
Adaptive and Fault-Tolerant
Service Composition in Peer-to-Peer Systems

Vivian Prinz1, Florian Fuchs2, Peter Ruppel2, Christoph Gerdes3, and Alan
Southall3

1 Group of Applied Informatics - Cooperative Systems, Institute for Informatics,
Technische Universität München, Germany

2 Mobile and Distributed Systems Group, Institute for Informatics,
Ludwig-Maximilians-Universität München, Germany

3 Siemens AG, Corporate Technology, Information and Communications, Intelligent
Autonomous Systems

Abstract. Service-orientation enables dynamic interoperation of dis-
tributed services and facilitates seamless service provision or runtime
creation of new applications. This dynamic service composition is par-
ticularly powerful in peer-to-peer (P2P) systems which offer scalability
through self-management and autonomy. However, P2P service composi-
tion is nontrivial due to permanent peer churn and lack of central control.
Existing approaches reduce composite service initialization to an NP-
hard path finding problem. Thus, peer failure adaptation is costly and
runtime consideration of peer logons or load changes is not practicable.
This paper introduces logical peer groups for service composition. They
enable runtime composite service reconfiguration including the migration
of services to other peers. A prototype implementation is presented and
the algorithms are evaluated through both formal and empirical analysis.
The evaluation shows that the approach results in significant reduction
of computational complexity, improves fault-tolerance and enables adap-
tation of logons and load changes which has not been possible so far.

Key words: adaptive, reconfigurable, self-managing, quality of service-
aware applications, autonomic applications and systems, peer-to-peer
computing, service composition, service-oriented applications

1 Introduction

In recent years the composition of services has been one of the major enablers for
many IT companies. Different companies automate order and payment proce-
dures. Portals, online maps or logistic applications offer information aggregated
from different providers. In [1], composability is even called the reason to be for
services because it allows them to be used for multiple purposes. In general,
services can be composed statically or dynamically. They are either selected and
put together once during composite service implementation, or selected and put
together at runtime, i.e. on demand. The latter approach enables runtime in-
tegration of intermediate services and permits, for example, the adaptation of



current service usage context or the dynamic creation of new services out of
existing ones. In large-scale networks, single services are furthermore offered by
different providers. Dynamic service composition facilitates the selection of sub-
service providers with respect to parameters like availability, performance, load,
monetary costs or quality of service (QoS). In this paper, we will call these pa-
rameters execution properties. Finally, subservices of a composite service can be
exchanged during runtime. Consider a composite service comprising three sub-
services: one is an RSS reader that delivers text messages to a second subservice
that translates the text into another language. The third subservice converts the
translated text into speech the user can listen to. The user might want to hear
the latest news using a PDA while driving a car. If, for example, the text-to-
speech subservice gets overloaded meanwhile, the composite service can switch
to a better performing entity which also offers a text-to-speech service.

Our focus is this dynamic service composition in P2P systems. Service provi-
ders as well as users are regarded as peers of a fully decentralized distributed
system. That is, we assume that the network is not able to, or shall not, provide
a central controlling component but is self-managed. Thus composite services
can be provided without broker infrastructure and associated administration
costs. Moreover, there is no central component that can become a bottleneck or
even fail – essential when considering the evolution of distributed systems to-
wards large-scale networks and accompanied scalability requirements. However,
inter-peer service composition is nontrivial due to dynamic peer arrivals and
departures (churn) implying high failure probabilities and the required decen-
tralization.

