
A UML Profile for Modeling Mobile Information
Systems

Vegard Dehlen and Jan Øyvind Aagedal

SINTEF ICT, Cooperative and Trusted Systems, Forskningsveien 1, 0314 Oslo, Norway
{vegard.dehlen, jan.aagedal}@sintef.no

Abstract. In this paper we propose a framework for modeling mobile informa-
tion systems. Mobility introduces several challenges and issues that impact the
development of mobile systems. As a result, we want applications running on
mobile devices to exhibit certain traits; they should be aware of the mobility
and be adaptive to the changes that occur due to it. Literature has identified sev-
eral types of mobility – among them, physical and logical mobility. The former
pertains to tangible mobile entities like cars, devices and people, while the latter
encompasses mobile software entities. In addition to these, this paper includes
the concept of vertical mobility – the movement of a network connection be-
tween overlapping networks – in a UML profile for modeling mobile informa-
tion systems. We discuss our experiences from a case study described in [1] ,
where we modeled a simple mobile information system and transformed parts
of the model into code.

Keywords. Mobility, UML profile, model-driven development.

1 Introduction

The introduction of small hand held devices with Internet connection is rapidly
changing the way we both work and live, and an increasing number of people are ac-
quiring these devices. In today’s society we can identify several mobile devices. Lap-
top computers, cell phones, PDAs and tablet PCs are all examples of devices that can
be used while moving around. Common usage is accessing e-mail, remote databases
or the Web, sending faxes and making phone calls, scheduling and document process-
ing [2], in addition to newer usage areas like watching TV or movies, performing
video phone calls or downloading music.

The emergence of novel and useful services and applications in a domain is highly
dependent on software engineering. The existence of a solid development framework
and methodology allows applications to be developed more rapidly and with higher
quality, in addition to promote consistency, interoperability and reuse within the
community. Such a framework should capture the characteristics and concepts of the
target domain. The work in this paper builds upon and expands the previous efforts
towards reaching this goal, i.e., representing the mobility domain at the metalevel.

This paper is organized as follows. Chapter 2 gives an analysis of the problem, by
analyzing the concept of mobility and what we mean by it and by introducing differ-

ent types of mobility. In Chapter 3 we list some requirements for a framework for
modeling mobile information systems. Chapter 4 presents our solution to the problem;
a mobility metamodel and an accompanying UML profile. Chapter 5 discusses the va-
lidity of our solution, before Chapter 6 draws some conclusions and suggests future
work.

2 Problem Analysis

2.1 Theory of Mobility

Since its inception, mobile computing has resulted in the introduction of several sub-
fields, and today we talk about systems that are context-aware, location-aware, mobil-
ity-aware and/or adaptive. In the following, we will further explain our views of mo-
bility and the kind of applications we are interested in modeling.

An adaptive system simply refers to a system with the ability to adapt to different
situations and contexts. Adaptation is not a phenomenon exclusive to mobile comput-
ing, but it is, as pointed out earlier, identified as the main strategy for coping with the
high variability and heterogeneity of the mobile domain [3, 4]. There are several fac-
tors an application can adapt to:

1. To its current context or changes in context.
2. To its available system and network resources and changes in these.
3. To changes in location, i.e., mobility.

There are different ways to view mobility. First, we can see it as an entity’s ability
or willingness to move. Second, we can see it as an entity that is currently moving.
Movement patterns can be described by different modalities, as defined in [7]. Third,
we can view mobility as a change of an entity’s location, where the movement be-
tween locations is considered an atomic action.

In the area of context awareness, change of location is interesting due to the
changes in context that naturally occur. Location change might entail changes in sev-
eral environment properties like temperature, nearby people and devices, available
printers and ongoing activity - properties a context aware application can take advan-
tage of. In the field of mobility, location change also means roaming between differ-
ent network cells, requiring seamless handoff and service [8] and session [9] mobility.
Some of these issues are handled in the network and middleware layers, but the appli-
cation can also take advantage of these activities, like employing a new mobile code
strategy based on the change in network characteristics. However, in an adaptivity
context, these issues alone are not enough to warrant the concept of location as a first
class entity, as an application does not need to know of any other than its current loca-
tion to perceive changes in context and network resources. A system that only consid-
ers location change can offer reactive adaptation, which means that it can react to the
changes that occur because of mobility.

Modeling locations as first class entities is only necessary in an application that
needs to know the properties of locations other than its current one, which is enabled
by an entity’s ability to move. A system can then provide proactive adaptation.

