A Generic Infrastructure for Decentralised Dynamic
Loading of Platform-Specific Code

Riidiger Kapitza', Holger Schmidt?, Udo Bartlang®, and Franz J. Hauck?

! Dept. of Comp. Sciences, Informatik 4, University of Erlangen-Niirnberg, Germany
rrkapitz@cs.fau.de
2 Institute of Distributed Systems, Ulm University, Germany
{holger.schmidt,franz.hauck } @uni-ulm.de
3 Siemens AG, Corporate Technology, Munich, Germany
udo.bartlang.ext@siemens.com

Abstract. Dynamic loading of code is a crucial and often neglected part
of today’s distributed systems that face increasing dynamics, complexity and
heterogeneity. Ubiquitous computing and mobile computing even strengthen this
trend. As the local availability of suitable code cannot be assumed in such
environments, we propose a generic, decentralised code loading infrastructure.
The whole process of publication, look-up, implementation selection and the final
loading of platform-specific code is decentralised and requires only basic peer-
to-peer functionality. In contrast to previous work, our infrastructure allows any
peer participating in the network to offer and to obtain platform-specific code in
a dynamic and heterogeneous environment. By building on our generic concept,
we present a JXTA-based service for dynamic code loading, which is realised
by extending and improving JXTA-built-in mechanisms for dynamic service
integration. Subsequently, we show the practical application of our infrastructure
by an integration into our CORBA middleware and an implementation of mobile
objects and mobile web services.

Key words: CORBA, Dynamic Loading of Code, JXTA, Peer-to-Peer, Web
Services

1 Introduction

Distributed applications of any domain face the trend of raising complexity, dynamics
and heterogeneity of software and hardware. Two prominent protagonists that empha-
sise this development are ubiquitous computing [1], targeting distributed applications
on small, mostly embedded devices, and planetary-scale execution environments for
globally available services such as PlanetLab [2] and Xenoserver [3].

In both cases, applications—especially distributed ones—have the requirement to
dynamically load additional code at run-time if that code is not already bound to
the local execution environment. There, challenges to dynamic code loading arise if
rarely used code has to be loaded on demand or if code to load is not even known in
advance. This is a common problem, as distributed applications usually have numerous
independently running application parts, which results in some code modules not being
known at compile or even at start-up time. However, it is desirable that newly developed

code can be used by already running execution environments. Additionally, for some
distributed applications it is not feasible to install and load all code modules at every
node of the system. For example, some code modules might only be used by a few of the
nodes, and these nodes may not be known in advance or may have resource restrictions.

For addressing these problems, we recently proposed a dynamic loading service that
enables the dynamic loading of platform-specific code [4]. However, this work follows
a classical client/server-based approach relying on a central component managing
metadata of all know implementations and their variants. In contrast to that approach,
this paper proposes a generic and decentralised peer-to-peer-based lookup, selection and
loading process. This allows multiple parties to independently and non-reliably provide
implementations for a certain object or component. Building on this generic concept,
a prototype was implemented that uses existing concepts of the JXTA platform [5] to
dynamically select and load code based on metadata descriptions called advertisements.
These advertisements are extended to provide a truly platform-independent support for
the dynamic loading of platform-specific code. JXTA is used because of its flexibility:
it allows replacing routing mechanisms (e.g., unstructured replaced by structured
topology) without having to change the application, i.e. our prototype, itself.

We evaluated the proposed and implemented system by its integration as a
common CORBA service to support mobile objects, and ported this approach to a
web-service infrastructure. Then, we integrated the infrastructure into our CORBA-
compliant middleware Aspectix [6], to extend the support for fragmented objects.
Summarising the results of the use cases, the proposed infrastructure meets all demands
to dynamically select and load code for CORBA objects, web services, and fragmented
objects within heterogeneous execution environments.

In the following section, a platform-independent and decentralised approach to
dynamically discovering, selecting and loading platform-specific code is described.
Starting from this point, a brief overview of the JXTA peer-to-peer middleware and its
facilities for service lookup and integration is given in Section 3. Then, we describe
our prototype implementation of a platform-independent peer-to-peer-based loading
service. Section 5 outlines two possible use cases of our infrastructure, the integration
into the CORBA-compliant middleware Aspectix and the support for the dynamic
creation and migration of mobile objects and services. Finally, Section 6 presents related
approaches and Section 7 concludes.