Regarding related work, a lot of research has been done on optimized service
selection and execution, for example in the fields of load balancing and context-
aware computing. Concerning service composition, many central approaches ex-
ist, for example for grid environments or web services. Also for P2P systems
some solutions have been proposed: PCOM [2], A Scalable QoS-Aware Service
Aggregation Model for Peer-to-Peer Computing Grids [3] and SpiderNet [4] [5].
These approaches solve composite service initialization by regarding all possible
service paths between all service providing peers. They show that the corre-
sponding class of computational problems is NP-hard. This is basically due to
the multitude of possible paths that have to be computed using distributed
graph or tree algorithms. In addition, these paths have to be compared consid-
ering multiple constraints like QoS parameters. The only system that realizes
fault-tolerant P2P service composition is SpiderNet. It utilizes a Distributed
Hash Table (DHT) for decentralized information management and allows dy-
namic composition and proactive error detection for stateless services. Failures
are compensated by migrating the composite service, i.e. the service path selected
before, to a backup path. Backup paths are computed during initialization as
well and are monitored at runtime using messages along the paths. However,
migrating the whole service path on a single subservice failure is costly. None of
the existing approaches is able to adapt peer arrivals or variations of execution
properties because this requires expensive runtime re-initialization.



In this paper we describe a concept that supports adaptive and fault-tolerant
dynamic service composition. Peer churn and changes of execution properties
are detected at all times and may cause the migration of single services to other
peers. The solution is realized by interacting and self-organizing peer groups and
the underlying algorithms are based on nothing but local peer decisions. The re-
mainder of this paper is structured as follows: Section 2 introduces our concept
and explains the associated algorithms. Section 3 describes the prototype imple-
mentation of the system. Section 4 provides a formal analysis of the algorithms’
computational complexity as well as an empirical evaluation of our approach.
Section 5 concludes the paper and suggests future work.

2 Service Composition based on Interaction between
Logical Service Groups

In this section, we describe our concept for adaptive and fault-tolerant service
composition in P2P systems. Thereby, we assume the possibility to store, modify,
delete and search for information within the P2P network. Example solutions
for this discovery functionality are Pastry [6], Chord [7], CAN [8], Tapestry
[10] or Freenet [11]. We refer to information as resources and to distributed
storage as resource publishing. Furthermore, we assume that the P2P network is
realized using DHTs and thus enables the implementation of a publish-subscribe
mechanism. Publish-subscribe mechanisms are, for example, proclaimed in [12,
13]. They enable single peers to subscribe to a certain kind of resource. Hence,
they are notified, if a resource of that type is published, modified or deleted.

2.1 Basic Idea: Logical Service Groups

As explained in Section 1, existing solutions for service composition in P2P sys-
tems are very static. Service and backup paths are computed only once during
initial service composition and cannot be adapted at runtime because their re-
computation is too costly. The idea for a more dynamic service composition
solution is not to analyze all possible paths between the peers, but to regard
all peers providing a dedicated subservice as a group. Such a Logical Service
Group (LSG) is defined as the set of available peers that locally provide a dedi-
cated subservice. During subservice execution, one peer of the LSG executes the
subservice and n other group members monitor its heartbeat. The monitoring
peers are called watchdogs. Heartbeats are continuous messages being sent to the
watchdogs. They enable the watchdogs to detect if the executing peer has failed.
Figure 1 illustrates the members of a LSG and their roles. All peers providing a
subservice are group members and one of them is executing the subservice. The
group is part of a composite service comprising 4 subservices. Data to process,
for example RSS feeds, are forwarded between the groups. In general, every peer
can be a subservice providing peer in multiple groups. It might be able to execute
different subservices of a composite service and LSGs are a logical construct.



Fig. 1. Service composition based on LSGs.

The formation of a LSG is carried out as follows: On a subservice request,
the requesting peer publishes a SubtaskResource. This resource specifies the sub-
service to be executed including information about the composite service it is
part of. Above others, it contains input parameters of the subservice and re-
quirements concerning peers’ execution properties. Every peer that participates
in the group-based execution of subservices subscribes to SubtaskResources it
can perform. As soon as a peer is notified about a corresponding subservice re-
quest, it publishes a CandidateResource. The CandidateResource names it as a
candidate for the subservices it can provide. Furthermore, it describes its current
execution properties. The group formation is carried out by an initial coordina-
tor. It collects information about all peers providing the subservice by searching
appropriate CandidateResources. Afterwards, it compares these information and
assigns the role of the executing peer to the best performing peer. The selection
criterion is given by the requirements specified in the SubtaskResource. Likewise,
it assigns the following n highest ranked peers the role of the watchdogs.

