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Abstract. Overlay networks are a technique whereby application developers 
create virtual customized networks on top of physical networks. Recent 
implementations of peer-to-peer applications such as file sharing and VoIP have 
increasingly meant that overlay networks have almost become ubiquitous. As a 
result, future overlay networks will increasingly coexist on the same node. A 
number of middleware frameworks such as GRIDKIT [1], P2 [2] and ODIN-S 
[3] currently offer support for the co-existence of multiple overlay networks. 
However, co-existing overlay networks interfere with each other’s performance 
either through competition for resources or the lack of collaboration between 
them. This paper introduces an approach called virtual overlays which manages 
competition and collaboration between co-existing overlay networks in a way 
that is expressive, flexible, configurable and dynamically adaptable.   
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1   Introduction 

An overlay network can be seen as an application level network layer or partial 
network stack which represents a virtual network. This virtual network is realized as a 
composition of nodes and logical links abstracting from an underlying existing 
network. The main motivation behind overlay networks is the provision of more 
tailored application services to support applications in different domains e.g. 
multimedia file sharing, peer-to-peer networks etc. Overlay networks have gained 
widespread utilization in recent years as a way through which services offered by the 
underlying physical network can be tailored to better support the requirements of 
applications. Applications such as multimedia file sharing and Virtual Private 
Networks (VPNs) have proven that overlay networks provide a powerful and efficient 
solution for specific problems, e.g. security and content distribution.   
The success of current overlay networks e.g. Chord [5], SCRIBE [6] and Pastry [7] 
has meant that future trends will result in nodes that run different distributed 
applications hosting multiple overlays at a time. This is bound to introduce 
competition for local resources such as CPU time, memory consumption and network 
resources such as bandwidth. There is therefore a need for a framework that resolves 



competition for local and network resources, manages collaboration between two or 
more overlay networks and, creates a higher level of abstraction that provides 
developers with better control over the management of resource conflicts and 
collaboration between overlay networks. 
We propose the use of virtual overlays as a means through which the strengths of 
multiple overlapping overlay networks can be combined to not only efficiently 
resolve conflicts between overlay networks but also manage competition between 
them and support their collaboration in a flexible, adaptive and configurable way.  

2   Background on Overlays 

2.1   Definition of Network Overlays 

An overlay network can be defined as an application level network layer or partial 
network stack which represents a virtual network. This virtual network is realized as a 
composition of nodes and logical links that are an abstraction from an underlying 
existing network. The main motivation behind the implementation of overlays is to 
provide more application-specific or tailored network services which are not provided 
by the underlying network. The advantages of overlay networks are pointed out in 
Aberer et al [4] thus: 

“In principle, distributed application services could also use directly the 
physical networking layer for managing their resources, but using an overlay 
network has the advantage of supporting application specific identifiers and 
semantic routing, and offers the possibility to provide additional, generic 
services for supporting network maintenance, authentication, trust, etc., all of 
which would be very hard to integrate into and support at the networking 
layer.”  

This general idea of overlay networks is well known and has been shown to work 
well. Transmitting information by sending telegraphs on top of a circuit switched 
network can be seen as a historic example. Dial-up connections between computers 
and bulletin board systems are an example that is close to the type of overlay that is 
the subject of this research paper. Modern overlay networks are a critical part of 
distributed applications. For instance peer-to-peer applications use overlay 
technologies to create virtual networks as an abstraction from heterogeneous 
underlying networks, Virtual Private Networks (VPNs) add authentication and 
encryption to messages sent through them, which often cannot be provided by the 
underlying networks while peer-to-peer applications are ubiquitous and are used 
broadly.  
Current software systems that utilize overlay technologies, e.g. Chord [5], SCRIBE 
[6], or Pastry [7], usually implement a specific well known and well defined overlay 
routing mechanism and a corresponding topology. These virtual networks act like 
classic, message based, networks on top of underlying networks. They can be used in 
a stacked manner, but they keep their basic topology. Hence if an overlay network 



layer is designed as a ring network it maintains this structure when stacked with other 
overlay networks. 

