
Discovering Semantic Web Services with Process
Specifications

Piya Suwannopas and Twittie Senivongse

Department of Computer Engineering, Chulalongkorn University
Phyathai Road, Pathumwan, Bangkok 10330 Thailand

piya.su@student.chula.ac.th, twittie.s@chula.ac.th

Abstract. Service discovery is one of the crucial issues for service-oriented ar-
chitectural model. Recently the trend is towards semantic discovery by which
semantic descriptions are the basis for service matchmaking instead of simple
search based on service attributes. OWL-S is a widely adopted semantic speci-
fication for Web Services which comprises three profiles. Among those, proc-
ess model is the profile that describes dynamic behaviour of Web Services in
terms of functional aspects and process flows, and is generally aimed for ser-
vice enactment, composition, and monitoring. This paper presents a new ap-
proach to use OWL-S process model for service discovery purpose. A Web
Service can have its internal process described as an OWL-S process model
specification, and a service consumer can query for a Web Service with a par-
ticular process detail. Matchmaking will be based on flexible ontological
matching and evaluation of constraints on the functional behaviour and process
flow of the Web Service. The architecture for process-based discovery is also
presented.

1 Introduction

Service discovery is an important part of service-oriented computing in which ser-
vices, as building blocks for building applications, are provided and distributed in
large-scale open environment [1]. Provided services will publish generalised descrip-
tions of their capability to a matchmaker whereas service consumers consult the
matchmaker to identify potential services that most closely satisfy their needs. The
effectiveness of service discovery relies on the richness of service metadata and the
matchmaking mechanism that utilises the expressiveness of the metadata. Current
Web Services Standards realise this concept and provide UDDI [2] as a standard
registry that performs matchmaking based on matching of syntactic service attribute
values.

From our previous study [3], a service description model has been defined as a re-
sult of an empirical survey about service advertisements on the Internet (Fig. 1). The
model shows that service advertisements should reflect different aspects of service
capabilities; some are simple characteristics and may be in the form of simple attrib-
utes whereas some are more complex capabilities and require some specification
languages to express them. (Those highlighted in Fig. 1 have no correspondences in

UDDI.) This model is generic, meaning that it is independent from any specific rep-
resentation languages and can be used simply for information or for other purposes
such as automatic service discovery or composition.

Fig. 1. Service description model from survey [3].

One way to enrich service metadata is by using ontology languages to represent ser-
vice descriptions. This approach is gaining a lot of attention in Web Services com-
munity as ontology languages are expressive for describing several aspects of service
capabilities and ontological reasoning also provides a way to infer more about the
capabilities. Semantic Web Services are Web Services in which ontologies ascribe
meanings to published service descriptions so that software systems representing
prospective service consumers can interpret and invoke them [4]. With this vision,
the Web Ontology Language for Services (OWL-S) consortium contributes with an
OWL-S specification [5] which is the building block for encoding rich semantic ser-
vice descriptions in a way that builds naturally upon OWL language. OWL-S con-
sists of three profiles, namely service profile, process model, and service grounding.
Service profile defines basic and functional properties of the service as well as func-
tional behaviour. Process model details service operation in terms of functional be-
haviour, control structure, and data flow structure required to execute the service.
Service grounding specifies details of how to access the service by mapping from an
abstract service specification (process model) to concrete specification (WSDL). It
can be seen that OWL-S and the model in Fig. 1 share some characteristic; they both
model services with simple attributes and more complex specifications.

Our previous work [6] proposes an integrated service profile that corresponds to
the model in Fig. 1. The integrated service profile is a collection of ontology-based
profiles for services, including the attribute, structural, behavioural, and rule profiles,

and it overlaps with OWL-S. This paper extends the integrated service profile with
the focus on the composition specification of a service. Composition specification
shows how simple components are composed into a service and may be expressed as
a hierarchy of goal and subgoals or as a workflow of tasks for service execution [1].
This paper is interested in describing the composition specification as a workflow and
we borrow OWL-S process model to represent the workflow specification.