There are different ways of representing a location. The abstraction we choose de-
pends on the unit of mobility, where location could be represented by Cartesian coor-
dinates for a mobile device or by a host address for a mobile agent [6]. Optionally, we
can choose abstractions that are conceptually related to the world we live in, where a
mobile device could be located in the tax free shop at Gardermoen airport in Norway.
In the latter scenario, we see that locations are defined within locations. In addition,
locations can be mobile. A passenger on a ferry will have a location relative to the
boat (being in his cabin, for example), while the boat has a location relative to its pre-
vious and destination port. In addition to being nested, locations can be overlapping.
An example of this is a road that runs through several areas of a city. One could thus
say that, conceptually, an entity has two different locations. However, in practice, we
consider the entity to be located in the intersection of the overlapping locations.

Another reason for treating locations as a first class concept is, as identified in [11],
that locations may have access restrictions or barriers. A person traveling from one
country to another will have to pass security mechanisms at the border, while a mo-
bile agent might have to pass a firewall to access a remote device or administrative
domain. These concerns are out of this paper’s scope, but the concepts of mobility
and locations presented provide a foundation on which security and access control can
be modeled and reflected upon.

2.2 Types of Mobility

Physical and Logical Mobility. Literature has long since identified two main types
of mobility. Logical mobility (also called mobile computation) deals with the
movement of software entities, while physical mobility (mobile computing) deals
with the movement of physical entities.

There is a distinct difference between physical and logical mobility. The former is
something that occurs in the real world, as people or devices move and change loca-
tions. Each location might offer different resources and context, like nearby printers
or available networks. An application running on a mobile device might thus continu-
ally experience change in available resources and context. A mobile information sys-
tem cannot control or influence physical mobility, but it can observe location changes
and react with different adaptation strategies if necessary. For logical mobility, on the
other hand, the situation is the total opposite, as logical mobility is a phenomenon that
encompasses software entities that are designed by an application developer. Conse-
quently, while an application reacts to physical mobility, it can employ logical mobil-
ity and mobile code as an adaptation strategy – possibly as a reaction to physical mo-
bility.

It is worth noting, however, that logical mobility can exist without physical mobil-
ity and vice versa.

These fields are mostly disconnected; logical mobility within the software commu-
nity and physical mobility within the hardware community. However, [11] argues that
the two types of mobility are intertwined, and should be treated in a uniform way.

Vertical Mobility. As time progresses, more and better access points become
available in our environment. Especially in high density areas, a device can have
several heterogeneous access networks to choose from. These networks might offer
different services, coverage, cost and bandwidth, and the mobile device can choose
which network to use. Change of access network is thus not only caused by physical
mobility, but might also happen while the device remains stationary. This is called
vertical handoff. The term vertical refers to overlapping wireless networks and their
hierarchical and asymmetric relationship [12]. A device can thus have access to
networks that offer low-bandwidth over a wide geographic area to networks that offer
high-bandwidth over a narrow geographic area [13]. The opposite is called horizontal
handoff, where the handoff occurs between access points in a homogeneous network
infrastructure [14]. An example of horizontal handoff is when a mobile phone
switches between different access points.

One of the main problems of mobile systems is that a mobile device will have to
change access network, which can be divided into three different scenarios:

1. The device leaves the coverage area of its current network, and loses connection.
2. The device leaves the coverage area of its current network, and connects to another

available network.
3. The device is stationary, and chooses to connect to another available network.

The first two scenarios are direct results of physical mobility, where mobile nodes
move out of their present network coverage. The third scenario, however, is not true
mobility, but has the same effect; the system must manage the change in IP routing
caused by the vertical handoff [15]. This is what we term vertical mobility (or policy
mobility, as defined in [15]), where a node can be in an environment of several over-
lapping networks with different properties and choose freely which network to use. In
our definition of vertical mobility we do not require the networks to be heterogene-
ous, as we would also be interested in the possibility to change between, say, two
overlapping WLANs with different properties.

For vertical mobility we define the unit of mobility to be a network connection,
which we define as a logical mobile entity that can move between networks. This fits
our focus on mobility as an atomic change of location, as identified in the previous
section. Subsequently, we view vertical mobility as a type of logical mobility. They
both share the characteristic that they can be controlled by the application designer.