2 Generic Decentralised Dynamic Loading of Code

In the following, a generic approach to dynamically loading locally unavailable and
platform-specific code is presented. As every functionality might be available in
various implementations with different requirements and properties, a generic and
decentralised selection process is responsible for identifying the best-fitting one for
a certain environment.

2.1 Requirements and Properties for Implementation Selection

We identified three categories of properties and requirements that have to be fulfilled or
at least be taken into account during the selection process (cf. Figure 1).

. Functi | & Non-Functi | - .
Required Interface unction 0", unctiona Compatibility Requirements
Properties

Implementation
Code

Fig. 1. An approach towards a generic code classification

As an interface determines how the application deals with implemented function-
ality at the programming layer, new and locally unavailable functionality is identified
by its required interface. Thereby, the interface has to be defined in a generic interface
description language, e.g., using the CORBA Interface Definition Language (IDL) or
the Web Service Definition Language (WSDL).

Functional properties express additional functional aspects beyond the bare
provision of an interface, e.g., the supported middleware platform. In general, it is hard
to standardise all kinds of functional properties. However, this is a requirement for a
generic selection process. Thus, we propose that an infrastructure for dynamic loading
should specify well-known functional properties and delegate the evaluation of other
ones to the application. Implementations providing the same functionality might also
possess non-functional properties that specify in general quality-of-service properties,
e.g., timing behavior and resource consumption of a certain implementation. In the same
way as functional properties, these are hard to be standardised in general and therefore
might have to be handled by the application.

Specific compatibility requirements for a certain implementation have to be
considered as well, e.g., the required programming language and execution environ-
ment. Such approach considers the fact that exactly the same functionality can be
implemented in various programming languages, e.g. in Java or C++, or for specific
run-time environments, e.g. Linux or Windows. Compatibility requirements can be
automatically evaluated as there is a limited set of properties (e.g., compiler, processor,
operating system), outlined in detail in our former work [4], that determine whether an
implementation is executable in the context of a requesting application.

2.2 Basic Infrastructure

For dynamic decentralised loading of code, we propose an infrastructure that is
composed of three basic components. A dynamic loader provides an interface to
the application for requesting locally unavailable functionality. This dynamic loader
component is able to discover, to select and to integrate an appropriate implementation
into the address space of the requesting application. Thereby, the searching process is
supported by a decentralised implementation repository that stores information about
available code implementations. We favour a repository on the basis of a peer-to-
peer overlay network, which only has to provide support for keyword search (e.g.,
JXTA, Gnutella [7]). The implementation repository itself is updated by multiple
code providers, i.e., peers, that provide implementation code and publish metadata
descriptions specifying requirements and properties.

2.3 Basic Data Structure of the Implementation Repository

Using the set of properties and requirements outlined in Section 2.1 enables the
selection of the best-fitting implementation code. Therefore, all data about available
implementations is published as metadata descriptions in scope of the implementation
repository. For omitting duplicated information and improving extensibility, these
descriptions are split up into four kinds of metadata, which are each published
separately.

An interface description contains the fully-qualified name of the interface and the
interface (e.g., IDL or WSDL). Within the description, other interfaces and complex
data types are also referenced by their fully-qualified names, which enables a dynamic
lookup of unknown interfaces and data types.

For covering all interfaces and complex data types of a module, these are combined
and published in a module description. There, interfaces are only referenced by name.
The combination of module and interface descriptions allows a complete representation
of the interface description and can be used for providing a decentralised interface
repository.

An extended functional description specifies all functional and non-functional
implementation-independent properties. These are properties provided by various
implementations and therefore are used for selecting equal implementations providing
the same interface. As mentioned earlier, it is hard to identify a generic set of functional
and non-functional properties that apply to a major number of applications. Therefore,
an implementation repository and associated dynamic loaders should provide a flexible
interface that enables applications to introduce code for custom evaluation.