2.2 Why Virtual Overlays? 

Current overlay networks have been shown to provide software engineers with high 
levels of abstraction at the cost of fine grained control on the message transmission. 
The wide adoption of overlay technologies results in co-existing implementations 
executing in nodes, e.g. the deployment of a VPN and a peer-to-peer file sharing 
application on a single computer. The new concept presented in this paper aims to 
provide an approach for controlling and orchestrating multiple coexistent overlay 
networks. In order to address the requirement mentioned in the introduction, virtual 
overlays provide a technology that can be used to a) resolve resource conflicts, e.g. 
competition for memory between an application specific implementation of a 
multicast overlay network and an unreliable transmission overlay network,  b) 
manage collaboration between coexisting overlay networks e.g. between an overlay 
providing reliable transmission and an overlay providing multicast without forcing 
developers to give up the advantages of application-specific overlays and, c) provide a 
higher-level abstraction that gives developers the ability to configure the behaviour of 
overlays at a fine grained level, i.e. on a per message basis. This fine-grained per-
message manipulation of behaviour implies that an overlay’s behaviour is not only 
dependent on its static forwarding mechanism but also on the message which is 
passed. This also implies that technologies which are usually used on a packet level 
within the ISO/OSI layers can be used to orchestrate overlay networks.  
As will be seen in the next section, the focus of the design and implementation of the 
proof-of-concept system is on the manipulation of message routing in overlay 
networks at a finer level of granularity and in a more flexible way, without having a 
significant negative impact on understandability or system performance.  

3   Design and Implementation of the Virtual Overlay 

In this section, we describe our design of a virtual overlay by presenting a background 
on GRIDKIT and demonstrating how the design is realized on top of the GRIDKIT 
middleware framework. Crucially, the goal is to provide an approach that manages 
competition and collaboration between multiple overlay structures.  
 
3.1 Background on GRIDKIT 
 
GRIDKIT is a middleware solution whose aim is to provide support for the 
development of complex distributed systems. It can be used to develop a range of 
approaches some of which are service-oriented. In order to provide an array of 
interaction types, GRIDKIT provides different plug-able overlays at different levels 
of abstraction. The set of services provided by the GRIDKIT middleware for grid 
environments consists of service bindings, resource discovery, resource management 
and security. All of these can be combined with the communication layer realized by 



the GRIDKIT Overlay Framework [1]. GRIDKIT addresses the common challenges 
of middleware systems by providing developers with the possibility to interconnect 
overlays in different ways. In their paper ‘GRIDKIT: Pluggable Overlay Networks for 
Grid Computing’, Grace et al [1] summarize the main goal of the GRIDKIT 
framework as follows: 

“The goal of our research in this area is to develop ways of building fully 
customizable, extensible, and evolvable overlays by factoring out generic 
techniques and protocols (e.g., large-scale neighbor discovery, and network 
capability discovery techniques), and enabling these to be composed, 
extended and dynamically reconfigured under the auspices of a well - 
defined [component frameworks].” 

As described above, overlay networks can be used to create functionality on top of 
underlying networks. In GRIDKIT, the developer is given the freedom to combine 
different overlay networks or even components of different overlay networks to create 
custom overlay networks. These custom overlay networks are created by 
interconnecting OpenCOMJ [1] components and component frameworks (CFs). This 
provides software developers with the tools to create custom interaction types based 
on pre-existing building blocks. This approach gives software architects more 
flexibility during the design of their applications [9], [1]. As described above, every 
overlay consists of OpenCOMJ components [1]. As shown in Figure 1 below, an 
overlay has to control its topology and provide its forwarding technique. Since the 
topology management and the forwarding are based on shared information, a third 
component is used to provide state information. 

