Facilitating Gossip Programming with the
GossipKit Framework

Shen Lin, Francois Taiani, and Gordon S. Blair

Computing Department
Lancaster University, UK
{s.1in6,f.taiani, gordon}@comp.lancs.ac.uk

Abstract. Gossip protocols have been successfully applied in the last
few years to address a wide range of functionalities. So far, however, very
few software frameworks have been proposed to ease the development and
deployment of these gossip protocols. To address this issue, this paper
presents GossipKit, an event-driven framework that provides a generic
and extensible architecture for the development of (re)configurable gossip-
oriented middleware. GossipKit is based on a generic interaction model
for gossip protocols and relies on a fine-grained event mechanism to fa-
cilitate configuration and reconfiguration, and promote code reuse.

Key words: gossip protocol, component framework, middleware, flexi-
bility, event-driven architecture

1 Introduction and Problem Statement

Gossip-based algorithms have recently become extremely popular. The under-
lying concept of these algorithms is that individual nodes repeatedly exchange
data with some randomly selected neighbours, causing information to eventually
spread through the system in a “rumour-like” fashion. Gossip-based protocols of-
fer two key advantages over more traditional systems: 1) they provide a scalable
approach to communication in very large systems; 2) thanks to the randomised
and periodic exchange of information, they offer self-healing capacities and ro-
bustness to failures; and 3) since gossip peers are selected at random and each
node communicates with a limited number of peers, they offer natural load-
balancing abilities. Because of these benefits, gossip-based protocols have been
applied to a wide range of problems such as peer sampling [9, 17], ad-hoc routing
[14], reliable multicast[1, 2], database replication [10], failure detection [11], and
data aggregation [12].

In spite of this success, however, very few attempts have been made at devel-
oping gossip-based middleware architectures. T-Man [5] and Gossiping Frame-
work [6] proposed by Kermarrec and Steen [6] are two of the early gossip-
dedicated frameworks that have been proposed in this area. They both rely
on a common periodic gossip pattern to support a variety of gossip protocols.
Although these frameworks can help develop gossip-based systems to a signif-
icant extent, we contend that they only partially address the issues faced by

2 Facilitating Gossip Programming with the GossipKit Framework

the developers of gossip-based applications. First, the common periodic gossip
pattern they rely on only captures the features of proactive gossip protocols
but does not support reactive gossip algorithms. Second, these frameworks tend
to be monolithic, thus precluding a flexible and easily extensible architecture.
Finally, these frameworks are not designed to support runtime reconfiguration.

This paper introduces GossipKit, a fine-grained event-driven framework we
have developed to ease the development of (re)configurable gossip-based sys-
tems that operate in heterogeneous networks such as IP-based networks and mo-
bile ad-hoc networks. The goal of GossipKit is to provide a middleware toolkit
that helps programmers and system designers develop, deploy, and maintain
distributed gossip-oriented applications. GossipKit has a component-based ar-
chitecture that promotes code reuse and facilitates the development of new pro-
tocols. By enforcing the same structure across multiple and possibly co-existing
protocols, GossipKit simplifies the deployment and configuration of multiple pro-
tocol instances. Finally, at runtime, GossipKit allows multiple protocol instances
to be dynamically loaded, operate concurrently, and collaborate with each other
in order to achieve more sophisticated operations.

The contributions of this paper are threefold. First, we identify a generic
and modular interaction pattern that most gossip protocols follow. Second, we
propose an event-driven architecture based on this pattern that can be easily
extended to cover a wider range of gossip protocols. Third, we evaluate how our
event-driven architecture provides a fine-grained mechanism to compose gossip
protocols within the GossipKit framework.

The remainder of the paper is organised as follows. Section 2 discusses related
work. Section 3 presents a study of existing gossip protocols and explains how this
study informed the key design choices of GossipKit. Section 4 gives an overview of
GossipKit’s architecture. Section 5 describes our current implementation, while
an evaluation is provided in Section 6. Finally, Section 7 concludes the paper
and points out future work.

2 Related Work

Two categories of communication frameworks have been proposed to support
gossip protocols: Gossip Frameworks, which directly support gossip-based sys-
tems, and Event-driven communication systems, which tend to be more generic
and more flexible. In this section we analyse the strengths and weaknesses of
both of them from the viewpoint of gossip protocol development.

Gossip frameworks are specifically designed to support gossip protocols.
Typical examples of such frameworks are T-Man [5] and Gossiping Framework [6]
proposed by Kermarrec and Steen [6]. These two frameworks assume that most
gossip protocols adopt a common proactive gossip pattern. In this gossip pattern,
a peer P maintains two threads. One is an active thread, which periodically
pushes the local state Sp to a randomly selected peer QQ or pulls for Q’s local
state Sg. The other is passive, which listens to push or pull messages from other
peers. If the received message is pull, P replies with Sp; if the received message
is push, P updates Sp with the state in the message.