An implementation description describes a concrete implementation and its
compatibility requirements. It includes a reference to the location of the code and a
description of the initially accessed implementation element. In context of Java this
would in general be a class name of a factory.

2.4 Basic Workflow of Publication, Selection and Loading of Code

Before publishing an implementation, a code provider has to generate appropriate
metadata documents, i.e., the interface description, the extended functional description
(referencing the interface description) and the implementation description (referencing
the extended functional description and the concrete implementation). Then, these
metadata documents are published via the decentralised code repository.

When an application requires locally unavailable functionality, it passes the fully-
qualified name of the required interface and an optional handler for custom evaluation
of extended functional requirements to a dynamic loader entity. This dynamic loader
requests the implementation repository to look up the interface description and, if
not available, passes an exception to the calling application. Then, the repository
is queried for extended functional descriptions supporting the requested interface.
If provided, the results are passed to the optional handler, which has to return an
ordered list of appropriate extended functional descriptions starting with the best-
fitting one. On the basis of this list, the dynamic loader queries the repository for
implementation descriptions. These are evaluated depending on a policy, e.g., the first

fulfilled implementation description is selected or all are considered and the best-fitting
one is selected. After having selected an appropriate implementation description, the
code has to be loaded.

3 JXTA and Dynamic Loading of Code

In this section we give a brief introduction to the JXTA platform and present JXTA’s
facility for dynamic loading of code.

3.1 JXTA Overview

The JXTA project was initiated by Sun Microsystems as an effort to provide a generic
and open infrastructure for peer-to-peer computing. For establishing a generic basis for
peer-to-peer applications, JXTA standardises fundamental functions by introducing six
asynchronous query/response protocols [8].

A JXTA peer-to-peer network consists of peers (uniquely identifiable nodes), which
syndicate to peer groups [9]. These peer groups permit the segmentation of the JXTA
overlay and provide a set of services which are represented through advertisements,
i.e., external programming-language-independent XML metadata representations. In
general, the availability of any network resource, e.g., peers and services, is represented
through advertisements with a unique identifier, which is published within a certain
peer group for a special lifetime [8]. Thus, peers try to discover certain resources by
searching for the corresponding advertisements.

JXTA introduces the abstraction of pipes, i.e., unidirectional, asynchronous,
unreliable and virtual communication channels for peers within the same peer group.
The endpoints of a pipe are dynamically bound at run-time, even to different peers.
JXTA introduces two different kinds of pipes: a point-to-point pipe for unicast
communication and a propagate pipe for multicast communication.

3.2 Dynamic Lookup and Loading of Services

For structuring and dynamically extending JXTA-based applications the infrastructure
offers a generic module framework. Modules are managed by the framework and
represent distributable units of functionality within a specific peer group that can be
initialised, started and stopped by a peer. Thus, modules enable loading and integrating
new services into the JXTA platform [10].

For efficiently discovering modules, the definition of a module is divided into
three types of advertisements. As JXTA claims to be both language- and platform-
neutral, a module implementation advertisement enables the differentiation of multiple
module implementations, e.g., a module could be implemented in Java or C++. This
advertisement specifies implementation-specific details, e.g., the actual code location.
For handling different versions of a module, module specification advertisements are
introduced, which are referenced by corresponding module implementation adver-
tisements. Additionally, a module class advertisement announces the pure existence
of a unique module class. It provides an abstraction for referring to a module that

provides a particular class of functionality (independent from a certain specification
or implementation). As multiple module specification advertisements can relate to a
certain module class advertisement, references are embedded into the module class
advertisement.

Recapitulating the facts, JXTA allows building a decentralised module taxonomy
to support the discovery and loading of services. However, class advertisements only
announce the availability of a general category of functionality. This gives developers
an idea for a certain module specification and supports the selection process at a very
high level, but for an automated module selection process at application level, additional
conventions have to be established. Therefore, the Java reference implementation of
JXTA makes implicit assumptions that a module implementation provides a certain
interface for starting and stopping a module, but this is neither specified by the JXTA
protocol specification nor declared by advertisements. Additionally, JXTA offers no
support for determining and specifying the interface of a module offered to higher
layers like an application. This makes it hard to provide multiple implementations
supporting the same protocol for the same platform but providing different properties.
Furthermore, module implementation advertisements should enable the providing
of compatibility information but are not standardised so far. This results in JXTA
implementations specifying their own format and parameters, which prevents the use
of module implementations in context of different JXTA implementations. Altogether,
the JXTA support for dynamic loading and integration of services leads to platform-
specific implementations and does not support dynamic loading of arbitrary code.