3 Requirements for the Modeling Framework

We are interested in providing a framework for modeling mobile information sys-
tems. Specifically, we are interested in modeling concepts that are useful when de-
signing applications and that allow us to leverage all the new possibilities that mobil-
ity brings. This is also known as adaptive, mobility-aware applications.

In our approach, we are interested in an entity’s change of location and its ability
or willingness to move. Consequently, we can reason about both reactive and proac-
tive adaptation. We do not consider the continuous movement of entities, but only the
result of it, i.e., location change. Furthermore, we view location as a defined entity

with boundaries that can contain other entities. Following this definition, we do not
consider location by satellite positioning, as in location aware systems, to be a loca-
tion entity, but rather one of several properties that might describe a location.

The framework should separate between the different types of mobility that have
previously been identified; physical and logical mobility. In addition, we believe that
a framework for modeling mobile information systems should also include the con-
cept of vertical mobility, as change of network is very relevant to mobility and adap-
tive applications. Our goal is to propose a user-friendly and visual modeling frame-
work that allows developers to reason and communicate about these types of mobility
in mobile systems.

We do not have the opportunity to go into a detailed discussion of requirements
here, but for a fine-grained list of requirements and the reasoning behind them, see
[1].

4 Proposed solution

4.1 Mobility Metamodel

Grassi et al. [3] define the following issues that need clarification when we want to
model mobility:

• Which entities move?
• How do we model the movement of an entity?
• What causes the movement of an entity?

As we defined in the requirements, we view mobility as an entity’s willingness and
ability to move and the actual location change of these entities. First, we introduce lo-
cation as a concept. By location we mean any entity that has some concept of a
boundary and that can contain other entities. A location can be divided into physical
and logical locations. Examples of locations we are interested in separating between
are places, networks, devices and execution environments (such as a virtual ma-
chine like JVM), as illustrated in Figure 1.

Second, we need to identify the entities with the ability to change location. Mobile
entities are also divided into physical and logical elements, and indicative examples of
interest are devices, people, locations (e.g. vehicles), network connections and
software. See Figure 2. Our metamodel does not include concepts for detailed model-
ing of the network topology (like routers, proxies, multiplexes, etc), as we, from an
adaptive application’s point of view, are only interested the different networks the ap-
plication has access to and their characteristics.

Fig. 1. Location metamodel.

Fig. 2. Mobile entity metamodel.

Third, Figure 3 illustrates how these concepts relate. A location is an entity that can
contain other entities. These entities can be stationary or mobile in nature. There is a
nesting relationship between locations, where one location can contain several other
locations. This relationship can effectively model locations at different levels, like a
room contained within a building contained in a city. Most entities will have one loca-
tion. However, some entities might not have a location, e.g. a top-level location, while
other entities might have several locations, e.g. a distributed file system. Mobile enti-
ties must have at least one location, and they have the ability to move between loca-
tions that are connected. The semantics of being connected varies for the different
types of mobility, which is explained in the next section.

Fig. 3. Mobility metamodel.

Fig. 4. Vertical mobility metamodel.

Several of the entities in our mobility domain can play different roles depending on
the selected viewpoint. A mobile device is considered an entity that can change loca-
tion from the viewpoint of physical mobility, while it has the role of a location that
mobile code potentially can move to and from in the context of logical mobility.

Figure 4 shows a conceptual model for vertical mobility, which is somewhat dif-
ferent from general mobility. A network can not contain another network like loca-
tions can contain other locations. In addition, vertical mobility does not only involve
the mobile entity (network connection) and its container (network), as the device and
its location has to be considered as well. A physical location is associated with the
available networks at that location, while a device is associated with the network it is
currently using. A device is thus aware of its available networks through its location.

4.2 UML Profile for Modeling Mobility

The profile presented in Figure 5 is inspired by the profile introduced by Grassi et al.
in [3], which is a profile for modeling physical and logical mobility. A detailed dis-

cussion of the differences of our approach and that of Grassi et al. is provided in Sec-
tion 5.2.

Fig. 5. UML profile stereotypes for mobile systems.

The previous section identified the entities we consider for physical, logical and
vertical mobility. For devices, users and other physical mobile entities we use the
stereotype MobileElement [3]. Furthermore, we introduce the stereotypes Mobile-
Software and NetworkConnection. These three stereotypes extend Node, Class and
Association, respectively. Consequently, MobileSoftware can be used on both classes
and components to denote a piece of mobile software.