Facilitating Gossip Programming with the GossipKit Framework 3

To develop a new gossip protocol within this common proactive gossip pat-
tern, one only needs to define a state S, a method of peer selection, an interaction
style (i.e. pull, push or pull-push), and a state update method. This inherently
supports a large range of proactive gossip protocols such as peer sampling service,
data aggregation, and topologic maintenance, which have all been implemented
in such gossip frameworks.

However, the monolithic design of these frameworks makes them inadapt-
able to protocols that use a reactive gossip pattern (e.g. SCAMP [9]) or those
implementing sophisticated optimisations such as feedback based dissemination
decision [13] and premature gossip death prevention [14]. Furthermore, these
frameworks neither support reconfiguration nor concurrent operation of multi-
ple gossip protocols at runtime.

Event-driven communication systems aim to provide a flexible compo-
sition model based on event-driven execution. They are developed to support
general-purpose communication and can be used for gossip protocols. Examples
of such communication systems are Ensemble [3], Cactus [4] and their predeces-
sors Isis [7] and Coyote [8]. In these environments, a configurable service (e.g.
a Configurable Transport Protocol) is viewed as a composition of several func-
tional properties (e.g. reliability, flow control, and ordering). Each functional
property is then implemented as a micro-protocol that consists of a collection of
event handlers. Multiple event handlers may be bound to a particular event and
when this event occurs, all bounded event handlers are executed.

Event-driven communication systems offer a number of benefits for devel-
oping gossip protocols. First, individual micro-protocols can be reused to con-
struct families of related gossip protocols (implemented as services) for different
applications instead of implementing each new protocol from scratch. Second,
reconfigurability can be achieved by dynamically loading micro-protocols and re-
binding event handlers to appropriate events. Finally, the use of event handlers
present a fine-grained decomposition of protocols.

However, event-driven frameworks are known to be notoriously difficult to
program and configure as argued in [16]. In large part, this is because these
frameworks do not by themselves include any domain-specific features (e.g. in-
teraction patterns and common structure) for individual protocol types.

In order to address the above shortcomings, GossipKit adopts a hybrid ap-
proach that combines domain-specific abstraction and the strengths of event-
driven architecture. The remaining sections of this paper present its design and
prototype implementation.

3 GossipKit’s Key Design Choices

GossipKit is based on three key design choices: (i) application-dependent inter-
faces; (il) a common-interaction pattern, and (iii) an event-driven architecture.
These choices result from a detailed analysis of a number of existing gossip-based
protocols. In the following, we discuss in turn each of our choices, and explain
how they derive from this analysis.

4 Facilitating Gossip Programming with the GossipKit Framework

3.1 Application-dependent Interfaces

Gossip-based solutions have been proposed for a wide range of problems, and for
each specific problem, external modules are expected to interact with the gossip
protocol in very specific ways. For instance, a gossip-based routing protocol
has to provide a way for external applications to trigger a route request to be
gossipped, whilst a peer sampling service must instead expose the set of collected
peers. There is no elegant way to map those fundamentally different services onto
a unique common generic interface. Instead we have identified a set of generic but
domain-specific interfaces that can each support a category of gossip protocols
in a particular application domain (e.g. ad-hoc routing, or peer-sampling). This
approach allows us to uncouple the varied semantics of gossip-based services
from the unified implementation framework we have developed. We will revisit
this topic in Section 4.1, where we will describe in more detail the mapping
between these domain-specific interfaces and our underlying framework.

3.2 Common Interaction Pattern

Although different types of gossip protocols provide divergent interfaces to exter-
nal applications, we have found that, internally, they all follow the same interac-
tion pattern. This common interaction pattern can be captured using a modular
approach and combines the proactive gossip pattern that has been identified in
existing gossip frameworks [5, 6], with the reactive gossip patterns observed on
gossip protocols such as [9] and [14]. This common interaction model is shown
in Fig. 1. In this figure, the modules involved in the interaction are presented as
boxes, and interactions between modules as arrowed lines. The direction of the
arrows indicates which module initiates the interaction, and the labels show in
which sequence these interactions take place.