4 A JXTA-based Infrastructure for Decentralised Dynamic
Loading of Code

Although JXTA’s approach for dynamic loading of code seems to be generic and
flexible, we outlined its weaknesses and shortcomings. Thus, it cannot be used as
a generic and platform-independent infrastructure for dynamic code loading. In this
section, we extend this infrastructure based on our generic concept for dynamic code
loading, which in general only relies on support for keyword search within a peer-to-
peer infrastructure (cf. Section 2).

4.1 Extended Advertisements

We extended the advertisements conforming to our specified requirements in Section
2.3 to provide an own code loading infrastructure on top of JXTA. Figure 2 shows
required advertisement types and their relations. In our approach a module class
advertisement represents the implementation interface. We define that the name field
of the advertisement specifies the fully-qualified name of the described functionality’s
most-derived interface. The advertisement’s description field is used for representing
the interface description. As the name field of the class advertisement is indexed in the
JXTA network, an interface can easily be searched by its name.

The module specification advertisement is mapped to an extended functional
description, considering non-functional properties as well (e.g., code-versioning).

Module Implementation
Advertisement

[
Module Class Module Specification
Advertisement Advertisement

Module Implementation
Advertisement

Module Implementation
Advertisement

Fig. 2. Relations of extended advertisements

We consider the protocol specification as a functional property that declares if and
how a functionality is network-dependent. Additional functional and non-functional
requirements are encoded into the description field. If the specified functionality is
offered by a JXTA service, there is a pipe advertisement for addressing; otherwise the
dependent field is left open.

Finally, the module implementation advertisement is extended using standardised
compatibility requirements that we defined in previous work [4], e.g., system
parameters as the used run-time environment. These requirements are stored in the
comp field. In addition to our former work, we add platform-dependent interfaces to the
compatibility requirements. This explicitly allows to specify an integration of certain
functionality at platform level. In contrast to the Java JXTA reference implementation
that only allows loading a JAR-file from a web server specified within a puri field, we
provide extended facilities to reference and to transfer a code archive from an arbitrary
code provider. Therefore, we embed a module specification advertisement in the puri
element, enabling the specification of necessary functionality to communicate with a
certain code provider. This enables the flexible integration of arbitrary services for the
dynamic code transfer as there is no predetermined transfer protocol. A requesting peer
is able to dynamically fetch a code transfer service over the peer-to-peer network. For
instantiating the service, the main class is specified within the code element.

Such code transfer handler should either be offered via the HTTP-based code
transfer support provided by JXTA or by the implementation of the basic JXTA transfer
service that is described in Section 4.3. Thus, in general we assume at most one level of
indirection.

4.2 Decentralised Implementation Repository

Section 3.1 introduced peer groups as a mechanism for grouping users with similar
interest. In context of our prototype implementation we use a dedicated peer group
(Code Peer Group) for publishing and discovering implementations. A code provider,
which is described in the following subsection, publishes advertisements related to
offered implementations within this peer group.

Unfortunately, JXTA binds module specification advertisements to a pipe that is
again bound to a certain peer group. The consequence is that this peer group is also used
as the group to address the services for execution. If this is not feasible, the dependent

module specification advertisements have to be discovered, modified by providing a
group-specific pipe advertisement, and finally republished in scope of the Code Peer
Group.

4.3 Code Provider

As described before, JXTA provides only restricted mechanisms for code transfer and
sharing. Therefore, we developed an own code provider service, which enables code
sharing and transfer via the JXTA network.