Mobile entities move between locations. The UML2 specification has already de-
fined constructs for the Device and ExecutionEnvironment concepts, which are loca-
tions for MobileSoftware. We introduce the stereotypes Place and Network to denote
physical locations and overlapping access networks.

Each entity can have a location. NodeLocation is a stereotyped Association that
specifies the location of a node. The location of mobile software is modeled through
the SoftwareDeployment stereotype.

The movement of mobile entities is modeled by extensions to the Activity meta-
class. These are Move, Migrate and Connect for physical, logical and vertical mobil-
ity, respectively. A mobile entity can only move if there exists a channel connecting
the two locations. This could imply a corridor connecting two rooms for physical mo-
bility, or two nodes being connected to the same network or the Internet for logical
mobility. For vertical mobility, both networks have to be available from the device’s
current location.

As presented in [3], we use the concept of a mobility manager. The MobilityMan-
ager stereotype is a state machine for modeling the cause of mobility. The intention is

that a system can change its mobility policies by selecting between different mobility
managers. It is worth noting that a mobility manager only covers adaptation through
mobility. Our profile does not try to cover adaptation in general.

Table 1. Profile stereotypes.

Stereotype Extends Constraints Description

MobileEle-
ment

Node Can be located
in a Place.

Has the ability to be moved be-
tween physical locations.

MobileSoft-
ware

Class Can only be
located in a
Node.

Has the ability to be moved be-
tween nodes.

Network-
Connection

Associa-
tion

Connects a
Device to a
Network.

Has the ability to be moved be-
tween networks. Can be changed
by Connect.

Place Node A physical location that can con-
tain other entities.

Network Node Networks can span several loca-
tions and devices can connect to
them through NetworkConnec-
tion.

Move Activity Locations
must be con-
nected.

Moves a MobileElement between
two physical locations.

Migrate Activity Locations
must be con-
nected.

Moves a MobileSoftware between
two nodes.

Connect Activity Destination
Network must
be at Device’s
NodeLocation.

Moves a NetworkConnection be-
tween two networks.

NodeLoca-
tion

Associa-
tion

Connects a
Node to a
Place.

Specifies the location of a Mobi-
leElement. Can be changed by
Move.

SoftwareDe-
ployment

Deploy-
ment

Deploys a
Component to
a Node.

Specifies the current deployment
of a MobileSoftware. Can be
changed by Migrate.

Mobility-
Manager

State-
Machine

 Models the causes and triggers of
the movement of mobile entities.

5 Validation

In [1] we validated our profile through a case study. In the following, we present our
experiences and lessons learned from the case study, in addition to positioning our
profile among related work on the topic.

5.1 Case Study

In [1] we conducted a case study where we used the profile to develop a mobile in-
formation system. A PIM was designed before being marked with stereotypes from
the UML profile. A part of this design was then transformed from PIM to PSM (plat-
form specific model) and all the way to code. For the PIM to PSM transformation we
used the ATLAS Transformation Language (ATL) [16], while we used MOFScript
[17] for the PSM to code transformation.

In the case study we designed two deployment diagrams – one with and one with-
out the use of stereotypes from our profile. While the first diagram only models one
static scenario, the second diagram represents a snapshot of a possible scenario, while
also showing other scenarios that are possible due to physical, logical and vertical
mobility.

This type of model can serve two purposes; as a design time and a runtime model.
In our case it was used as the former. Applying the profile resulted in a model that de-
scribes an important part of the application domain for an adaptive system. The mo-
bility and location of a mobile entity will heavily influence the resources and context
available to the system, giving the designers a fuller understanding of the environ-
ments the system will run in and needs to adapt to.

An adaptive system can also maintain a runtime version of the model, always keep-
ing track of its current location and context. By analyzing previous mobility patterns
or a schedule, the application could also offer adaptation based on future location and
context. This area of use has been explored in the FAMOUS project, without seeing
realization in the middleware.

We also designed a class diagram of the client application and marked a class as
being mobile. Based on the transformation mappings we defined, we transformed the
class diagram into a simple mobile code solution for Java Micro Edition (J2ME). The
transformations did not result in a running application, but showed how marking a
piece of software as mobile at the PIM level can automatically produce application
solutions through transformations.

With the use of transformations, development time was naturally significantly
shorter than it would have been to manually create all the models and code. In addi-
tion, the developer does not need to have any knowledge about the platform. How-
ever, developing transformations requires both time and expert knowledge of domains
and platforms. As the number of platforms is significant for mobile devices and new
devices are introduced at a rapid pace, one must consider the time and resources spent
on implementing a MDD approach versus time saved using it.