Gossip Decision Micro-modules

Gossipl(p Return random ()< p

External Gossip Micro-module A
Application 2a 5a 2a
‘13 % Poor 2b Gossip?(p, k) ReturnMessage. Hop[;‘ountsk‘

P Pa 3 State Micro-module B
Ifl’_erlodlc Gossip |2¢ Selection]

rigger 5b 1f No. of Neighbours<n
Gossip3(p, k, py, n)

Return random()<p
State !
4a,4b 3 - 5S¢ l4c |Pb Else Return false
Network

Micro-module C

Fig. 2. Various Gossip Decision mod-
Fig. 1. Common Interaction Model ules composed by micro-modules

Initially, a gossip dissemination can either be raised periodically (e.g. a pe-
riodic pull or push of gossip message), or upon a receipt of an external request
(e.g. an ad-hoc routing protocol requesting a reactive gossip protocol such as
[14] and [21] to gossip a route request). These two interactions are represented
as (Pa) and (1a) in Fig. 1, respectively.

Facilitating Gossip Programming with the GossipKit Framework 5

The second phase prepares the gossip action. Some gossip protocols may use
various policies to decide whether to gossip at the current state (2a). For instance,
a reactive gossip protocol may decide not to gossip the same message twice or
forward the message with a given probability [9]. If a decision is made to forward
the gossip message, the protocol instance will then select the peers it wishes to
gossip with from its state (2b). Different policies exist for selecting peers. For
instance, a subset of peers can be selected from the local state randomly or based
on their lifetime [17]. Note that peer selection may be optional in our model:
for instance the nodes of a wireless single-hop network always reach all their
neighbours with a single radio broadcast, [20], gossip protocols operating in these
environments therefore usually achieve gossiping behaviour through randomised
gossip decisions. In addition to gossip decision and peer selection, many gossip
protocols will need to decide which content is to be gossiped (2c¢). In particular,
a proactive gossip protocol typically requires to retrieve the gossip content from
its local state (e.g. a temperature reading) if it needs to send periodically its
state (push-style gossip) or reply to a request of its state (pull-style gossip).

The third phase is gossip dissemination (3). It utilises the underlying net-
work to send gossip messages to either the selected (e.g. in wired networks) or
neighbouring (e.g. in MANETS) peers.

On receipt of a gossip message from the network, a gossip protocol may react
in three different ways, depending on the type of the received message: i) it might
forward the message to peers that it knows (4a), thus repeating phase 2 (2a, 2b
and 2c¢); i) it might respond with its own state (4b), and again loop on phase
2); and 444) it might extract the remote state contained in the message, either
merging [17] or comparing [2] the remote state with its own (4c). Besides this
reactive behaviour, a gossip protocol may also update its own state periodically
(Pb). For instance: a peer sampling protocol [17] may select peers by periodically
their observed lifetime. Finally, a gossip protocol might invoke three different
interactions during the state update process: 1) it might need to decide whether
to merge the remote state with its local one (5a) based on certain probabilistic
policies [9]; 2) it might compress the merged state (5b) to fit a predefined limit
on the state size [2]; and 3) it might request for the missing information through
the Gossip module (5¢) after comparing the content in the remote state with its
local one [1,2].

Note that this overall interaction model can be invoked recursively — each
module presented in Fig. 1 can itself be implemented as a gossip protocol that
follows the interaction model. For instance, the Peer Selection module can itself
be a gossip-based peer sampling service protocol.

In practice, the modules in Fig. 1 are rather coarse-grained, and may vary
widely between gossip protocols, making them hard to reuse. To maximise reuse,
our framework therefore allows each module to be composed from finer-grained
micro-modules, as shown on Fig. 2. More precisely, we have noticed that five
modules (Gossip, Peer Selection, Gossip Decision, State Compression, and State)
can often be decomposed into finer-grained and reusable entities we have termed
micro-modules. These micro-modules each implement a distinct algorithm, and

6 Facilitating Gossip Programming with the GossipKit Framework

can be combined to create more sophisticated behaviours. Fig. 2 shows for in-
stance three gossip-decision policies used in a gossip-based ad-hoc routing pro-
tocol (Gossipl(p), Gossip2(p, k), and Gossip3(p, k,p1,n)) [14].

Gossipl, Gossip2, and Gossip3 differ by how they decide whether to forward
the received routing request message (i.e. they use different Gossip Decision
modules): Gossipl forwards the message with probability p; Gossip2 is the same
as Gossipl except that it forwards the message with probability 1 in the fist &k
hops; and Gossip3 is the same as Gossip2 except that it forwards message with
probability p; > p if it has less than n neighbouring peers.

Rather than using separate implementations, these three different gossip deci-
sion strategies can be implemented by combining the three micro-modules shown
on Fig. 2. Gossipl can directly use micro-module A; Gossip2’s Gossip Decision
module can be realised by combining with a Boolean OR the return values of
Micro-modules A and B ; and Gossip3 can similarly be composed from micro-
module A, B, and C. These different compositions are described in an XML
configuration file that we will present in Section 6.1.