:JxtaCodeShareService | :CodeBase | :DiscoveryService
T T

shareFile() |
—_—P
Fa&chModu\elmp\Advevlisemem()
a

ddFile()

new JxtaCodeServer

|
!
!
start() !
|
-)gelD\scoverySevvice() |

|

publish()

......................... T

Fig. 3. Code sharing process (UML sequence chart)

Before publishing an implementation and its dependent code archive, associated
advertisements have to be generated, if not already available. Therefore, a local
JxtaCodeShareService object offers the core functionality to publish and to
share implementations. Thereby, a code archive together with the three advertisements
is passed to the JxtaCodeShareService via the shareFile () method.
Then, the service contacts two other objects as shown in Figure 3. First, the
JxtaCodeShareService adds its pipe advertisement for code transfer to the
module specification advertisement, then it passes the archive to the CodeBase.
This object administrates the locally offered code archives. Then, an instance of the
autonomously working class JxtaCodeServer is created, which provides a multi-
threaded server that is responsible for the file transfer via a simple JXTA-based protocol.
In the last step, advertisements are published via the standard JXTA discovery service.

4.4 Dynamic Loader

The dynamic loader builds the core of our prototype. Figure 4 illustrates the
collaboration between its important components. JxtaCodeHandler is the central

entity during the whole dynamic loading process. It is responsible for coordination and
finally initiates the code transfer.

:CodeBundleClassLoader :CodePeerGroupHandler
{new}

42: ModuleSpecAdvertisement[] := getSpecAdvertisements

<<local>> (peerGroup, attribute, value, forceRemoteDiscovery)

X

’ 9: Object := loadFactory()

+ 4: ModulelmplAdvertisement] := getimplAdvertisements

(peerGroup, attribute, value, forceRemoteDiscovery)
1: CodeBundle := getCode

(moduleClassID, descriptionChecker)

>

3:isCom !)
JxtaCodeHandler | :DescriptionChecker

<<local>>

« 6: File := 5: Eﬁompa{ible(aspiram)
:IxtaCodeTransferHandler getFile(modulelmplAdvertisement)

:CompatibilityChecker

7: File := getFile 8: shareFile
* (modulelmplAdvertisement) > (modulelmplAdvertisement, file)

:CodeTransferService :CodeShareService

Fig. 4. Collaboration of central system components

The dynamic loader expects only a module class ID to determine the basic interface
and additionally the information of a module specification advertisement to determine
appropriate functionality. The module class ID can be determined by the application
using the fully-qualified name of the most derived interface of the required functionality.
The method getCode () of the JxtaCodeHandler enables searching for a certain
module specification advertisement. Therefore, it allows key identifiers as a module
class ID, name, version or a generic description within the desc element. The latter is
achieved by passing an object that implements a DescriptionChecker interface
that is able to perform a validity test for the concrete use case (1). For selecting a
specific implementation code instance, the dynamic loader uses the module class ID
for discovering corresponding module specification advertisements within the code
peer group (2). Based on the module specification advertisement and the generic
DescriptionChecker, the discovered specification advertisements can be filtered
for a suitable one (3). It might be necessary to start multiple requests to the JXTA
network if no suited specification advertisement is available yet. Based on the extracted
module specification ID, a search for corresponding implementation advertisements
can start (4). The dynamic loader compares received implementation advertisements
to requirements of the local execution environment (5): An advertisement is chosen
by using an object that implements a CompatibilityChecker interface, which
is able to validate the suitability for the current execution environment. If a suited
module implementation advertisement is found, the JxtaCodeHandler is able to
initiate the code transfer, if an appropriate transfer handler is locally available (6)
(Otherwise, a suited transfer handler has to be fetched recursively). This operation
is transparently processed by the JxtaCodeTransferHandler (7). Thereby, the
JxtaCodeTransferHandler encapsulates the whole transfer process by offering
a method getFile () that only takes a module implementation advertisement as

parameter. If the code transfer to specific provider fails, another code provider could be
chosen if available. Exemplarily, a code transfer service supporting file transfer using
the JXTA network is realised within our prototype implementation. If the code transfer
succeeded, the code can be offered by the requesting peer for supporting the scaling of
the whole peer-to-peer system (8). Additionally, persistent caching of the code avoids
further remote transfers of identical code resulting from future requests. As a last step,
an object-specific factory is used to dynamically integrate the fetched code bundle into
the running system (9).