The best performing peer then takes over the subservice execution and the
group coordinator role. Because this peer is being monitored, fault-tolerant ser-
vice execution is guaranteed and the group coordinator is always existent. Dur-
ing subservice execution, the state of the subservice is periodically saved within
the ServiceStateResource. In case the executing peer fails, the best performing
watchdog continues service execution. Thereby, it obtains the current subservice
state from the ServiceStateResource. Moreover, the watchdogs are completed by
adding another peer. Consequently, failure adaptation takes place with no need
to search for a qualified peer first. Besides by peer failure, a subservice take-over
can also be initiated if a better performing peer becomes available. This is when
the group coordinator comes into operation. As soon as a candidate peer logs
on to the network, it is notified about the existing subservice request due to its
subscription to the SubtaskResources. It publishes its CandidateResource. By
subscribing to these CandidateResources, the coordinator knows if a new Can-
didateResource is published. It integrates the new candidate into the current
peer ratings. Apart from that, other peers’ execution properties can get better



or the properties of the executing peer can get worse because of dynamic load
changes for example. To handle this, the peers of the group keep their execution
properties in the CandidateResources up-to-date. If these resources are modified,
the group coordinator is also notified. Thus it is able to recognize if an exist-
ing group member should take over subservice execution. In all three cases, the
coordinator triggers appropriate role take-overs within the group if necessary.

2.2 Initial Service Composition

An environment that supports service composition has to provide two compo-
nents – a design component and a runtime environment. Our research focus is the
latter. We assume applications with graphical user interfaces exist that support
the generation of valid specifications of composite services and their require-
ments and that translate them into a composite service description the runtime
environment can interpret. Given such a composite service request, the runtime
environment has to perform the initial service composition. That means it has
to select an executing peer for each requested subservice and the selected peers
have to know each other to be able to forward data between the subservices.

Regarding the LSG approach, the requesting peer first publishes the Sub-
taskResource for the preceding subservice in the service chain. In the example
given in Section 1 the PDA publishes the one of the text-to-speech service. The
subservices and their order are read out of the interpretable composite service
description. Afterwards, the requesting peer carries out the formation of the first
LSG. As soon as the executing peer of the new LSG is identified, it publishes
the SubtaskResource of its preceding LSG, in our example for the translation,
and again performs its formation. The procedure is continued until the LSG of
the last subservice has been formed.

During these step-by-step LSG formations, the interpretable composite ser-
vice description is recorded in every newly published SubtaskResource so that
peers know which group to form next. Additionaly, every newly selected group
coordinator stores the structure of its LSG within a ServiceGroupResource and
publishes it. The identifiers of these resources are passed stepwise within the
SubtaskResources, too. Thus, all executing peers are able to subscribe to the
ServiceGroupResource of their successive LSG. The subscriptions facilitate the
permanent addressability of a LSG, which becomes relevant during service execu-
tion. The same way, the identifier of a resource containing the state of the entire
composite service is passed. If a group’s executing peer changes, the new one
knows if the composite service is still in the initial service composition phase –
it must only send heartbeats – or if subservice execution has to be continued. As
soon as all LSGs have been formed, the initial service composition is complete.
Figure 2 shows the core algorithm of our initial service composition approach.
ICD represents the interpretable composite service description. SR, SGR, CR
and CSSR stand for SubtaskResources, ServiceGroupResources, CandidateRe-
sources and the state resource of the composite service.

An important advantage of our initial service composition approach is that
the load for the service group formations is distributed amongst different peers.



Fig. 2. Pseudocode notation of the initial service composition algorithm.

These peers are best performing peers of their service groups at least in terms
of their subservice’s requirements. Moreover, the initial service group formations
are executed fault-tolerantly. If the requesting peer fails, the composite service
is not required anymore. All further initial coordinators are executing peers of
their own service group. If they fail, a member of their LSG continues their role.
Hence, initial service composition is performed fault-tolerantly.