3.3 Event-driven Architecture

To support the common interaction pattern we have just presented, we argue that
any generic architecture should satisfy the following two criteria: First, it should
facilitate the implementation of the various modules we have just described by
making micro-modules easy to implement and configure. Second, Gossip proto-
cols exist that we have not considered, and new ones will appear in the future,
hence it requires extra modules and interactions beyond those we have identified,
making extensibility a key requirement.

Both requirements can be fulfilled using an event-driven architecture. Tra-
ditional event-driven architectures such as Ensemble and Cactus allow flexi-
ble protocol configuration through bindings between event handlers and events.
In such event-driven frameworks, our micro-modules (e.g. the Gossip Decision
micro-modules in Fig. 2) can be viewed as event handlers that are bound to
certain events. On the basis of these traditional event-driven architectures, Gos-
sipKit can be further improved to capture micro-module composition (e.g. the
ones mentioned in Section 3.2) using extended event-bindings. For instance, to
compose a ‘Gossip Decision’ module in GossipKit, several micro-modules can be
bound to events raised by the ‘Gossip’ module (Fig. 1). The ‘Gossip’ module can
then combine the values returned by each micro-module with a Boolean OR as
part of the binding, and decide whether to forward the message.

Similarly, extensibility is addressed by using events to minimise explicit cou-
pling between modules as argued in [8]. This allows our framework to be easily
extended by plugging in new micro-modules (i.e. event handlers) and reconfig-
uring event bindings to support new interaction patterns.

4 GossipKit’s Architectural Overview

The three design choices we presented in Section 3 have resulted in an architec-
ture consisting of five components, as shown in Fig. 3. In the figure, an inter-

Facilitating Gossip Programming with the GossipKit Framework 7

action between two components is represented as a pair of connected interface
and receptacle. The API components implement the domain-specific interfaces
described in Section 3.1. The remaining components realise the common inter-
action pattern described in Section 3.2. The remainder of this section discusses
these components and their interactions in detail.

A virtual view of interactions between event handlers

o Interface External Applications LT T e s
% s —__ _,]| Gossip |w._
D Receptacle] «_ | Gossip Decision N
API e T -
Components||| ! : :
p : N Peer | o State
“-—~_| Selection Process
e T e \
S N
Event Handler I Nt
— T N
I Registry ¢) @5‘ N
Periodic i c T % =
Trigger & @0 |Composition 5 . m
I'<FI Function = 5 Event Handlers
) ::3

ARk

Executors
I1Send

Fig. 3. GossipKit Architecture

4.1 API Components

API components uncouple the gossip protocols implemented by the framework
from external applications. Each type of API component provides a generic in-
terface to access a particular category of gossip protocols. API components also
act as a bridge between their method-based interface and the events used by the
framework. Fig. 4 for instance shows how the API component for the peer sam-
pling service provides an |GetPeers interface to retrieve peer information from
the local peer. When |GetPeers is invoked (operation 1 in Fig. 4), the API com-
ponent generates a GetPeers event to the event handler registry (operation 2).
The registry dispatches this event to the proper event handler (operation 3, see
Section 4.3 below), which then retrieves the peer sampling information stored
locally, and returns the information to the API component as the event handling
result (operation 4 and 5). Finally, the API component returns the resulting peer
sample to the external application through |GetPeers interface (operation 6).

IGetPeers

1
AP| Component * External Application
6

Peer Sampling Service
2} b
3
Event Handler Registry [4—4_7 GetPeers Event Handler‘

Fig. 4. Interaction of API Component with External Application

8 Facilitating Gossip Programming with the GossipKit Framework

4.2 Periodic Trigger Component

The periodic trigger component is only needed when the framework is used
to support proactive gossip protocols. This component periodically dispatches
events to trigger specific event handlers that perform different styles of gossip-
ing, such as pull, push or pull-push. The event-dispatching period (the gossip
frequency) is set at deployment time, and can be reconfigured dynamically.

4.3 Event Handler Registry

The event handler registry acts as a broker between event handlers and event
producers (components that raise events). On the invocation of an event, the
event registry finds and executes the registered event handlers that are bound
to this particular event type. To this aim, the registry maintains a table that
records event handler IDs with the events they can handle. This table is pop-
ulated each time an event handler’s IHandleEvent interface is connected to the
registry using the handler’s meta-data. The event handler registry also provides
an IHandleEvent interface to event producers to trigger the events.