 
Figure 1 An Architecture for a GRIDKIT Overlay 

Each overlay layer needs to be connected to an IDeliver  interface and provides an 
IDeliver  interface. This interface is used in the GRIDKIT framework to pass 
messages between layers of stacked overlays. An integer value is used to identify the 
overlay class that a message is passed to. The IDeliver  interface is used to pass 



messages upwards through the overlay stack. Each overlay also provides and 
consumes at least one IForward interface. In contrast to IDeliver , the 
IForward  interface is used to pass messages downwards through the overlay stack. 
High level control functionality is accessed using the IControl  interface as it can 
be used to join and leave overlay networks. 
 
3.2 Extensions on GRIDKIT to support Virtual Overlays 
 
The system is implemented as part of GRIDKIT which features support for the co-
existence of overlay networks. 

 
 Figure 2 An Architecture for a Virtual Overlay built on an Overlay 

 
As shown in Figure 2 above, a virtual overlay component intercepts all messages 
sent, received or forwarded by native overlay networks. Depending on the content of 
the messages and the functions implemented by the plugins and the rule set deployed 
by the virtual overlay, these intercepted messages may or may not be re-injected into 
the native overlay networks. Note that this effectively equates to a meta-level 
approach to the management of overlays (meta-overlays) and indeed this is 
implemented using GRIDKIT’s underlying reflective mechanisms. Below, we 
describe the fundamental constituents of the virtual overlay. 
Message Tagging & Rule Engine - The general concept of tagging messages was 
inspired by IP Filters [12] and Conoboy et al’s [11] work on the rule language and its 
influence on packets being processed by the packet filter. All messages are tagged by 
all applicable rules; the process of tagging does not alter the message itself but adds a 
flag to the message for each applied rule. After adding all applicable flags to the 
message, a set of filters is used to alter the message according to the flags the message 
was tagged with. To ensure consistency with the idea of an interchangeable rule 
engines, the central requirement for a rule engine in the context of this project is its 
full compliance to JSR 94 [13]. This specification defines the general interfaces a rule 



engine needs to implement without specifying a rule definition language or a specific 
technology for the rule engine. Since the main differences for rule engines in this 
context are the technology and the language used to define the rules, the number of 
candidates for the virtual overlay’s implementation was fairly limited. The following 
criteria were used during the decision making process: complexity, license, rule 
language, community, and documentation. Amongst the rule engines evaluated were 
Jess [14], JBoss Rules [15] and Hammurapi Rules [16]. Although the Hammurapi 
Rules development community is relatively small, its lightweight implementation 
made it the best choice for a prototype system.  
 
Plugins - The intercepted messages are tagged according to a rule set and based on 
the tagging of each message, control plugins manipulate the message. Finally the 
message is injected into or sent via a native overlay. Each plugin checks whether a 
message contains specific tags and if the message does, it performs some action, 
otherwise the plugin executes its default action. 
Crucially, the virtual overlay does not only intercept messages within the existing 
overlays but is in itself an overlay which can be stacked on top of existing overlays. It 
can receive messages from other overlays and send messages using the default set of 
overlay interfaces. In order to offer support for the orchestration of overlays, the 
system’s overlay components implement an interception and injection interface.  
Figure 3 below illustrates a plugin that checks whether a message contains specific 
tags. If the message does, it performs some action, otherwise the plugin executes its 
default action. 
 

 
Figure 3 Java Source Code for a Sample Filter Plugin 

The method processMessage  checks if a message was passed to it, and it was it 
checks for the tag DROP and the absence of the tag PASS. If a DROP tag is found and 
not a PASS tag the message is set to null. If a PASS tag is found or no DROP tag is 
found the message is not manipulated. In either case, the message or null is passed to 
the next plugin by calling the parent method processMessage . This ensures that 
the entire chain of plugins is processed and the default action is carried out. Cases 
which require to process all messages can be imagined hence it is required that the 
messages are passed down the chain even if they are null. The inherited class 
GenericPlugin  also implements the entire OpenCOMJ functionality. The 



development of a plugin only requires overloading the processMessage  function - 
if a behavior different from just passing the message is required. 
The tagging engine in this prototype was developed as a façade around the rule engine 
to tag messages. In order to show that the tagging of messages with a following 
processing of the messages based on their tags is an efficient way of manipulating 
messages on middleware level a small rule set was defined. Figure 4 below shows 
how a rule can be created by implementing the infer method in a class inheriting from 
Rule. 