Enhancements Our approach includes further processes carried out during
initial service composition: If a peer is selected for a dedicated subservice, it is
taken into account that its execution properties change and that it might not be
able to execute other subservices it could provide. In addition, single subservices
of a composite service can be marked optional. This way, one can determine
that a composite service is executed even though no peer is available that pro-
vides that subservice and fulfills its requirements. In our example, the translation
might be helpful for the user but not necessary to get the RSS feeds’ messages.
Initial service composition is also successful if single optional subservices are not
available. Finally, we described linear service chains to simplify matters. Our
concept also allows nonlinear subservice arrangements through nestings in the
(XML-based) interpretable composite service description and appropriate con-
ceptual extensions. However, a detailed explanation of these mechanisms would
go beyond the scope of this paper and is not needed to depict the core features
decisive to realize adaptive and fault-tolerant service composition.

2.3 Composite Service Execution

Besides the initial service composition a runtime environment supporting com-
posite services in P2P systems is responsible for the stable and fault-tolerant
execution of the subservices and for the data exchange between them. To start
composite service execution in our approach, the executing peer last determined
informs the requesting peer about the successful initial service composition.
Thereby it passes its ServiceGroupResource identifier which the requesting peer



then subscribes to. Afterwards, the requesting peer modifies the state of the
composite service so that it is now declaring its execution and triggers a ring
message indicating subservice instantiation. Every executing peer reads its suc-
ceeding executing peer out of the associated ServiceGroupResource to be able to
forward that message. As soon as the requesting peer receives the ring message
again, the composite service has been successfully instantiated.

During execution, peers may fail, their execution properties may change or
better performing peers may arrive. To adapt the resulting subservice take-overs,
the coordinator of every LSG saves the current structure of the group within the
ServiceGroupResource, i.e. who is the executing peer and which peers are in the
role of the watchdogs. On a subservice take-over, the new coordinator updates
these information. As a consequence, the preceding executing peer is notified due
to its subscription to that ServiceGroupResource. It reads the new processing
peer out of the modified ServiceGroupResource and updates the data link. Every
new executing peer first subscribes to that resource. Afterwards, it fetches the
current subservice execution state using the ServiceStateResource and continues
service processing. Thereby, adequate rollback mechanisms have to be estab-
lished to guarantee that no intermediate results get lost and no calculations that
were already saved in the current subservice state are repeated (see Section 3).

Enhancements Our approach also integrates the adaptation of failures of
entire LSGs. They are monitored using detection messages along the ring of ex-
ecuting peers. A LSG fails as soon as the last peer that was able to perform the
subservice can not fulfill the service requirements any longer or leaves the net-
work. The preceding executing peer establishes a connection to the next but one
LSG. Therefore, all ServiceGroupResources are stepwise forwarded during initial
service composition. If the subservice was optional, the execution of the compos-
ite service can be continued without adverse effects. Otherwise, the preceding
executing peer triggers a ring-message that indicates that the composite service
has to be aborted. If no necessary group failed, the completion of a composite
service is signalled by the requesting peer or by an executing peer that finalized
service execution. Figure 3 shows the pseudocode notation of the algorithms
applied during entire, exception-free composite service execution.

Fig. 3. Pseudocode notation of the composite service execution algorithm.



3 Implementation

To show the applicability of our concept, we have implemented the Service Com-
position Framework (SCF). Because the project comprises 73 java classes and
more than 10000 lines of code, we only describe selected elements in this section.