Interestingly, the event handlers themselves can use the IHandleEvent inter-
face to raise and delegate internal events to others handlers, thus providing
a consistent event-based environment and facilitating interoperability between
different gossip protocols.

Finally, the event handler registry can dynamically load composition func-
tions to compile and interpret descriptions of micro-module composition, such
as the ones mentioned in Section 3.2.

4.4 Event Handler Plugins

As mentioned in Section 3.3, our modules (i.e. Gossip, Peers Selection, Gos-
sip_Decision, State_Compression, and State in Fig. 1) can be further decomposed
into finer-grained micro-modules. In our architecture, these micro-modules are
implemented through a collection of event handler plugins (Fig. 3). These micro-
modules are directly invoked by the event handler registry to handle events gen-
erated by the rest of the framework (including other micro-modules) using the
extended bindings we’ve presented earlier. Micro-modules for the Gossip module
have also access to network component to send messages (see below).

4.5 Network Component

This component provides network level communication to other components, and
as such is responsible both for sending messages generated by the Gossip module
and for delivering message events received from the network to the event handler
registry. Through this component, our framework can operate on heterogeneous
transport layers such as UDP, TCP, or ad-hoc routing, or any virtual transport
layers such component-based virtual overlays [19].

Facilitating Gossip Programming with the GossipKit Framework 9

5 Implementation

GossipKit’s prototype implementation® is based on the Java version of OpenCom
[15], a lightweight, efficient and reflective component engine. Java’s portabil-
ity enables GossipKit to operate on various platforms, from desktop computers
through to PDA. We implemented the micro-modules and event handler plugins
shown in Fig. 3 as individual OpenCom components, while we realised events
with a plain Java class. This class contains: (i) a header string, which identifies
the event type used by the handler registry to find appropriate event handlers,
(ii) a body containing data to be processed by event handlers, (iii) a source ID
denoting the peer that generated the event, and (iv) a target ID that identifies
the target peer the event should be routed to.

Our periodic trigger component features a basic yet efficient task scheduler
that allows the coexistence of multiple gossip protocols working at different fre-
quencies. Our scheduler uses a single thread shared for protocols, and thus signif-
icantly reduces resource utilisation on constrained systems. We will revisit this
issue at Section 6.3 when we discuss the memory measurement of GossipKit.

6 Evaluation

We evaluated five key properties of GossipKit—(i) configurability, (ii) reusabil-
ity, (iii) memory usage, (iv) extensibility, and (v) reconfigurability—by imple-
menting three gossip protocols from two categories: the peer-sampling services
SCAMP and PSS [9,17], and the reliable multicast ‘Bimodal Multicast’ [2]. To
assess GossipKit’s ability to support concurrent execution of multiple protocol
instances, we also configured Bimodal Multicast to operate on SCAMP and PSS.

6.1 Configurability

In event-driven systems, manually configuring event bindings is often time-
consuming. To ease this, GossipKit uses an XML-based configuration format
(Fig. 5) that describes each protocol as a high-level component composition. This
format uses the common interaction pattern we have identified earlier (Fig. 1)
as a template that guides users through the selection process of interactions and
module instances required to form a gossip-based protocol/application.
GossipKit’s XML configuration format abstracts away the details of our
event-driven architecture, and allows GossipKit to automatically map high-
level protocol configurations to appropriate event generators and event handlers.
GossipKit’s configuration format contains the following key entities: 1) coexist-
ing protocol instances are described using <protocol> elements; 2) the micro-
modules that make up each gossip protocol are described in <micromodule> el-
ements, and can be parametrised individually using the <parameters> element;
and 3) a dedicated non-XML syntax is used to describe textually compositional

! source code available at: www.lancs.ac.uk/postgrad/lins6/sub/GossipKitWeb/

GossipKit.html

10 Facilitating Gossip Programming with the GossipKit Framework

or recursive modules: for instance the Peer_Selection module for Bimodal Multi-
cast is described as protocol(PSS) in Fig. 5 to indicate that PSS is used recur-
sively to select peers; and the compositional GossipDecision module of Gossip3
in Fig. 2) would be described as micromodule(A OR B OR C).

From our experience, configuring a new protocol from existing elements takes
approximately 15 minutes. For illustration, the remainder of this subsection
shows how the PSS protocol can be configured to use push-style gossip and
life-time based peer selection from existing events and micro-modules.