5 Applications of the Generic Decentralised Dynamic Loading
Infrastructure

In this section, we present two exemplary applications using our proposed loading
infrastructure: integration into a CORBA middleware to support mobile objects/services
and support for fragmented objects.

5.1 Supporting Dynamic Loading of Code for Mobile Objects and Services

Recently, we proposed a platform-independent object migration service based on the
CORBA Life-Cycle Service (LCS) [11]. The LCS specifies several interfaces for
supporting object migration. The migration process is shown in Figure 5. A migratable
object has to support the LifeCycleObject interface that includes a move ()
method for initiating the migration. Within this method, a target location has to be
determined. Such location is represented by a generic factory, which enables the
creation of objects on remote machines. The selection process of an appropriate generic
factory is supported by a factory finder.

Client Finder:FactoryFinder | Factory:GenericFactory :

' T E

ll: move Tl.l: find factories. l<create> '
Object:LifeCycleObject / H NewObject:LifeCycleObject

H v 1.2: create
: :
! :

ESource Node H 1 Target Node

Fig. 5. Object migration based on the CORBA Life Cycle Service

For migrating an object from a source node to a target location, current state and
code have to be transferred, as local existence of arbitrary code cannot be assumed.
For transferring the state of an object, we use CORBA value types. For code provision,
we use our decentralised dynamic loading infrastructure as a CORBA service. Thus, it
can be accessed by the generic factory or any other local CORBA application. During

the initialisation phase of the ORB, the local JXTA runtime platform is configured
and connected to the peer-to-peer network, which enables the service immediately
after the ORB’s initialisation. The service interface is equal to the interface of the
Dynamic Loading Service (DLS) [4] that offers one central method getFactory ()
for requesting new functionality that is provided by an object implementing the factory
pattern. Additionally, our decentralised dynamic loading service offers the opportunity
to pass a custom handler for supporting the selection process. The generic factory’s
create () method for object creation expects a parameter with the required interface’s
fully-qualified name and optionally a selection handler. Thus, the generic factory is
able to request platform- and object-specific factories using the getFactory ()
method offered by our service. Figure 6 outlines the core sequence of the loading
process performed by the service. First, the JxtaDynamicLoader class is invoked
for requesting a new implementation and passing a custom object for selecting an
appropriate implementation. On success, a CodeBundle reference is passed to our
custom class loader instance, which offers a method for creating and initialising a
requested object implementation, i.e., in case of the generic factory a specific factory
that is able to instantiate the demanded object.

public Object getFactory (String moduleClassID,
DescriptionChecker desc){
try {
CodeBundle codeBundle = JxtaDynamicLoader.getCodeHandler () .
getCode (moduleClassID , desc);
CodeBundleClassLoader loader = new CodeBundleClassLoader (

codeBundle) ;
} catch (NoCodeAvailableException el) { ... }
catch (MalformedURLException e2) { ... }

return loader.loadFactory () ;

}

Fig. 6. Dynamic loading of a previously unknown object within the getFactory () method

Additionally, we implemented a prototype for migrating a web service. Therefor,
we transferred the LCS concept to web services, which results in the factory finder and
the generic factory being implemented as web services. The generic factory web service
offers a create () method, to which the required web service interface is passed (as
WSDL). Based on this WSDL description, the generic factory is able to determine the
required interface and implementation. In this scenario, the factory directly interacts
with our decentralised dynamic loader infrastructure. By using the getCode ()
method, a service-specific factory can be loaded and created. This service-specific
factory is able to deploy a platform-specific instance of the required web service at the
target location with setting the correct state (transferred from the original web service).

5.2 Enabling Dynamic Binding of Fragmented Objects

The Aspectix middleware provides a CORBA-compliant but more flexible and exten-
sible Object Request Broker (ORB) implementation compared to standard CORBA by
building on a modularisation of the handling of object references (IORs). A generic
reference manager uses portable profile managers, which encapsulate all tasks related
to reference handling, i.e., reference creation, reference marshalling and unmarshalling,
external representation of references as strings, and type casting of representatives of
remote objects [6]. Currently, Aspectix provides profile managers for standard CORBA
and additionally offers support for the fragmented object model and other non-CORBA
middleware platforms, such as Jini or Java RML.