3.1 The Service Composition Framework

For the implementation of the SCF we utilized the Siemens Resource Manage-
ment Framework (RMF) [9]. The RMF realizes basic features of a P2P network.
Above others, it provides the two functionalities our concept relies on: a fully
decentralized discovery and a publish-subscribe mechanism. Thus the SCF is
based upon the RMF. The SCF itself provides an interface for developers. Ev-
ery service that implements this interface can be executed as a subservice of a
composite service. The interface could be kept quite simple. A subservice has
to implement four methods that are used by the SCF to control its execution.
One that executes the service on passing parameters, a second that stops it, a
third that enforces a checkpoint of the current subservice state and a fourth that
returns the state. Every result is passed to the framework using a given method.
The framework then performs the result’s faultless forwarding in case a succes-
sive subservice exists. That is, it repeats the forwarding if a results’ receipt is not
acknowledged and does not enforce a checkpoint until successful transmission.
If the local peer fails and a result has not been forwarded, the related input is
processed again. Of course it can not be assumed that every subservice generates
elementary results but may, for example, work on continuous data streams. In
cases like this, developers have to forward their results themselves. Therefore,
another interface is provided. It declares a method through which the SCF passes
the identifier and the port of the successive executing peer both during initial
service composition and on executing peer changes.

By starting a dedicated class of the SCF, a host joins the RMF-network and
subscribes to SubtaskResources it can perform. The new peer is then able to
participate in composite service execution. To this end, the SCF implements the
roles of watchdogs, of executing peers and of (initial) coordinators and allows to
request a composite service. Also, it provides different simple comparator classes
like a CPU-comparator. Requesting peers refer to them when specifying required
execution properties within the (XML-based) composite service description. Co-
ordinators use them accordingly for peer comparisons. Comparator classes can
consider an arbitrary number of attributes and may prioritize them differently.

3.2 Test Environment and Example Services

To test the implemented mechanisms we developed a diversified test environ-
ment. The environment starts a variable number of peers and triggers a com-
posite service request. During initial service composition, it checks whether all
LSGs have been formed, whether the best performing peers send heartbeats



and whether the determined number of watchdogs is active. When the execu-
tion phase sets off, it tests if all groups have started execution. Additionally,
the environment integrates tests that stepwise change the execution properties
of the group members in such a way that a subservice take-over has to take
place. Furthermore, we have implemented tests that force peer failures in all
LSGs. All these further tests are executed during initial service composition as
well as during execution phase. They check whether the new best performing
peer resumed the role of the executing peer and sends heartbeats and whether
the determined number of watchdogs is active again. In addition, they test if
the new peer knows its successor and if its predecessor was notified about the
change. During execution, the resume of the subservice’s execution is checked as
well. Finally, the environment waits for finalization of the composite service and
verifies if all results have been forwarded completely and not redundantly.

For test purposes and to visualise the framework’s possible fields of appli-
cation, we have implemented different simple services, i.e. performing certain
calculations, and the mentioned example subservices – an RSS reader, a trans-
lator and a text-to-speech subservice. All composite example applications were
successfully executed using the test environment. Even if executing peers change
frequently, all results are forwarded and processed correctly. The system changes
the executing peers as soon as their execution characteristics degrade, better per-
forming peers become available or peers fail. The initial service composition and
the execution of composite services are performed correctly and fault-tolerantly
and all subservices are always executed by the best performing peers.

4 Evaluation

Having shown the applicability of our concept, we now focus on the efficiency of
the integrated mechanisms. Therefore, this section provides both an analytical
evaluation of the presented service composition approach and an experimental
evaluation to substantiate the formal results.

4.1 Formal Analysis

The analytical evaluation investigates the computational complexity of the pro-
posed approach. It aims to quantify the amount of computational resources
needed in relation to the problem instance specified by the number of peers,
services and so on. The complexity result will subsequently be compared with
the complexity of the corresponding SpiderNet algorithms (see Section 1).

