue to use their existing



UML modelling tools to instrument application models. With the collection of
instrumentation patterns presented here in mind, designers are able to identify
interactions within the models that are possible candidates for instrumentation.
A drawback of the UML instrumentation profile based on these patterns is that it
is a custom development. However, existing profiles for integrating performance
annotations with UML models (such as the UML-SPT/MARTE) lacked essential
features due to their emphasis on real-time systems modelling. The custom-
designed profile defined here suffers from the risk of being outdated by standards
developed in the future.

The prototypical implementation of the architecture was evaluated in a case
study which demonstrated the overall usability and adaptability of the approach.
The tests showed that comprehensive code generation can be achieved for spe-
cific usage scenarios (here: JAX-WS-based Web services) with only minor mod-
ifications to the otherwise generic templates. This can have a great impact on
the productivity of a software project: a developer familiar with the environ-
ment executes the adaptations required for integrating a new communications
framework, and all peers can use and profit from the generated instrumentation.
Further evaluation of the methodology and the prototype is part of an ongo-
ing research project which allows applying the approach presented here to an
enterprise application.

Although template-based code generation only offers limited flexibility, proj-
ects such as the Fornax Platform, which concentrates on developing and pro-
viding extensions to widely used MDSD frameworks, help create a toolbox for
MDSD which should contain something useful for almost any software develop-
ment project. So far, the available extensions are mostly middleware-specific.
Increasing acceptance and usage of MDSD technologies in professional soft-
ware development, however, might spark the interest in extensions for generating
source code for non-functional application properties like management and se-
curity, which could be combined with existing templates. This would effectively
add an additional layer on top of the currently available communication- and
infrastructure-centric templates.

As UML class diagrams are the most popular diagram type today, they were
initially investigated for applicability of the instrumentation profile. The result
showed that class diagrams are not ideally suited for instrumenting distributed
applications. For example, dynamic interactions between distributed entities (e.g.
Remote Procedure Calls) cannot be described sufficiently. But for developing
the performance engineering process, class diagrams were the best choice, based
on the fact that most available resources for MDSD frameworks rely on this
diagram type. The evaluation of additional diagram types for integration with the
instrumentation patterns and the profile (e.g. UML sequence and state diagrams)
has already been started.

References

1. Pooley, R.: Software engineering and performance: a roadmap. In: ICSE ’00:
Proceedings of the Conference on The Future of Software Engineering, New York,



NY, USA, ACM Press (2000) 189–199
2. Krishnamurthy, R.: Performance Analysis of J2EE Applications Using AOP Tech-

niques. (2004) http://www.onjava.com/pub/a/onjava/2004/05/12/aop.html.
3. Weimer, C.: IDE-gestützte Generierung von Quellcode zur Instrumentierung von

Anwendungen. FH Wiesbaden (2005)
4. WO 03/062986 A1: Flexible and extensible java bytecode instrumentation system.

Patent (July 2003)
5. Buytaert, D., Maebe, J., Eeckhout, L., Bosschere, K.D.: Building Java program

analysis tools using Javana. In: OOPSLA ’06: Companion to the 21st ACM SIG-
PLAN conference on Object-oriented programming systems, languages, and appli-
cations, New York, NY, USA, ACM Press (2006) 653–654

6. US 2002/0152455 A1: Dynamic instrumentation of an executable program. Patent
(October 2002)

7. M. Wegdam, A.v.H.: Experiences with CORBA interceptors. (2000) http://www.
comp.lancs.ac.uk/computing/rm2000/papers/20-aacentcweg.pdf.

8. Pulavarthi, R.: Writing a Handler in JAX-WS. (2006) http://java.sun.com/

mailers/techtips/enterprise/2006/TechTips_June06.html.
9. Schmid, M., Thoss, M., Termin, T., Kroeger, R.: A Generic Application-Oriented

Performance Instrumentation for Multi-Tier Environments. In: 10th IFIP/IEEE
International Symposium on Integrated Network Management (IM2007), IEEE
(May 2007) 304–313

10. Debusmann, M., Schmid, M., Kroeger, R.: Measuring End-to-End Performance of
CORBA Applications using a generic instrumentation Approach. In Corradi, A.,
Daneshmand, M., eds.: Proceedings of the Seventh IEEE Symposium on Computers
and Communications ISCC 2002, IEEE (2002)

11. Smith, C.U., Williams, L.G.: Performance and Scalability of Distributed Software
Architectures: An SPE Approach (2002)

12. Gomez-Martinez, E., Merseguer, J.: A Software Performance Engineering Tool
based on the UML-SPT. In: QEST ’05: International Conference on the Quanti-
tative Evaluation of Systems (Proceedings), IEEE Computer Society (2005) 247

13. Anglano, C.: Performance modeling of heterogeneous distributed applications. In:
MASCOTS ’96: Proceedings of the 4th International Workshop on Modeling, Anal-
ysis, and Simulation of Computer and Telecommunications Systems, Washington,
DC, USA, IEEE Computer Society (1996) 64

14. J. Dehnert, J.F., Zimmermann, A.: Workflow Modeling and Performance Evalua-
tion with Colored Stochastic Petri Nets (2000)

15. Bolch, G., Greiner, S., de Meer, H., Trivedi, K.S.: Queueing Networks and Markov
Chains: Modeling and Performance Evaluation with Computer Science Applica-
tions, 2nd Edition. Wiley-Interscience (2006)

16. Theelen, B., Voeten, J., van Bokhoven, L., van der Putten, P., Niemegeers, A.,
Jong, G.: Performance Modeling in the Large: A Case Study (2001)

17. Xu, J., Oufimtsev, A., Woodside, M., Murphy, L.: Performance modeling and pre-
diction of enterprise JavaBeans with layered queuing network templates. SIGSOFT
Softw. Eng. Notes 31(2) (2006) 5

18. Kroeger, R., Machens, H.: Trace Framework - Tracing in heterogenen Umgebungen.
Technical report, Wiesbaden University of Applied Sciences (Nov 2002)

19. Schaefer, J.: Model-based Instrumentation of Distributed Applications. Master’s
thesis, Cork Institute of Technology (2008)


