
A Multi-Stage Approach for Reliable Dynamic
Reconfigurations of Component-Based Systems?

Pierre-Charles David1, Marc Léger2, Hervé Grall1, Thomas Ledoux1, and
Thierry Coupaye2

1 OBASCO Group, EMN / INRIA, Lina
École des Mines de Nantes

4 rue Alfred Kastler
F-44307 Nantes CEDEX 3

2 France Télécom, Recherche & Développement
28, chemin du vieux chêne

F-38243 Meylan

Abstract. In this paper we present an end-to-end solution to define
and execute reliable dynamic reconfigurations of open component-based
systems while guaranteeing their continuity of service. It uses a multi-
stage approach in order to deal with the different kinds of possible errors
in the most appropriate way; in particular, the goal is to detect errors
as early as possible to minimize their impact on the target system. Re-
configurations are expressed in a restricted, domain-specific language in
order to allow different levels of static and dynamic validation, thus de-
tecting errors before executing the reconfiguration where possible. For
errors that can not be detected early (including software and hardware
faults), a runtime environment provides transactional semantics to the
reconfigurations.

1 Introduction

Complex software systems must be modified/maintained during their lifetime,
for example to fix bugs or include new functionalities. It is often not practical –
or even possible – to stop the system in order to perform these changes. Instead,
the changes must be applied dynamically to keep the running system available.

There are two conflicting forces that make evolution especially challenging.
On the one hand, the evolutions that will be applied to a system cannot be
precisely anticipated at the time it is initially built and deployed. This means
the system must be kept open and flexible to accommodate future needs. On the
other hand, modifying production systems that are often business-critical is very
risky, and we need to ensure that these changes will cause the minimum possible
disruption, even though we do not know ahead of time the actual changes that

? This work is partially funded by the Selfware RNTL project
(http://sardes.inrialpes.fr/selfware) and the Selfman IST project
(http://www.ist-selfman.org/).



will be made. In short, we need a way to provide reliable dynamic reconfigura-
tions. By reliable we mean: (i) reducing as much as possible the occurrence of
errors (fault prevention), (ii) when errors that could not be prevented actually
happen, minimize the damage they cause to the system (fault tolerance).

This paper introduces a modular validation chain to support reliable dynamic
reconfigurations on top of general-purpose component models like Fractal [1].
The chain is based on a decomposition of the life-cycle of individual reconfig-
urations in multiple stages, from their definition to their actual execution on
the target system. As reconfiguration scripts go through these successive stages,
different techniques are used to “weed out” incorrect reconfigurations and handle
errors that could not be prevented. The different stages of the validation chain
complement each other to offer strong reliability guarantees. At the same time,
the chain stays modular and can be customized to support different tradeoffs
between performance and guarantees depending on the domain.

In the rest of this paper, we first present the overall architecture of our
approach (Sect. 2), detailing the different kinds of errors our validation chain
handles thanks to its multi-stage architecture. Sections 3 to 5 then give more
details on each successive stage of the chain. We conclude (Sect. 6) with an
overview of the current status of these different modules and of the future work.

2 Overview of the Validation Chain

The goal of the proposed validation chain is to ensure the reliability of the
dynamic reconfigurations of software architectures (e.g. component replacement,
reconnection of component bindings). It relies on the use of a dynamic component
model that supports unanticipated reconfigurations, typically thanks to reflective
features. In our case we use Fractal [1] for its flexibility and extensibility.

The main idea behind our proposal is to handle the different kinds of errors at
different points in the life-cycle of a reconfiguration. Accordingly, the validation
chain is organized with three main stages as illustrated in figure 1, each stage
corresponding to a different step in the life-cycle of the scripts that describe
the reconfigurations to be executed. At each stage, if an error is detected, the
reconfiguration is immediately rejected. Hence the whole chain acts as a sequence
of increasingly specific sieves that scripts must pass through, from basic sanity
checks to a full-blown managed execution of the reconfigurations as transactions.

Loading. First, the specification of a reconfiguration is loaded into the validation
chain, in the form of a reconfiguration script. Such a script can be executed many
times in its lifetime, with different target architectures, but it is loaded only once.
For example, a generic component replacement script can be reused with differ-
ent parameters each time a component must be updated to a new version. At
this time, the possible target architecture are only specified by the architecture
model, which defines some rules that the architectures under consideration sat-
isfy. With these informations, the possible validations include various levels of
static analyses filtering out reconfiguration scripts that could cause errors when
applied to a concrete architecture.



Fig. 1. The validation chain’s architecture

Invocation. After loading, a user may want to actually execute the reconfigu-
ration on a particular target architecture. Some additional validations can now
be performed: this stage filters out scripts that are incompatible with the given
target architecture.