 

 
Figure 4 A sample rule for Hammurapi Rules 

The next section details a set of experiments that were developed over the GRIDKIT 
overlay framework. 

4   Experimental Evaluation 

This section details an experimental evaluation of the implementation of the design 
discussed in section 3.2 above. To facilitate the experiments, two representative and 
existing overlay networks are used to prove the concept of the described system; Tree 
Building Control Protocol (TBCP) [8] and Chord [5]. TBCP is used to span a 
balanced application level multicast tree. While Chord represents a distributed hash 
table (DHT)-based overlay ring network. Chord is a well known overlay network 
while TBCP is a clean realization of an application level multicast tree. 
Implementations of both overlay networks are part of the GRIDKIT framework. 
From our implementation of the design detailed in section 3 above, we set up two sets 
of incremental experiments that focused on validating the architecture described in the 
previous section. As a first step, the general concept was verified by implementing a 
sample application that could be used to show major aspects of the proposed system 
and its basic performance metrics. Since overlay networks are not only defined by the 
forwarding technique that they implement but also by their topology and their state, 
the components maintaining and realizing their topology and state are represented in 
the context of virtual overlay networks. The second set of experiments aims to show a 
non-static (dynamic) implementation of meta-routing. It presents a prototype 
developed for inter-overlay routing based on self-configuring routes. 
 
 
 
 
 



4.1 A Basic Middleware Firewall 
 
Overview 
The proof-of-concept implementation presented in this sub-section shows the 
realization of interception of messages within an overlay and reinjection of messages 
in the very same overlay. Crucially, its aim is to a) illustrate the internals of a minimal 
configuration of a virtual overlay and b) evaluate the performance overhead that is 
introduced by the implementation of a virtual overlay.  
 

Implementation 
As detailed below, this experiment implements the three constituents of a virtual 
overlay described in section 3 above. It involves a selection and implementation of a 
message injection mechanism, an implementation of a message tagging technology 
and an implementation of a rule engine. 

 
Message Injection – The fundamental concept of the proposed architecture is 
message interception and message injection. To prove this concept, a test application 
comprising two parts, a sender and a receiver was developed. Both components 
intercept messages before sending or receiving them. The intercepted messages get 
manipulated and then re-injected into (other or the same) overlay networks.  In the 
initial stages of the experiment, a TBCP tree containing exactly two nodes was 
created, one node being the sender while the second node acted as a receiver. The 
sample application used a custom Log4J[10] appender to published messages to a 
multicast tree. Since broadcast messages were filtered within the sender and receiver 
in a multicast application that was extended to provide support for the interception of 
inbound and outbound messages, this could be considered a simplified firewall. 

 
Message Tagging - In the first prototype implementation, the filter basically drops or 
passes messages according to their tags. To gain higher flexibility, the plugin 
processing the tags has to define a default behavior in case no matching tags can be 
found or in case conflicting tags are attached to a message. The mechanism of using a 
separate tagging engine which does not define the behavior of the stack creates 
flexibility in choosing a rule engine for a particular task, or to meet specific 
environmental constraints. It also allows the use of precompiled sets of tags to be 
attached to precompiled messages, which might be relevant in throughput-critical 
systems. 

 
Rule Engine - As illustrated in Figure 5 below, the TBCP Overlay was extended to 
provide the interface IOverlayCallback . It also provides intercepted messages to 
the Virtual Overlay component using the IIntercept  interface. The Virtual 
Overlay component uses a Tagging Engine component to wrap the rule engine via the 
interface ITag  and forwards tagged messages to a chain of plugins using the 
IPlugin  interface. The diagram below shows the components used. The chain of 
plugins only consists of two generic empty plugins as proof of the concept of the 
plugin chain as well as the DROPPlugin . The chain of plugins is realized using the 
IPlugin  interface that each plugin has to implement. 