OWL-S process model is found in use by researches in service composition and
workflow coordination and monitoring, but it can also be used for in-depth analysis
for matchmaking to see whether the service meets process constraints required by the
service consumer. This is to check a dynamic aspect of the service. For example, the
service consumer may want to find a software store with a workflow such that, after
processing the purchase order of the customer, the store registers the customer for the
software training programme. The store service with such automatic registration for
training should be preferable to ones without training. Sometimes the flow may have
a constraint such that automatic training registration is available only if the purchase
is worth more than 0.5 million bahts (Thailand currency). Such a constraint will have
to be taken into account during matchmaking. Here we present an example of the
services using OWL-S process model to describe their internal processes. A service
consumer can issue a process-based query. The services are queried on their func-
tional behaviour and flow of their process. Ontological reasoning and evaluation of
the rule-based constraints on the behaviour and process flow are considered.

The rest of the paper starts with Section 2 that discusses related work. Section 3
outlines the constructs of OWL-S process model for process specification. Section 4
gives an example of the process specifications of three services described using
OWL-S process model. Matching criteria are summarised in Section 5 and used in
Section 6 to consider matching for a query. Section 7 presents a process-based dis-
covery framework and Section 8 concludes the paper.

2 Related Work

Semantics-based service discovery is accomplished mainly by the use of ontology to
describe service capabilities. Web Services Modeling Ontology (WSMO) [7] pro-
vides a framework for describing semantic Web Services with Web Services Model-
ing Language (SWML) [8] as a formal language that realises the framework. WSML
defines semantics in terms of four elements: ontologies, goals, Web Service descrip-
tions, and mediators. Ontologies provide vocabularies, concepts, instances, and axi-
oms that will be used by other elements. Goals are similar to queries. Web Service
descriptions describe capability in terms of assumption, precondition, postcondition,
effect, and allow for interface and orchestration specifications. As WSMO shares
with OWL-S the vision that ontologies are essential to support automatic discovery, it
is possible for our work to adopt either of their process-related specifications. How-
ever, at the moment OWL-S can be implemented without stipulating framework and
several tools exist. We adopt OWL-S process model for process specification in this
paper.

Most of research work in service discovery area focuses on search based on a par-
ticular aspect of the service and little is found to concentrate on process-based dis-
covery. UDDI version 4 is incorporating an ontology-based taxonomy for the stan-
dard categories of Business Entity and Business Service entries that are registered
with UDDI [9]. This will allow UDDI to be able to look for the businesses or ser-
vices of a specialised or generalised category. The work in [10] shows how ontology
describing general knowledge of a particular service domain can be used for search.
The work in [11], [12] focuses on searching functional behaviour but they do not
consider search with behavioural constraints. In [13], an efficient search algorithm is
devised for services described by OWL-S but the search considers only the OWL-S
service profile. In [14], process ontology is used as a basis for service discovery.
The process ontology is described by the service process, constituent subtasks, con-
nection ports between subtasks and connection mechanisms, and exceptions within
the process. The query is done by a PQL language. Unlike our approach, the process
ontology in this work follows the goal-subgoal model of service composition, not the
workflow model, and it does not accommodate for process constraints.

Service discovery and service composition share a characteristic such that both aim
to identify services that can satisfy users’ requirements. Nevertheless, service dis-
covery tends to identify individual services that can answer to a particular query,
whereas service composition identifies a group of services that can work together to
satisfy a certain goal. In the area of Web Service composition, OWL-S process
model is used in several researches for describing Web Services. In [15], an AI plan-
ner called OWLS-Xplan is proposed to compose Web Services. An OWL-S process
model is used to specify input, precondition, output, and effect of the goal (i.e. the
composite service) and of the individual Web Services to be composed. The goal in
OWL-S process model will be translated into a planning domain description in PDDL
in order for the planner to generate a plan sequence as a workflow of individual Web
Services. The work in [16] integrates an OWL reasoner with an AI planner and
shows how OWL or SWRL [17] is used to encode the preconditions and effects of
the Web Services in the composition process. The Web Services are also described
by OWL-S process model. By using OWL, the composition gains the reasoning
power of OWL in the evaluation of the preconditions and the update of the effects
that have impacts on real world knowledge. Although these researches above con-
duct some analysis on OWL-S process model, they concern the functional behaviour
part of the process model in service composition. In our work, we focus on analysing
not only the functional behaviour part but also the workflow part of individual Web
Services in order to find any single services that can satisfy the query.