Before discussing PSS, we must first explain the various event types that label
inter-module interactions in Fig. 6. As explained in Section 5, each event’s type
is encoded in a string-based header to help the event handler registry dispatch
the event to the correct handlers. For instance, a State module can handle Get
and Add events while a Gossip module can handle Gossip events. In addition to
this base type, a header string can carry extra information to indicate the type
of data either carried by the event, or that is to be retrieved from the state (i.e.
our events are similar to generics). For instance, Get<PeerID> will instruct the
State module to get a list of PeerIDs instead of the whole state. This mechanism
is recursive, which allows for cascading events, such as when a Gossip module
receives a Gossip<Add<PeerlD>> event, and dynamically raises a Add<PeerlD>
event to be sent over the network.

<protocols>
<protocol>
<micromodules>
<micromodule module|D="TCP">
<parameters>...</parameters>
</micromodule>

Get<PeerlD>

PeerSampling
APIComponent

Gossip<Add<Peer|D>>

Gossip GossipA | SelectPeers ; Get<PeerlD>|__ State
</micromodules> <StateCompression> RanklngBa§ed
a > PeerSelection PeerlDCount
<interactions> iodi
<interaction> El’_e.rwdlc Get<WholeState>
<source module="Gossip1"/> rigger State n A A
<target module="protocol(PSS)'/> Add<PeerID>] Compression RankingBased StateCompression
<events>...</events> v Y StateCompression
</interaction> TCP
<linteractions> Network StateCompression, Add<PeerlD>
</protocol>
<protocol>...</protocol> Update<Count=Count+1>
</protocols>
Fig. 5. XML Config. Fig. 6. Use case study: configuring the PSS protocol

In Fig. 6, the State is configured as a set of PeerlDs with associated lifetime
counts. A local peer P joins the network by sending a Gossip<Add<PeerlD>>
event to an existing network peer @), and retrieves its local peer sample with a
Get<PeerID> event. On a join, GossipA is configured to forward the returned
content (i.e. in this case P’s PeerlD) to a given target (i.e. in this case Q) by
sending the event Add<PeerID> on the network. When it receives this event,
Q@ extracts P’s PeerID from the event body and adds it to its state. The Peri-
odic Trigger module dispatches two events periodically: 1) The first event in-
crements the Count associated with each PeerID in State; while 2) the second
triggers GossipB to push the content of the local state to selected peers. GossipB
invokes the Ranking_Based_Peer_Selection micro-module to select peers based on
their lifetime, and forward them its own state, obtained using Get<WholeState>.
GossipB then sends this information within a StateCompression event to the se-

Facilitating Gossip Programming with the GossipKit Framework 11

lected peers. Each recipient then appends the received state to its own, before,
the Ranking_Based_State_Compression micro-module compresses the size of the
resulting state by discarding the PeerIDs entries with the oldest lifetime.

6.2 Reusability

We evaluated the reusability of GossipKit using a quantitative approach sug-
gested in [18]. This approach measures the byte code size of the Java classes
that make up different configurations of components. To evaluate the reused de-
velopment effort, we initially considered to measure both the reused byte code
size and the cyclomatic complexity [22], but as shown in Fig. 7, the byte code
size and the cyclomatic complexity (measured using CyVis?) provide roughly
the same indication of development effort. In the following we therefore limit
ourselves to byte code measurements.

40 B Cyclomatic Complexity 12
30 @ Byte Code Size 10
8
Cyclomatic
Kbytes a0 i Complexity
; L0 2
) Do w?
S G RBSC PSA PG FBSC RBPS N MA PPS LBGD PGD

Fig. 7. Byte Code size and cyclomatic complexity provide the same measurements.

In table(a) of Fig. 8, the columns under the protocol name SCAMP, PSS, and
Bimodal Multicast list the number of each component type used for configuring
these protocols. The highlighted rows show the components that were used more
than once during configuration. These results show that most components have
been frequently reused during the development of the three protocols. Further-
more, GossipKit does not only promote component reuse for developing gossip
protocols that belong to the same category (SCAMP and PSS belong to the peer
sampling category), but also for those belong to different categories (PSS and
Bimodal Multicast). Finally, we compared the total effort of developing these
three protocols in GossipKit (framework size) against the effort for developing
each individual protocol without the support of GossipKit (side-by-side size).
The result in table(a) of Fig. 8 shows that, overall, GossipKit helps save about
60% of development effort when implementing the three protocols.

6.3 Memory Usage

GossipKit aims to facilitate the development of a wide range of gossip protocols
across heterogenous networks and devices. To assess GossipKit’s suitability for
mobile devices with strict memory constraints, we measured the dynamic mem-
ory footprint of the components that make up the protocol configurations at

2 http://cyvis.sourceforge.net/

12 Facilitating Gossip Programming with the GossipKit Framework

runtime, using the JProfiler® tool. The results in table(b) of Fig. 8 indicate that
the configurations map well onto mobile devices, as minimum configurations
of protocols in GossipKit require less than 100Kbytes. In addition, JProfiler
shows the memory usage of the PeriodicGossip component that adopts a single
thread implementation remains 16 bytes regardless to the number of concur-
rent protocol instances running in GossipKit, validating our choice of avoiding
memory-intensive multi-threading mentioned in Section 5.