The last part of the design phase was designing mobility managers for the different
types of mobility, which specified the different causes and triggers for the mobility
and transitions between the different scenarios modeled in the mobility deployment

diagram. The drawback of using state diagrams is that they model state changes based
on simple event-condition statements. Sometimes, decision making about which adap-
tation strategy to use is a complex calculation. In the MADAM middleware, for ex-
ample, utility functions might draw information from numerous context sources to de-
termine the best adaptation strategy for a given context [18].

5.2 Related Work

The literature contains several approaches to modeling mobility. In the following, we
give a brief overview of some of these and show what our approach contributes with.

In [19] UML sequence diagrams are extended to model complex mobility patterns,
but this requires a nonstandard extension of UML sequence diagrams. The diagrams
provide the possibility to abstract away from irrelevant details. Their semantics is
similar to that of ambients in that a mobile object is a location and a mobile process as
well [20].

In [20], UML class and activity diagrams are extended, allowing the representation
of mobile objects and locations as well as basic primitives such as moving or cloning.

Most relevant for the approach presented in this paper, though, is Grassi et al.’s
UML profile for modeling mobile systems [3]. It makes a clear distinction between
logical and physical mobility, and these concepts have their own representations.

The most significant difference between the approaches in [3] and this paper is the
introduction of metalevel concepts for vertical mobility. The network a device is con-
nected to has significant effects on the context a system experiences and the adapta-
tion strategy it employs. By allowing developers to reason about different, overlap-
ping networks in their models, we believe they will have a better vocabulary for
reasoning about mobility and adaptivity in mobile systems.

When it comes to modeling physical and logical mobility, the approaches are simi-
lar except for a few differences.

Grassi et al. use the stereotypes MobileElement and its inherited stereotype Mo-
bileCode to model physical and logical mobile elements, respectively. They neglect to
extend any metamodel classes for these concepts. We remedy this situation in our
profile. In addition, we deemed the inheritance relationship as unnecessary and re-
moved it, and renamed MobileCode to MobileSoftware as we think the latter puts less
restrictions on the use of the concept.

Place, NodeLocation and MobilityManager are the same in both profiles. Current-
Deployment has been renamed SoftwareDeployment to better reflect the naming con-
vention used for NodeLocation. In [3] the concept MoveActivity is used for moving
MobileElements, while this is further specialized into PhysicalMove and Logical-
Move in [21]. We used the terms Move and Migrate for the same meaning.

In [3], the authors introduced the stereotyped deployment AllowedDeployment,
which is used to model additional constraints, like security and administrative do-
mains, to the mobility of mobile code. We do not, however, see any reason for treat-
ing logical mobility any differently from physical mobility in this respect. As security
is outside our scope, we chose not to include AllowedDeployment or any similar con-
structs.

Grassi et al. also specifies a set of Activity stereotypes that supports more fine-
grained concepts and operations related to mobility and management of a mobility
model; BeforeMoveActivity, AfterMoveActivity, AbortMoveActivity, AllowDe-
ploymentActivity and DenyDeploymentActivity. We have not treated these in this
paper.

The following table lists the stereotypes presented in this paper and the correspond-
ing stereotypes in Grassi et al.’s profile.

Table 2. Comparison to earlier work.

UML profile for
mobile systems

Corresponding concepts in
Grassi et al.’s profile

MobileElement MobileElement

MobileSoftware MobileCode

NetworkConnection None

Place Place

Network None

Move MoveActivity/PhysicalMove

Migrate MoveActivity/LogicalMove

Connect None

NodeLocation NodeLocation

SoftwareDeployment CurrentDeployment

MobilityManager MobilityManager

6 Conclusions and Future Work

Mobile computing is characterized by a high level of heterogeneity and significant
variations in available resources. As a result of this, it is generally accepted that mo-
bile systems should be able to adapt to changes in context and resources.

Based upon earlier work, we presented a UML profile for modeling mobile infor-
mation systems. The focus has been on modeling mobility as a change of location,
and how a mobile system can adapt to its changing environment. The profile differen-
tiates between and provides concepts for physical, logical and, as included in this pa-
per, vertical mobility. Our approach is based on deployment diagrams, where we
model the relationships between locations and mobile entities. Mobility managers, as
defined in [3], are state machines that drive the mobility of a system. Based on events

like location change, change in battery levels or network quality, the mobility manag-
ers can decide to employ a mobile code strategy or connect to another network.