3 OWL-S Process Model

This section briefly describes the constructs of OWL-S process model that are of
interest to this paper. A particular service is described by a service model and a proc-
ess is a subclass of the service model. Fig. 2 shows OWL-S process ontology [5]
with the classes and properties that altogether describe how a service works. A proc-
ess describes its functional behaviour by specifying inputs, outputs, preconditions,

and effects (IOPE) of its performance. As the name implies, a precondition is a logi-
cal expression which must hold for the process to be successfully invoked. Local
refers to an auxiliary parameter that is bound to the precondition and is useful for
determining the logical value of the precondition. Result refers to a coupled output
and effect and can be constrained by an incondition property which specifies the
logical condition under which the result occurs; hence the corresponding output and
effect become conditional output and conditional effect. Result variable is also an
auxiliary parameter that is bound to a result and useful for determining the associated
incondition.

The process is further described as a composition of subprocesses. The subprocess
can be atomic, composite, or simple process. An atomic process is one which has no
further subprocesses, is directly invocable, and executes in a single step. A compos-
ite process is decomposed into other non-composite or composite processes. The
decomposition can be specified by using control constructs, i.e. sequence, split, split-
join, any-order, choice, if-then-else, iterate, repeat-while, repeat-until. A simple
process is an abstraction that provides a view of some atomic process or a simplified
representation of some composite process and is not invocable.

Fig. 2. Top level of process ontology [5]

Since the constraints in OWL-S process model – either the preconditions, the condi-
tions of the results, or the guards on the control flow – are represented as logical
formula, these logical expressions are treated as literals – either XML literals or string

literals. Therefore several languages can be used to express these constraints (e.g.
SWRL, RDF, KIF, PDDL). In this paper we represent such process constraints with
SWRL rule expressions.

4 Process Specifications

Bank loan service is used as an example for process-based discovery. Fig. 3 shows
the first part of the process specification of a loan service S1 written in OWL-S proc-
ess model. This part describes the functional behaviour of S1.

1. <process:CompositeProcess rdf:ID="LoanService">
2. <process:hasInput>
3. <process:Input rdf:ID="CustomerInfo"/>
4. </process:hasInput>
5. <process:hasOutput>
6. <process:Output rdf:ID="LoanInterestRate"/>
7. <process:hasOutput/> …
8. <process:hasLocal rdf:resource="#IncomePerMonth"/>
9. <process:hasPrecondition>
10. <expr:SWRL-Condition rdf:ID="IncomeCondition">
11. <expr:expressionLanguage rdf:resource="&Expression.owl#SWRL"/>
12. <expr:expressionBody rdf:datatype="Literal">
13. swrlb:greaterThanOrEqual(#IncomePerMonth,10000) →
14. hasIncomeStatus(#ValidIncome,"xsd:True")
15. </expr:expressionBody>
16. </expr:SWRL-Condition>
17. </process:hasPrecondition>
18. <process:hasResultVar rdf:resource="#LoanAmount"/>
19. <process:hasResult>
20. <process:Result rdf:ID="PremiumLoanResult">
21. <process:inCondition>
22. <expr:SWRL-Condition rdf:ID="PremiumLoanCondition">
23. <expr:expressionLanguage rdf:resource="&Expression.owl#SWRL"/>
24. <expr:expressionBody rdf:datatype="Literal">
25. swrlb:greaterThan(#LoanAmount,300000) →
26. hasPremiumLoanStatus(#PremiumLoanStatus,"xsd:True")
27. </expr:expressionBody>
28. </expr:SWRL-Condition>
29. </process:inCondition>
30. <process:hasEffect>
31. <expr:SWRL-Condition rdf:ID=”PremiumCreditCardCondition”>
32. <expr:expressionBody rdf:datatype="Literal">
33. → chargedPremiumCreditCard(#LoanService, #PremiumCreditCardFee)
34. swrlb:equal(#PremiumCreditCardFee, 0)
35. </expr:expressionBody>
36. </expr:SWRL-Condition>
37. </process:hasEffect>
38. </process:Result>
39. </process:hasResult>
40. <process:hasResult>
41. <process:Result rdf:ID="NormalLoanResult">
42. …