On the one hand, a fragmented object offers a standard object interface to the
outside, on the other hand, a fragmented object can be composed of several fragments
and could be distributed with arbitrary internal architecture. This offers a high degree
of freedom and flexibity. For interaction with a fragmented object, a corresponding
local fragment has to be created that either acts as a simple stub for the fragmented
object or as a more intelligent stub that includes parts of the fragmented object’s
functionality (implicit binding). Furthermore, such infrastructure enables the exchange
of a fragment implementation at run-time and leaves the implementation of the internal
communication and structure open to the developer. Binding to a fragmented object in
general requires dynamic loading of fragment-specific code as it is not predictable if
and when a certain fragment implementation is needed. Therefore dynamic loading of
code is an essential service to support fragmented objects at their full flexibility.

We extended the fragmented-object-supporting profile manager by using the
dynamic loading service outlined in the previous section. The profile of a fragmented
object references the initial fragment implementation, either directly by specifying a
class name or indirectly by providing a code reference to the standard DLS. Depending
on a tag, either the implementation is directly loaded or one of the two code loading
services is used (standard or decentralised). In case of the decentralised loading service,
the profile includes a module class ID. This enables loading the code of a certain
fragment implementation using the JXTA-based dynamic loading infrastructure as
described in Section 4.4. After having loaded the code, the fragment implementation
has to be instantiated and initialised. As this is a fragment-specific task, every fragment
implementation has a standardised constructor that is executed by the profile manager.

The fragmented object model allows an easy integration of arbitrary internal
communication patterns. Thus, by building on our dynamic loading infrastructure, we
also created a prototype for dynamic selection, loading and integration of peer-to-
peer services into a standard-CORBA-compliant middleware [12]. Therefore, based
on the support for fragmented objects, we provide a special JXTA IOR profile that
contains a module specification advertisement, which contains the service description
and the supported protocol. This enables loading the fragment implementations, which
are actually represented by JXTA service instances, using our presented decentralised
loading service. Such fragmented objects provide a standard CORBA interface to
the outside while internally interacting in a peer-to-peer fashion. Through this, the
gap between standard client/server-based middleware and the JXTA peer-to-peer
infrastructure can be closed.

6 Related Work

In previous work [4], we presented the Dynamic Loading Service (DLS), a CORBA
service for dynamic code loading. Similarly to the realised loading service of this
work, the DLS permits to load remote code with consideration of the current run-
time environment and other requirements. However, the DLS follows the client/server
paradigm and uses dedicated servers to host the program code and to offer specific
information about available code. In contrast, our current work builds on a JXTA-based
peer-to-peer-network.

Another interesting system is Java Web Start [13]. This software deployment system
uses the Java Network Launching Protocol and describes the code and the requirements
of a Java application in a special XML format. This results in applications that can be
installed over the net via a special Java Web Start client (even system-dependent native
libraries can be selected and installed). However, the format is highly Java-specific,
aims at installing and updating software and the current release lacks the support for
dependent resources and for locally executed compatibility tests.

The OSGi service platform [14] defines an open run-time environment, enabling
dynamic service integration. For the bundled representation of a service’s functionality,
the concept of an OSGi bundle is defined. A special characteristic of such a bundle is
the possibility to be dynamically added and removed from the run-time environment.
Compared to this work, a bundle offers extended possibilities, in order to specify
dependencies of other services. However, the OSGi approach misses sophisticated
mechanisms for describing, remotely discovering and selecting code portions as
outlined in this work. Furthermore, OSGi primarily targets at code loading and sharing
for the Java programming language, whereas our approach is generic and can be applied
to other programming languages as well.

Paal et al. proposed a distributed code loading infrastructure based on multiple
application repositories that can be dynamically queried by a custom application loader
[15]. In contrast to our approach, this system offers fine-grained code loading based on
class collections, which are represented by class subsets of a Java archive. However, the
system is limited to the Java programming language and application repositories have
to be preconfigured at initial deployment time for enabling code loading.