Config. No. of %omgonents Framework size |Side by side size
S imodal | With 3 protocols | with 3 protocols
Components (IDs) SCAMP PSS | | iticast (Kbytes) (Kbytes)
Multicast
APIComponent (MA)| 0 0 1 2.43 243
PeerS: li
APComponett___(PSA)| 1 0 4.82 9.64
Gossip ©G)| 2 2 3 7.88 39.4
LimitBased
GossipDecision =) @ 0 3 1.35 4.05
Probabilistic
Gn<<inll')lm‘li<inn (PGD)| 2 0 0 1.00 2.00
PeriodicGossip (PG) 1 1 1 4.68 14.04
Probabilistic PSS Memory size (bytes)
PeerSelection (PPS) 1 0 o‘:sSeCAMP 232 232 Protocol
RankingBased se PSS ipKi
PeerSelection (RBPS)| 0 1 | o SCAMP 4.00 4.00 GossipKit| OpenCom | Java
Network Ny 1 1 3.21 9.63 PSS 14744 6160 | 15415
State S)] 1 1 1 10.18 30.54
RankingBased SCAMP 704 6600 24623
StateCompression (RESC)INO 1 0 6.86 6.86 Bimodal
Sl cesion (FBSC)| 0 | 0 | 1 426 426 Multicast | 8216 8352 | 14786
Total 52.99 12917 Table (b) Runtime Memory Footprint Size
Table (a) Reusability Measurement in Byte Code Size Measurement

Fig. 8. Reusability and Memory Usage Measurements.

6.4 Extensibility

To assess GossipKit’s extensibility, we used a case study to evaluate the effort
required to add a new gossip-based protocol to the three existing ones. More
precisely we developed a gossip-based number averaging protocol [6] based on
the existing configuration for PSS. Fig. 9 shows that this new protocol can reuse
most of PSS’s modules and XML configuration file: One only needs to implement
two extra modules (with development effort of 3.7 Kbytes measured in byte
code size) that are presented as shaded rectangles, to remove several redundant
interactions and to change several configurations that are presented as shaded
and rounded rectangles (the modifications on the configuration file only takes
about 1 minute). Furthermore, we consider that it is less frequent for users to
implement new components as the component collection expands because of
GossipKit’s support on code reuse. For instance, the newly implemented two
modules will remain available for other data aggregation protocols and will not
need to be re-implemented in the future.

6.5 Reconfigurability

GossipKit supports fine-grained reconfiguration to adapt to environment changes
— different protocol behaviours can be achieved by replacing a single component.

3 http://www.ej-techonologies.com

Facilitating Gossip Programming with the GossipKit Framework 13

DataAggregation
APIComponent
(2.16 Kbytes)

O Implementation
] Configuration

Gossip electPeers| RankingBased \M = State
<StateCpmpression> Gossip PeerSelection " INumerical
Get<WholeState> ~| Value V
— State . .
Periodic yCompression Arithmetic) . 1
Trigger StateCompression |<2e~ompression
TCP (1.54 Kbytes)
Network

StateCompression

Fig. 9. Extending the PSS implementation into a number averaging protocol.

For instance, a peer sampling service with a life-time based peer selection can
be replaced by a probabilistic peer selection module, and a particular network
component can be replaced by different routing schemes. This form of compo-
nent replacement relies on the mechanisms directly provided by OpenCOM. A
discussion of these mechanisms is however out of the scope of this paper.

7 Conclusion and Future Work

This paper has presented GossipKit, an event-based gossip protocol framework
that aims to facilitate the development of configurable and reconfigurable mid-
dleware and supports multiple gossip protocols potentially operating in parallel
under different types of networks. We have presented a prototype implemented
using a reflective component model (OpenCom), and we have discussed some
of the benefits we have observed when implementing several gossip protocols
with our framework. Our evaluation indicates that GossipKit promotes code
reuse, simplifies configuration for deploying gossip protocol middleware, reduces
the overhead for runtime reconfiguration, and minimises the resource usage at
runtime to a certain level.

In the future, we plan to explore a broader range of gossip protocols in or-
der to identify more domain-specific features and to improve the genericity of
the common interaction model. We are also currently developing a domain spe-
cific visual language based on the existing XML-based configuration to further
reduce the configuration effort and to guard users from potentially incorrect con-
figurations. Furthermore, we plan to utilise the self-organising features of gossip
protocols to improve GossipKit towards a self-adaptive framework so that it can
automatically reconfigure itself and adapt to changes in its environment.