Execution. Finally, the reconfiguration is executed on the target architecture.
If the previous steps have been precise enough, most erroneous reconfigurations
have already been rejected at this point. However, some kinds of errors are
either impossible to predict (e.g. hardware faults) or too costly to detect. To
handle these errors, the execution stage uses a runtime environment providing
transactional properties to reconfigurations in the Fractal model. Although it
can actually handle all the errors detected by earlier stages, this choice may
make the architecture not available during a too long time.

The different stages of the validation chain work together providing an inte-
grated whole. At the same time, the chain stays modular, and some of the stages
can be disabled or replaced. As the different analysis techniques have different
costs, the validation chain can be customized depending on the target architec-
tures: critical systems will require more complex static analyses in the earlier
stages, and may even include a test run on a replica system whereas the cost
of these steps may be redhibitory in other contexts. The rest of the paper gives
more details on each of the successive chain stages.

3 Static Analysis With Respect to the Architecture Model

The first stage in the validation chain loads the source code of the reconfiguration
script into the chain. Its goal is to verify the validity of the reconfiguration with
respect to the underlying architecture model. The component model defines some
rules to be satisfied by the architectures under consideration. At this point, the
actual architectures to which the script will be applied are unknown.

The reconfiguration scripts are written in a domain-specific language named
FScript [2] that we have defined for this purpose. This language not only allows
reconfigurations to be easily expressed, but also ensures some safety properties:
for instance, any well-formed script terminates.



When a script is well-formed, a semantic analysis introduces an axiomatic
definition of the script execution. This analysis is parameterized by a selection
of the rules of the architecture model: this allows us to easily support variants,
at the infrastructure or application levels, like different architectural styles. Note
that some rules can be discarded because they are too costly to analyze. The
analysis defines Hoare’s correctness formulas {P}S{Q} where S is the script and
P and Q are properties describing the architecture to be reconfigured (expressed
in first-order logic). Such a formula means that any architecture satisfying the
precondition P will satisfy the postcondition Q after the completion of the script
S. The aim of the semantic analysis is to determine a precondition P that does
not lead to an error state where the architecture violates some invariant rules
under consideration: only the architectures that satisfy the precondition P will
be reconfigured by the script. Therefore, if the precondition P is false, it means
that the script is not useful according to the analysis and should be rejected.
Otherwise, the script is considered as potentially valid, and passed to the next
stage of the validation chain along with the computed precondition. Note that the
semantic analysis can be more or less precise: the precondition P is sufficient to
ensure the absence of errors with respect to the selected rules, but not necessary.

4 Validation With Respect to the Target Architecture

The second stage in the validation chain is triggered each time the user requests
the invocation of a reconfiguration script by giving a target architecture and
actual parameters. This stage performs additional validations thanks to this
information, but without actually modifying the target architecture.

At this point, the script has already passed the first stage of the chain, and has
a pre-condition associated to it. The first step is thus a simple compatibility check,
which consists in evaluating the pre-condition on the target architecture and the
actual parameters. This can be done easily, and only requires to introspect the
target architecture, without modifications.

If the compatibility check has succeeded, an optional second step can be in-
cluded, which consists in a simulation of the script’s execution. This step uses
a virtual implementation of the target architecture, on which the reconfigura-
tion script is executed using the script interpreter. The virtual architecture is
initialized with the initial state of the target system, but implements “copy-on-
write” semantics: operations are applied to the virtual copy, and do not modify
the actual target system. If any of the component model invariant rules of the
architectural model are violated during the simulation, the invocation is rejected.

One advantage of the simulation is that it can be more precise (and thus can
catch more errors) that the static analyses, which may be restricted by a selec-
tion of the invariant rules to be preserved. Also, by instrumenting the virtual
architecture to be reconfigured, it can generate the exact trace of the reconfigu-
ration performed by the script, which can be “replayed” with very little overhead
to reproduce its effect on the actual target system [3]. The only drawback is that
this step can increase the latency of the reconfiguration.



5 Execution of Reconfigurations as Transactions

The final stage of the chain is the actual application of the reconfiguration script
on the target architecture. Depending on how the previous stage was config-
ured, it uses either a compiled form of the script, or the specialized trace of
reconfiguration operations that was generated during the simulation.

Because the overall objective of the validation chain is to guarantee the re-
liability of the reconfiguration, this step must either apply the complete recon-
figuration script without errors, or, in case of errors, restore the system to the
last consistent state before the execution of the script by rollbacking the failed
reconfiguration: it must be fault tolerant. The failures that happen during the
actual execution of the reconfiguration include software failures (e.g. violation
of the architecture model) that were not detected earlier, and some errors that
are fundamentally impossible to predict (e.g. hardware crashes). In all cases, the
resulting architecture must be in a consistent state according to the definition
of the underlying architecture model.