The use of computational resources is modelled as cost. As our algorithms
are not tailored towards a particular DHT implementation, but only assume
a DHT with publish-subscribe functionality, we base the cost model on primi-
tive DHT operations. This way, the analytical results are independent from the
characteristics of a particular DHT implementation. We distinguish three cost
types for DHT operations: cpublish is the cost required for making a piece of
information available in the DHT for retrieval; csearch is the cost incurred when



discovering and retrieving a dedicated piece of information; csend is the cost for
directly sending a message to a particular peer. We will quantify the DHT op-
eration calls performed in our algorithms as well as those executed in SpiderNet
to determine cost functions. To simplify these functions, we make the following
two assumptions: The number of candidate peers is the same for each subservice
and the number of watchdogs is the same for each LSG. So we will use three
different variables: n denotes the number of subservices in the composite service,
k is the number of candidate peers for each subservice (which is equivalent to
the size of the LSG), and w denotes the number of watchdogs for each LSG.

Initial Service Composition With respect to the previously introduced cost
model and variables, the initial service composition algorithm (see Section 2.2)
has the following cost function:

Tinitial(n, k, w) = (kn + 5n + 1)cpublish + (n + wn + kn + 1)csend + ncsearch.

One can argue that choosing two watchdogs for each LSG (w = 2) results
in sufficiently low probability for overall failure. Then Tinitial(n, k, w) can be
written as Tinitial(n, k) = O(kn). Thus, the complexity of the initial service
composition algorithm is linear in the total number of candidates for the com-
posite service.

Composite Service Execution We distinguish between the exception-free
execution and monitoring of the composite service and the handling of different
exceptions. The exact cost function for the execution and monitoring algorithm
(see Section 2.3) has to include the total duration D of the composite service ex-
ecution. This is because it influences the number of ring messages and heartbeat
messages (interval Iring and interval Iheartbeat) used for failure detection:

Texec(n, w) = (n+2)cpublish+(D/Iring(n+1)+D/Iheartbeatwn+wn+2n+2)csend.

The intervals for heartbeat and ring messages are QoS parameters to be
chosen, for example, according to real-time requirements of a composite service.
With neglection of D, Iring and Iheartbeat and with w = 2 the cost function can
be written as Texec(n) = O(n). The complexity of composite service execution
and monitoring is linear in the number of subservices of the composite service.

Handling exceptions during execution triggers different further steps (see
Section 2.3). When execution properties of a peer change or a new peer becomes
available, adaptation incurs the following cost:

Tadapt(w) = 5cpublish + (2w + 2)csend + csearch.

If we again assume w = 2, this adaptation requires only constant cost: Tadapt =
O(1). Handling the failure of a service executing peer has the following cost,
which are again constant:

Tfailure = 4cpublish + csend + csearch, Tfailure = O(1).



Comparison to SpiderNet The previously obtained complexity results are
now compared to the complexities of the corresponding SpiderNet algorithms
[4]. We chose SpiderNet because it is the only existing approach realizing fault-
tolerant service composition in P2P systems.

It can be shown that SpiderNet, which is also DHT-based, produces cost
TS

initial(n, k) = O(k2(n−1)) during initial service composition. This is in contrast
to Tinitial(n, k) = O(kn) in our approach. For example, assume a scenario where
the composite service is composed of 5 subservices and there are 10 candidate
peers for each subservice. Then SpiderNet is in the order of 400 calls to primitive
DHT operations, while our approach only requires 50 calls.

Analyzing the SpiderNet algorithms for service execution yields the cost func-
tion TS

execution(n) = O(n). This is in the same order as our approach (Texecution(n)
= O(n)). However, adaptation to failures requires more resources than our ap-
proach. This is because SpiderNet does not use watchdogs, but monitors multiple
backup paths. As a result, exception handling requires to change not a single
subservice but the whole service path and more monitoring messages are required
in order to achieve the same level of fault-tolerance.

In conclusion, analyzing the complexities of the proposed algorithms showed
that the introduction of LSGs results in significant reduction of complexity dur-
ing initial service composition. Furthermore, the use of watchdogs for detecting
failures results in higher fault-tolerance without increasing complexity. These are
additional achievements to the newly introduced ability to adapt performance
variations and peer arrivals.