Fig. 3. Functional behaviour of S1 in OWL-S process model

From the figure, the service requires customer information as an input (line 2-4), and
gives loan interest rate as an output (line 5-7). The service has a precondition such

that the consumer needs to have income at least 10,000 bahts per month in order to
use the service (line 9-17). The effects of this service are conditional, depending on
the loan amount. If the loan is more than 300,000 bahts, it is a premium loan (line 21-
29) and the consumer is entitled to apply for a premium credit card. This effect is
further constrained by the annual credit card fee which is equal to 0 (line 30-37). On
the other hand, if the loan is not more than 300,000 bahts, it is a normal loan (line 41)
and the credit card effect will be subject to the annual fee. Note that all the con-
straints are expressed as SWRL rules.

The second part of the process specification of S1 involves its workflow. This is
depicted in Fig. 4. Suppose, in general, a loan service is composed of several classes
of loan approval. Department approval process is performed when the loan amount is
small or the loan is not critical and the decision can be made by the loan department
manager. Branch approval process is performed when the loan is more critical but
the decision can still be made within the branch by the branch manager. Otherwise
the loan application has to be approved at the head quarter. The bank will maintain
loan history of the customers for future reference.

Fig. 5 shows a snippet of OWL-S process specification for Fig. 4. The first guard
condition checks whether the loan amount is less than or equal to 1 million bahts (line
64-72). The second guard condition determines whether the purpose of loan is for
real estate (line 88-96).

For further comparison, we assume there are two more candidate services S2 and
S3. These two services exhibit the same functional behaviour as S1 (c.f. Fig. 3) but
they have a slightly different workflow as in Fig. 6 and Fig. 7 respectively.

Fig. 4. Process flow of service S1

62. <process:composedOf>
63. <process:If-Then-Else rdf:ID="LoanAmount_If-Then-Else">
64. <process:ifCondition>
65. <expr:Condition rdf:ID="LoanAmountCondition">
66. <expr:expressionLanguage rdf:resource="&Expression.owl#SWRL"/>
67. <expr:expressionBody rdf:datatype="Literal">
68. swrlb:lessThanOrEqual(#LoanAmount,1000000) →
69. hasLoanAmountStatus(#SmallLoanAmount,"xsd:True")
70. </expr:expressionBody>
71. </expr:Condition>
72. </process:ifCondition>
73. <process:then>
74. <process:Sequence rdf:ID="Bank_Sequence">
75. <process:components>
76. <process:ControlConstructList rdf:ID="LoanHistory_ControlConstructList">
77. <list:first>
78. <process:Perform rdf:ID="LoanHistoryPerform">
79. <process:process>
80. <process:AtomicProcess rdf:ID="LoanHistoryProcess"/>
81. </process:process>
82. </process:Perform>
83. </list:first>
84. <list:rest>
85. <process:ControlConstructList rdf:ID="Bank_ControlConstructList">
86. <list:first>
87. <process:If-Then-Else rdf:ID="Purpose_If-Then-Else">
88. <process:ifCondition>
89. <expr:Condition rdf:ID="PurposeCondition">
90. <expr:expressionLanguage rdf:resource="&Expression.owl#SWRL"/>
91. <expr:expressionBody rdf:datatype="Literal">
92. swrlb:equal(#LoanPurpose,"RealEstate") →
93. hasPurposeStatus(#RealEstatePurpose,"xsd:True")
94. </expr:expressionBody>
95. </expr:Condition>
96. </process:ifCondition>
97. <process:then>
98. <process:Sequence rdf:ID="Department_Sequence">
99. <process:components>
100. <process:ControlConstructList rdf:ID="Department_ControlConstructList">
101. <list:first>
102. <process:Perform rdf:ID="DepartmentApprovalPerform">
103. <process:process>
104. <process:AtomicProcess rdf:ID="DepartmentApprovalProcess"/>
105. </process:process>
106. </process:Perform>
107. …