These objectives call for the use of transaction management techniques, as
they closely match the standard ACID properties (Atomicity, Consistency, Isola-
tion, Durability) of transactions in distributed computing [4]. In order to execute
reconfiguration scripts inside global transactions with automatic demarcation,
we use an extended version of the Fractal component model [5], which provides
transactional semantics for Fractal architectures. Therefore, reconfigurations can
benefit from ACID properties to support concurrency, recovery, and to guarantee
system consistency.

6 Conclusion and Future Work

The objective of this work is to make runtime reconfigurations of open software
architectures reliable while maximizing their availability. We specially target
reflexive component-based architectures for their suitable adaptability property,
as exemplified by the use of the Fractal model in our current implementation.
Our solution relies on a multi-stage validation chain with two main dependability
methods: fault prevention and fault tolerance. Fault prevention notably includes
the use of static analysis on a dedicated reconfiguration language in order to
detect invalid reconfigurations with respect to the architecture model, and an
additional simulation stage on the target architecture. Fault-tolerance is ensured
by a transactional runtime for the actual execution of reconfigurations.

Although several component models support open dynamic reconfigurations,
they do no take into account the reliability of reconfigurations. On the contrary,
most work on reliability and validation for component-based architectures deal
with Architecture Description Languages [6, 7] only include static validations
and do not support unanticipated reconfigurations. Recent component models,
like FORMAware [8] and Plastik [9], rely on reflexive architectures to allow unan-
ticipated reconfigurations while supporting some kinds of guarantees checked at
runtime. Our work differs in that we provide a multi-stage architecture that



integrates different complementary validation techniques in a consistent whole.
Depending on the domain requirements, the focus of the validation chain can be
put on the static validation, the controlled execution, or both, for instance for
critical systems.

Currently the overall architecture of the validation chain is in place, and the
whole system is usable although some of the individual stages are not yet com-
plete: the simulation and execution of reconfiguration programs is fully func-
tional, including transactional guarantees. Our current focus is on the earlier
steps, and in particular the definition and implementation of the static analysis
of reconfiguration scripts, which requires a formal definition of both the FScript
language and the Fractal model. Once we have a fully implemented validation
chain for Fractal, we plan to extend it to support other component models.

References

1. Bruneton, E., Coupaye, T., Leclercq, M., Quéma, V., Stefani, J.B.: The Fractal
Component Model and its Support in Java. Software Practice and Experience,
special issue on Experiences with Auto-adaptive and Reconfigurable Systems 36(11-
12) (2006) 1257–1284

2. David, P.C., Ledoux, T.: Safe dynamic reconfigurations of Fractal architectures
with FScript. In: Proceedings of the 5th Fractal Workshop at ECOOP 2006, Nantes,
France (July 2006)

3. Polakovic, J., Mazaré, S., Stefani, J.B., David, P.C.: Experience with implementing
safe reconfigurations in component-based embedded systems. In: The 10th Inter-
national ACM SIGSOFT Symposium on Component-Based Software Engineering
(CBSE 2007). LNCS, Springer Verlag (July 2007)

4. Traiger, I.L., Gray, J., Galtieri, C.A., Lindsay, B.G.: Transactions and consistency
in distributed database systems. ACM Trans. Database Syst. 7(3) (1982) 323–342

5. Léger, M., Ledoux, T., Coupaye, T.: Reliable dynamic reconfigurations in the Fractal
component model. In: Proceedings of the 6th workshop on Adaptive and reflective
middleware (ARM’07), New York, NY, USA, ACM (2007) 6

6. Allen, R.J.: A Formal Approach to Software Architecture. PhD thesis, Carnegie
Mellon University (May 1997) Technical Report Number: CMU-CS-97-144.

7. Medvidovic, N., Oreizy, P., Robbins, J.E., Taylor, R.N.: Using object-oriented typ-
ing to support architectural design in the C2 style. In: Proceedings of the ACM
SIGSOFT’96 Fourth Symposium on the Foundations of Software Engineering, San
Francisco, CA, USA, ACM SIGSOFT (October 1996) 24–32

8. Moreira, R.S., Blair, G.S., Carrapatoso, E.: Supporting adaptable distributed sys-
tems with FORMAware. In: ICDCSW ’04: Proceedings of the 24th International
Conference on Distributed Computing Systems Workshops, Washington, DC, USA,
IEEE Computer Society (2004) 320–325

9. Batista, T., Joolia, A., Coulson, G.: Managing dynamic reconfiguration in
component-based systems. In: 2nd European Workshop on Software Architectures
(EWSA 2005). (2005)