4.2 Empirical Analysis

In this section we describe the results of our empirical analysis and evaluate if
the results confirm our formal findings. To this end, we have carried out over
8700 measurements of our approach’s core procedures with the aid of the SCF.

Initial Service Composition In Section 4.1 we concluded that the complexity
of the initial service composition algorithm is linear in the total number of can-
didates for the composite service. To verify this, we have measured the duration
of initial service composition for two, six and ten candidates per LSG with up
to twelve subservices. We raised the number of subservices stepwise recording
100 measurements each time which results in 3600 measurements. Figure 4 (a)
charts initial service composition duration for a varying total number of candi-
dates of the composite service (kn). It can be seen that it makes a difference if
the total number of 20 candidates arises from 2 subservices with 10 candidates
each or from 10 subservices with 2 candidates which is due to the stepwise group
formations. Thus the graphs grow linear, which verifies our formal findings.

Composite Service Execution The computational complexity of exception-
free composite service execution depends on the duration of the composite ser-
vice. Hence, we focus on the complexity of mechanisms realizing adaptive and
fault-tolerant execution here.



Fig. 4. Experimental results for initial service composition (a) and adaptation of
changes of execution properties (b).

We have formally shown that adaptation requires only constant cost when
peers’ execution properties change or new peers become available. Figure 4 (b)
illustrates the duration measurements for this adaptation based on 1200 mea-
surements taken for LSGs with up to 60 members. During formal evaluation,
we neglected the costs for integrating a candidate into the current peer ranking
because they depend on the subservice’s selection criteria. Regarding the experi-
mental results one can see that duration for adaptation behaves almost constant.
The slight raise is caused by the growing number of peers to be compared with
the candidate. Thus, our formal results have been confirmed.

Concerning the handling of failures of service executing peers, we arrived at
the conclusion that this again requires constant cost. Figure 5 charts our results
retained from 3900 measurements of failure adaptation duration using varying
heartbeat intervals. Figure 5 (a) shows that the number of watchdogs does not
influence the adaptation duration. In figure 5 (b) we contrast the duration for
failure adaptation with the current heartbeat threshold. This threshold is directly
derived from the heartbeat interval. It represents the time the watchdogs shall
wait for the next heartbeat of the executing peer, whereby a little time interval
is added to compensate delays in message passing. It becomes apparent that
average adaptation duration is partially even below the current threshold. In this
context one has to be aware that an executing peer can fail shortly before sending
its next heartbeat. Hence, the next heartbeat is overdue soon. Nevertheless,
one can state that the average adaptation duration is even below the current
heartbeat threshold constant which is in agreement with our formal results, too.



Fig. 5. Experimental results concerning peer failure adaptation.

5 Conclusion

We have presented an approach for adaptive and fault-tolerant dynamic service
composition in P2P systems. Composite services are provided by interacting and
self-organizing peer groups. Within these groups, watchdog peers monitor sub-
service executing peers and coordinators detect peer arrivals and variations of
peers’ execution properties. If necessary, they cause the migration of subservices
to other peers. The underlying algorithms are fully decentralized, i.e. they are
only based on local peer decisions. The concept has been implemented and for-
mally and empirically evaluated. Amongst others, we were able to show that the
introduction of service groups results in significant reduction of computational
complexity. The use of watchdogs for detecting failures results in higher fault-
tolerance without increasing complexity. Moreover, all data are transferred and
processed correctly during composite service execution even if single subservices
are often migrated. Our approach is the first one that enables the adaptation of
peer arrivals and changes of their execution properties.

A future field of interest is the consideration of deviation from service re-
quirements if no peer is able to fulfill them. Another topic is the integration of
a further selection level. One can think of the composition of services that in-
tegrate advertisement into content like audio or video and services that provide
that kind of media content. Thus, users might pay less for the content. Now it
can be left open which advertisement service to integrate. The decision is made
during runtime and can depend on information about the user’s end device or
the user’s profile. Users provide these information due to cheaper content. This
way, advertisers can be offered a dedicated target group. Because service compo-
sition is P2P-based, advertisers can furthermore be arbitrary users that publish
the existence of the advertisement service – for example a student giving classes
in math to pupils living in his neighbourhood. Our concept therefore has to inte-
grate a further selection level: before selecting a peer for service execution it must
be determined which service of a specified kind, i.e. which kind of advertisement
service, to integrate.