Fig. 5. Process flow of S1 in OWL-S process model

Fig. 6. Process flow of service S2

Fig. 7. Process flow of service S3

5 Matching Criteria

To determine whether a process specification of a service can fulfill a service con-
sumer’s needs, matchmaking will perform ontological matching on the concepts
within the specification and evaluate constraints on the functional behaviour and the
guards on the control constructs in order to determine the actual behaviour of the
service. Several matching criteria are defined:

5.1 Matching Ontological Concepts

Matching by subsumption and equivalence is the basis for matching ontological con-
cepts in the query and the process specification. This approach is based on the IS-A
taxonomy of the concepts shared within the service domain and has been adopted in
literature including [10], [18], [6].

Let CQ be the concept specified in the query and CP be the concept in the process
specification:

(i) If CQ C≡ P then CP is an exact match for CQ, where ≡ means is equiva-
lent to.

(ii) If CP CQ then CP is a specialised match for CQ, where means is
subsumed by (i.e. CP is more specific than CQ).

(iii) If CQ CP then CP is a generalised match for CQ. This means the con-
cept in the query is more specific than, and is subsumed by, the one in the
process specification.

(iv) If (CQ CP) (C∧ P CQ) (C∧ Q CC) (C∧ P CC) then CP is a
partial match for CQ, where means is not subsumed by and CC is a
node in the same IS-A taxonomy. This means it is acceptable for the con-
cept in the process specification to be a match for the concept in the query
provided that the two concepts have common characteristics through a
common parent concept.

(v) If none of the above relationships exist then CP is a failed match for CQ.

5.2 Matching Numerical Ranges

Matching two numerical ranges compares the ranges of the possible values that are
defined in the constraints. The degree of matching for numerical ranges can be de-
termined as described below.

Let NQ be a nonempty set of numerical range values of the expression in the query
(EQ), and NP be a nonempty set of numerical range values of the expression in the
process specification (EP):

(i) If NP ⊆ NQ then EP is an exact match for EQ
(ii) If NQ ⊆ NP then EP is a plug-in match for EQ
(iii) If (NP N∩ Q)∧ (N≠ φ P NQ)∧ (NQ

 NP) then EP is a weak
match for EQ

(iv) If NP N∩ Q = then Eφ P is a failed match for EQ

5.3 Matching Logical Constraint

The service will match to the query if, by applying a set of values obtained from the
query into the rule expression, the rule evaluation hits and returns true as a result.
The expression in the head atom of the rule may be a numerical constraint or con-
straint on some data values, and these may require ontological reasoning, numerical
computation, and also rule reasoning. We consider a match only when such evalua-
tion returns true.