 

 
Figure 5 Major components of the first prototype 

It is also implemented by the Virtual Overlay component which re-injects messages 
into the TBCP Overlay after they have completed the entire chain. The prototype’s 
major components are briefly described below. 

 
The Tagging Engine – This rule tags all messages containing the word “DEBUG” 
with the tag DROP. A similar rule is used to tag all message having the word 
“FATAL”  in them with the tag PASS. All other messages are not tagged at all. The 
rule engine automatically loads rules listed in a rule set definition file. The Tagging 
Engine  also checks the rule set definition file for updates before tagging a message. 
This very simple approach allows runtime manipulation of the deployed rule set and 
was implemented to show that runtime adaptability can be achieved using the 
proposed system. 

 
Evaluation 
To evaluate the prototype, a basic system creating log messages was used. The 
generator sends two sets of 1000 numbered messages with priorities iterating over 
{ DEBUG, INFO, WARN, ERROR, FATAL }. A small receiver application logged 
the message, including the time of creation, as well as the time of reception to a file. 
To provide reproducible and facilitate comparison of results without the need to 
consider time synchronization, the receiving and sending application executed on the 
same computer. All involved Java Virtual Machines (JVMs) were running with 
normal priorities as user applications. Two virtual machines were used to span a tree 
containing one root node and one non-root node. All measurements were carried out 
free of external network interruptions, only the loopback device was used. Two 
measurements were taken; one showing the native GRIDKIT framework delivering 



the messages without any filtering or tagging and one showing the performance of the 
GRIDKIT framework using the prototype presented in this section. Table 6 below 
shows the delay measured per message of the second set of 1000 sent messages.  

Measurement Mean Msg. Delay 
        in s 

Std Deviation 
       in s (%) 

No. of Msgs. 
       Sent 

No. of Msgs. 
Received (%) 

GRIDKIT & 
Prototype 

0.058 0.013 (22) 1000 800 (80) 

GRIDKIT 0.055 0.013 (23) 1000 1000 (100) 

Table 6 Quantifying the Overhead of Virtual Overlays  
 
It is evident that the virtual overlay firewall performed its intended purpose since the 
expected number of messages (200 or 20%) did not reach the receiving node in the 
test using the prototype implementation. It also shows that all messages send using 
the native GRIDKIT implementation arrived at the identical receiving node. The 
difference between the average message delay when using the virtual overlay 
compared to not using it is around 0.003s. The standard deviation calculated for both 
measures is 13ms.  In all instances, the measured delay from all messages sent using 
the altered framework was smaller than delays measured for the pure GRIDKIT 
implementation. This might indicate that the overhead added by the prototype 
implementation is smaller than other factors interfering with the message 
transmission. The main suspected factors are the virtual machine internal thread 
management as well as the process scheduling of the operating system. 
This experiment shows a sample application that realizes the basic architecture of a 
virtual overlay. The performance metrics detailed above prove that the configurability 
and expressiveness that is achievable using the proposed system makes the overhead 
insignificant. The next two experiments build on the implementation presented above 
to present more complex scenarios.  
 
4.2 An Enhanced Virtual Overlay 
 
Overview 
This experiment aims at showing that our approach is not limited to message filtering 
or static routes but that virtual overlays can use their own state and a meta-routing 
algorithm to reproduce GRIDKIT’s Control, Forward and State overlay pattern 
introduced in section 3. 
As illustrated in Figure 7 below, the namespace spanned by a Chord ring is used to 
globally address messages while messages sent to nodes in the Chord ring are actually 
routed via appropriate direct routes, which are in this example smaller Chord rings 
(with only 2 nodes). 



 
 Figure 7 Illustration of TBCP Trees and Chord Ring Setup 

This gives developers the flexibility to create virtual overlays which do not route 
messages within the actual overlays but between multiple overlays.  
 