In [1] we used our framework to develop a case study application. This provided us
with valuable information about the usefulness of the framework and was a basis for
its validation. In this paper we discussed the experiences we gained from the case
study, before giving an overview over related work on the topic. The major contribu-
tion from our profile is the introduction of vertical mobility. To further validate the
proposed framework we should perform additional case studies to assess its useful-
ness in different kinds of and more complex systems.

References

1. Dehlen, V. Developing Mobile Information Systems. 2006, University of
Oslo: Oslo. p. 145.

2. Chalmers, D. and M. Sloman. A Survey of Quality of Service in Mobile
Computing Environments. IEEE Communications Surveys, 1999.

3. Grassi, V., R. Mirandola, and A. Sabetta. A UML Profile to Model Mobile
Systems, in 2004 - The Unified Modelling Language. 2004, SpringeLink. p.
128-142.

4. Satyanarayanan, M. Pervasive Computing: Vision and Challenges. IEEE
Personal Communications, 2001.

5. Patterson, C.A., R.R. Muntz, and C.M. Pancake. Challenges in Location-
Aware Computing. IEEE Pervasive Computing 2003. 2(2): p. 80-89.

6. Roman, G.-C., G.P. Picco, and A.L. Murphy. Software engineering for mo-
bility: a roadmap. in The Future of Software Engineering. 2000. Limerick,
Ireland.

7. Kristoffersen, S. and F. Ljungberg. Mobile Informatics Innovation of IT Use
in Mobile Settings: IRIS'21 Workshop Report. SIGCHI Bulletin, 1999. 31(1).

8. Küpper, A. and O. Spaniol. Evaluation of strategies for supporting personal
mobility and service portability. in 2000 IEEE Service Portability and Vir-
tual Customer Environments. 2000.

9. Sun, J.-Z. and J. Sauvola. On fundamental concepts of mobility for mobile
communications. in 13th IEEE International Symposium on Personal, Indoor
and Mobile Radio Communications. 2002. Lisbon, Portugal.

10. Cardelli, L. and A.D. Gordon. Mobile Ambients. in First International Con-
ference on Foundations of Software Science and Computation Structure.
1998.

11. Cardelli, L. Abstractions for Mobile Computation. 1998, Microsoft Research,
Microsoft Corporation.

12. Ylianttila, M. Vertical handoff and mobility - system architecture and transi-
tion analysis. 2005, University of Oulu: Finland. p. 70.

13. Stemm, M. and R.H. Katz. Vertical handoffs in wireless overlay networks.
Mobile Networks and Applications, 1998. 3(4).

14. Bellavista, P., M. Cinque, D. Cotroneo, and L. Foschini. Integrated support
for handoff management and context awareness in heterogeneous wireless

networks. in 3rd International Workshop on Middleware for Pervasive and
Ad-hoc Computing MPAC '05. 2005: ACM Press.

15. Tourrilhes, J. L7-mobility: a framework for handling mobility at the applica-
tion level. in 15th IEEE International Symposium on Personal, Indoor and
Mobile Radio Communications. 2004.

16. ATLAS Transformation Language (ATL) homepage.
http://www.eclipse.org/gmt/atl/

17. MOFScript homepage. http://www.eclipse.org/gmt/mofscript/
18. Paspallis, N. and G.A. Papadopoulos. Distributed Adaptation Reasoning for

a Mobility and Adaptation Enabling Middleware. in 30th Annual Interna-
tional Computer Software and Applications Conference (COMPSAC 2006).
2006: IEEE Computer Society

19. Kosiuczenko, P. Sequence diagrams for mobility. in ER/IFIP 8.1 Workshop
on Conceptual Modelling Approaches to Mobile Information Systems De-
velopment (MobIMod). 2002. Tampere, Finland: Springer.

20. Baumeister, H., N. Koch, P. Kosiuczenko, and M. Wirsing. Extending Activ-
ity Diagrams to Model Mobile Systems. in Revised Papers from the Interna-
tional Conference NetObjectDays on Objects, Components, Architectures,
Services, and Applications for a Networked World. 2002: Springer-Verlag.

21. Grassi, V., R. Mirandola, and A. Sabetta. UML based Modeling and Per-
formance Analysis of Mobile Systems. in 7th ACM International Symposium
on Modeling, Analysis and Simulation of Wireless and Mobile Systems.
2004: ACM Press.