Acknowledgement

This work has been partially supported by the ESF MiNEMA programme.

References

1. P. Eugster, R. Guerraoui, et al. Lightweight Probabilistic Broadcast. In TEEE
International Conference on Dependable Systems and Networks(DSN2001), 2001.

14 Facilitating Gossip Programming with the GossipKit Framework

[\

. K. Birman, M. Hayden, et al. Bimodal multicast. = 'TR99-1745, May 11, 1999.

3. R. Renesse, K. Birman, M. Hayden, et al. Building Adaptive Systems Using Ensem-
ble. Cornell University Technical Report, 1997.

4. M. Hiltunen and R. Schlichting, The Cactus Approach to Building Configurable Mid-
dleware Services. Proceedings of the Workshop on Dependable System Middleware
and Group Communication (DSMGC 2000), Nuremberg, Germany (October 2000).

5. M. Jelasity and O. Babaoglu, T-Man: Gossip-based overlay topology management.
In EngineeringSelf-Organising Systems: 3rd International Workshop, 2005.

6. A. Kermarrec and M. Steen, Gossiping in Distributed Systems. In Proc. of SIGOPS
Operating System Review, 2007.

7. K. Birman, A. Abbadi, W. Dietrich, et, al. An Overview of the ISIS Project. IEEE
Distributed Processing Technical Committee Newsletter. January 1985.

8. N. Bhatti, M. Hiltunen, R. Schlichting and W. Chiu, Coyote: A System for Con-
structing Fine-Grain Configurable Communication Services. ~ ACM Transactions
on Computer Systems, November 1998.

9. A. Ganesh, A.-M. Kermarrec and L. Massoulie, SCAMP: Peer-to-Peer Lightweight
Membership Service for Large-Scale Group Communication. In Proc. of the 3rd
International workshop on Networked Group Communication, 2001.

10. D. Agrawal, A. E. Abbadi and R. Steinke, Epidemic algorithms in replicated
databases. In Proc. 16th ACM Symp. on Principles of Database Systems, 1997.

11. R. van Renesse, Y. Minsky and M. Hayden, A gossip-style failure-detection ser-
vice. In Proc. IFIP Intl. Conference on Distributed Systems Platform and Open
Distributed Processing, 1998.

12. I.Gupta, R. van Renesse and K.Birman, Scalable fault-tolerant aggrgation in large
process groups. In Proc. Conf. on Dependable Systems and Networks, 2001.

13. A. Demers, D. Greene, C. Hauser et al. Epidemic algorithms for replicated database
maintenance. In Proc. of the sixth annual ACM Symposium on Principles of
distributed computing, 1987.

14. Z. Haas, J. Halpern and L. Li, Gossip-based Ad-Hoc Routing. IEEE/ACM Trans-
actions on Networking (TON), 2006.

15. M. Clarke, G. Blair, G. Coulson, et al. An efficient component model for the con-
struction of adaptive middleware. In Proc. of IFIP/ACM International Conference
on Distributed Systems Platforms and Open Distributed Processing, 2001.

16. M. Hiltunen, F. Taiani and R. Schlichting, Reflections on Aspects and Configurable
Protocols. The 5th Int. Conf. on Aspect Oriented Software Development, 2006.
17. M. Jelasity, R. Guerraoui, A. Kermarrec et al. The Peer Sampling Service: Exper-
imental Evaluation of Unstructured Gossip-Based Implementations. In Proc. of

the 5th ACM/IFIP/USENIX international conference on Middleware, 2004.

18. C. Flores-Cortes, G. Blair and P. Grace, A Multi-protocol Framework for Ad-Hoc
Service Discovery. In Proc. of the 4th International Workshop on on Middleware
for Pervasive and Ad-Hoc Computing, Australia, 2006.

19. P. Grace, G. Coulson, G. Blair et al. GRIDKIT: Pluggable Overlay Networks for
Grid Computing. In Proc.of International Symposium on Distributed Objects and
Applications(DOA), Larnaca, Cyprus, 2004.

20. R. Friedman, D. Gavidia, L. Rodirgues et al. Gossiping on MANETs: the Beauty
and the Beast. ~ACM Operating Systems Review, 2007.

21. X. Hou, D. Tipper, Gossip-based sleep protocol (GSP) for energy efficient routing
in wireless ad hoc metworks. In Proceedings of Wireless Communications and
Networking Conference, 2004.

22. McCabe, A Complexity Measure. IEEE Transactions on SE, 1976.