Implementation 
As shown in Figure 8 below, central to achieving this experiment’s aim is the 
Routing Packet Overlay which uses a time controlled trigger to send information 
about each node it is deployed on in intervals. If the trigger fires, the Routing Packet 
Overlay obtains a list of all local Chord endpoints created by the Multi CHORD 
Overlay component. It then creates a message containing the global identifier (defined 
for the global namespace Chord ring) of the current node as well as the name and 
local identifier of the node in each Chord Overlay. The packet is sent via the local 
network named within the message. Thus the nodes in each local network can route 
messages correctly as they get to ‘know’ the global identifiers of the nodes on that 
network. This data is stored and managed in Routing Table.   

The Multi CHORD Overlay component was developed to provide a unified interface 
to a multitude of Chord overlay networks. The component uses a network name to 
distinguish between the Chord overlay networks. In order to create a prototype which 
shows easily verifiable behavior, the Chord framework implementation was altered to 
support direct definition of node IDs.  



 
Figure 8 Major components in the scenario "Enhanced Virtual Overlay" 

Figure 8 above shows three major components developed as part of this prototype 
(Routing Packet Overlay, Routing Table and Routing Plugin).  
 

Evaluation 
This scenario shows how the given components work together to route messages in a 
multi-overlay environment through collaborative message routing between nodes. The 
evaluation scenario is based on an overlay network environment with two nodes being 
part of two different Chord networks. Since the overhead of creating and maintaining 
the routing data within the hybrid network significantly influences the performance, it 
is not quantified. A scenario to demonstrate the effectiveness of the proposed system 
in an expressive manner would have required a bigger network and setup work 
beyond the scope of this paper. 

5   Related Work 

In Cooper et al’s paper ‘Trading Off Resources between overlapping Overlays’ [3], an 
architecture called ODIN-S is introduced which has a  focus on different methods to 
mediate resource usage between coexisting overlay networks. It uses a set of ingoing 
and outgoing filter to intercept messages on a shared communication layer. In this 
approach overlay networks are not stand-alone entities but plugins running on top of a 
common transport system. This transport system communicates with a set of filters in 



order to control throughput and order of messages being sent through the overlay 
network. ODIN-S also assumes a homogeneous deployment of ODIN-S instances 
since it uses specific receiver originated messages to control the throughput of 
messages on sending nodes. In general the paper shows that manipulation of messages 
on their entry point into the overlay environment can be used to achieve QoS through 
the control of resource conflicts between coexisting overlay networks. Some generic 
ideas for the design of the proposed system were inspired by a project called P2 [2]. 
This project makes use of a declarative language to define overlays on top of a shared 
transport layer. The work stresses that declarative approaches can be efficient and 
expressive for describing the behavior of overlay networks. The novelty of the 
concept of virtual overlays, as detailed in this paper is that it addresses the more 
general management of collaboration and competition between multiple overlay 
structures.   

6   Conclusion 

This paper has presented an argument for the use of virtual overlays as a technique by 
which competition and collaboration between co-existing overlay network structures 
can be managed. Although a number of middleware frameworks e.g. GRIDKIT [1] 
and P2 [2] currently offer support for the co-existence of overlay networks, co-
existing overlay networks inevitably interfere with each other’s performance either 
through competition for resources or the lack of collaboration between them. More 
specifically, the paper has provided a high level overview of a middleware design 
which uses a meta-overlay to combine the strengths of multiple overlapping overlays 
(hybrid overlay networks) with a strong focus on dynamic adaptability, flexibility and 
configurability. We therefore argue that the use of virtual overlays to resolve resource 
conflicts, optimize performance via collaboration between multiple overlay structures 
and provide a higher-level abstraction that gives developers control over the overlay 
networks they deploy is the way forward in the design of next generation middleware. 
Areas of future work include research into deployment of multiple rule sets, 
development of a custom rule engine and rule language, self-configuration of rule sets 
and performance metrics in a large scale deployment environment.   
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