References

1. Singh, M., Huhns, M.: Service-Oriented Computing. John Wiley & Sons Inc. (2005)
2. Becker, C., Handte, M., Schiele, G., Rothermel, K.: PCOM - A Component System

for Pervasive Computing. In: Proceedings of the 2nd IEEE International Conference
on Pervasive Computing and Communications (PerCom 04). IEEE Press, Orlando,
USA (2004)

3. Gu, X., Nahrstedt, K.: A Scalable QoS-Aware Service Aggregation Model for Peer-
to-Peer Computing Grids. In: Proceedings of IEEE International Symposium on
High Performance Distributed Computing (HPDC 2002). IEEE Press, Edinburgh,
Scotland (2002)

4. Gu, X., Nahrstedt, K., Yu, B.: SpiderNet: An Integrated Peer-to-Peer Service Com-
position Framework. Technical report, Department of Computer Science. University
of Illinois at Urbana-Champaign (2003)

5. Gu, X.: A Quality-Aware Service Composition Middleware. PhD thesis, Department
of Computer Science. University of Illinois at Urbana-Champaign (2004)

6. Rowstron, A., Druschel, P.: Pastry: Scalable, decentralized object location and rout-
ing for large-scale peer-to-peer systems. In: Rachid Guerraoui (Ed.): Middleware
2001. LNCS, vol. 2218, pp. 329–350. Springer, Heidelberg (2001)

7. Stoica, I., Morris, R., Karger, D.R., Kaashoek, M.F., Liben-Nowell, D., Dabek,
F., Balakrishnan, H.: Chord: A Scalable Peer-to-peer Lookup Service for Internet
Applications. IEEE/ACM Trans. Netw. 11, 17–32 (2003)

8. Ratnasamy, S., Francis, P., Handley, M., Karp, R., Schenker, S.: A Scalable Content-
Addressable Network. In: Applications, Technologies, Architectures,and Protocols
for Computer Communication. ACM Press, San Diego, California, United States
(2001)

9. Rusitschka, S., Southall, A.: The Resource Management Framework: A System for
Managing Metadata in Decentralized Networks Using Peer-to-Peer Technology. In:
Gianluca Moro, Manolis Koubarakis (Eds.): Agents and Peer-to-Peer Computing,
First International Workshop. LNCS, vol. 2530, pp. 144–149. Springer, Heidelberg
(2003)

10. Zhao, B., Kubiatowicz, J., Joseph, A.: Tapestry: An infrastructure for fault-tolerant
wide-area location and routing. Technical report, Computer Science Division, U. C.
Berkeley (2001)

11. Clarke, I., Sandberg, O., Wiley, B., Hong, T. W.: Freenet: A Distributed Anony-
mous Information Storage and Retrieval System. In: Hannes Federrath (Ed.): De-
signing Privacy Enhancing Technologies. LNCS, vol. 2009, pp. 46–66. Springer, Hei-
delberg (2001)

12. Terpstra, W., Behnel, S., Fiege, L., Zeidler, A., Buchmann, A.P.: A peer-to-peer ap-
proach to content-based publish/subscribe. In: Proceedings of the 2nd international
workshop on Distributed event-based systems. ACM Press, San Diego, California,
United States (2003)

13. Castro, M., Druschel, P., Kermarrec, A.-M., Rowstron, A.: Scribe: A large-scale and
decentralized publish-subscribe infrastructure. In: Jon Crowcroft, Markus Hofmann
(Eds.): Networked Group Communication, Third International COST264 Work-
shop. LNCS, vol. 2233, pp. 30–43. Springer, Heidelberg (2001)