A peer-to-peer-based architecture for remote loading of Java classes is described
in [16]. This approach shows an alternative way to the standard Java class loader
mechanism and is exemplarily realised using JXTA. Compared to our solution, it lacks
flexibility to describe and to search for suitable program code. Thus, the architecture
neither permits a representation of loadable code with the JXTA concepts of module
advertisements nor offers support for a custom transfer protocol.

7 Conclusion and Future Work

We presented a generic and decentralised approach to dynamically discover, select, load
and integrate platform-specific code. According to the common peer-to-peer idea, every
peer within our infrastructure is able to load code and, additionally, to provide this code
on demand. Our prototype implementation extends and improves the mechanisms for

dynamic service integration of JXTA. However, the proposed generic concept can be
applied to any peer-to-peer infrastructure that at least supports keyword-search. For
evaluating the dynamic loading infrastructure, we presented exemplary applications.

Security issues are beyond the scope of this paper. Dynamic loading of code always
involves security considerations, and we assume that standard security mechanisms
such as code signing and a public-key infrastructure can be used for securing our peer-
to-peer-based dynamic loading service. Additionally, JXTA enables restricted groups,
in which only authorised peers are able to participate. Thus, a general trust between
users can be achieved using such mechanism. However, our implementation does not
yet make direct use of such techniques.

Even though our prototype supports the precise selection of platform-specific code,
we currently assume that a concrete implementation is more or less self-contained.
This means, that either necessary libraries are at the target platform, as described by
the compatibility requirements, or included in the dynamically loaded code archive.
We therefore would like to provide support for implementations that reference other
interfaces or implementations that should be loaded dynamically.

References

1. M. Weiser. The computer for the twenty-first century. Scientific American, 265(3), 1991.

2. L. Peterson, T. Anderson, D. Culler, and T. Roscoe. A blueprint for introducing disruptive
technology into the internet. SIGCOMM Comput. Commun. Rev., 33(1):59-64, 2003.

3. E. Kotsovinos, T. Moreton, I. Pratt, R. Ross, K. Fraser, S. Hand, and T. Harris. Global-
Scale Service Deployment in the XenoServer Platform. In /st Works. on Real, Large Distrib.
Sys.—WORLDS’04, San Francisco, CA, December 2004.

4. R. Kapitza and F. J. Hauck. DLS: a CORBA service for dynamic loading of code. In OTM
Confederated Int. Conf., Sicily, Italy, 2003.

5. L. Gong. JXTA: A network programming environment. [EEE Internet Computing, 5(3),
2001.

6. F. J. Hauck, R. Kapitza, H. P. Reiser, and A. I. Schmied. A flexible and extensible object
middleware: CORBA and beyond. In 5th Int. Works. on Softw. Eng. and Middlew. ACM
Digital Library, 2005.

7. T. Klingberg and R. Manfredi. Gnutella 0.6. Technical report, 2002.

8. The Internet Society. Jxta v2.0 protocols specification. Technical report, Sun Microsystems,
2001.

9. Sun Microsystems. Jxta v2.3.x: Java programmer’s guide. Technical report, 2005.

10. B.J. Wilson. JXTA. New Riders, jun 2002.

11. R.Kapitza, H. Schmidt, and F. J. Hauck. Platform-Independent Object Migration in CORBA.
In OTM Confederated Int. Conf., LNCS 3760, pages 900-917. Springer Verlag, Oct 2005.

12. R. Kapitza, U. Bartlang, H. Schmidt, and F. J. Hauck. Dynamic integration of peer-to-peer
services into a CORBA-compliant middleware. In OTM 2006 Workshops. Springer, 2006.

13. Sun Microsystems. Java Web Start Overview. White paper, 2005.

14. The OSGi Alliance. OSGi service platform: Core specification, release 4. Technical report,
2005.

15. S. Paal, R. Kammiiller, and B. Freisleben. Dynamic software deployment with distributed
application repositories. In /4. Fachtagung Kommunikation in Verteilten Systemen (KiVS).
Springer, 2005.

16. D. Parker and D. Cleary. A p2p approach to classloading in java. In 2nd Int. Works. on
Agents and P2P Comp.—AP2PC’03,2003.