5.4 Matching Process Model

To check whether a process specification satisfies the query, we consider matching on
all aspects of the functional behaviour and the processes within the workflow. For
each aspect, it may need to perform ontological matching (Section 5.1) before consid-
ering other kind of constraint matching (Sections 5.2-5.3). The process specification
will match the query if it satisfies the following:

(i) input, unconditional output, unconditional effect, and process without
guard satisfy ontological match in Section 5.1, and

(ii) precondition, conditional output, conditional effect, and process with
guard satisfy relevant matching criteria in Section 5.2-5.3

In other words, let and Q P be the sets of functional behaviour and workflow

processes (with and without constraints) within the query and the process specifica-
tion respectively:

ProcessModelMatch(,Q P) = true ⇔

(Q ⊆ P) ∧ (:,i j∀ ∃ ()Qi∈ ∧ ()Pj∈ ∧ ()i jΘ)

where Θ means having a kind of match as in Sections 5.1-5.3.

6 Process-Based Discovery

Assume a service consumer wants to apply for a 400,000-baht loan with a bank in
order to buy a house. The consumer wants the bank that allows a loaner to apply for
a credit card with no annual fee and approve the loan application at loan department
level. This is to ensure that the loan process is quick. The consumer earns 20,000
bahts a month.

We present a query () as a collection of relation expressions. A relation expres-
sion is in the form of property(subject, object) which corresponds to an RDF state-
ment <subject, property, object>. For a constraint that relates to a numerical value,
such numerical constraint is represented as property(argument, relationaloperator,

literalvalue1, [literalvalue2,] unit). For the example above, the relation expressions
are superscripted by symbols C, E, G, and P which refer to precondition, effect,
guard, and process respectively:

={hasIncomePerMonth(IncomePerMonth, 20000 ,)C

hasPremiumCreditCardFee(PremiumCreditCardFee, Equal, 0, baht)E ,
hasLoanAmount(LoanAmount, 400000) , G

 hasLoanPurpose(LoanPurpose, Housing) , G

hasProcess(Process, DepartmentApprovalProcess)P }
To determine whether a service is a match, its process specification will also be

treated as a collection of relation expressions in order to check against the set of rela-
tion expressions of the query. The rule expressions embedded in the process specifi-
cation will be extracted and translated into a rule language in order to use a rule rea-
soning engine to check whether the rule is satisfied. In our implementation, SWRL
rule will be translated into Jess script in order to use Jess engine [19].

If we look at S1 and the query, to check whether the precondition holds for the
query, we use the criterion to match numerical ranges (Section 5.2) and the con-
sumer’s income is an exact match and hence valid to use the service. To check the
effect, we have to determine what S1 will give as an effect since it is conditional. We
first check the incondition by using matching of numerical ranges on the loan amount
and the premium credit card effect is satisfied with an exact match. Then we use
again the numerical range matching criterion to check whether the premium credit
card offers 0 baht annual fee. This also returns an exact match. When all aspects of
the functional behaviour of S1 match to the query, S1 is a potential service but we
have to check further on its process flow. (In this example, the functional behaviour
of S2 and S3 also matches to the query because we assume earlier that all three ser-
vices exhibit the same functional behaviour.)

To consider the workflow of the service, we associate each process with guards
that determine its performance. For example, the rules for all approval processes
within the process specification of S1 are listed below:

!hasLoanAmount(LoanAmount, LessThanOrEqual, 1000000, baht)
hasProcess(Process, HeadQuarterApprovalProcess);

hasLoanAmount(LoanAmount, LessThanOrEqual, 1000000, baht)
hasProcess(Process, LoanHistoryProcess);

hasLoanAmount(LoanAmount, LessThanOrEqual, 1000000, baht),
hasLoanPurpose(LoanPurpose, RealEstate)
hasProcess(Process, DepartmentApprovalProcess);

hasLoanAmount(LoanAmount, LessThanOrEqual, 1000000, baht),
!hasLoanPurpose(LoanPurpose, RealEstate)
hasProcess(Process, BranchApprovalProcess);

To check whether S1 performs the requested process under the context of a particu-
lar query, we check whether the associated guards fire. This is possible when the
information necessary for evaluating the guards can be obtained from the service
consumer or from the process specification itself. In this example, the consumer
requests for a department approval process. The first guard on loan amount fires with
exact match by considering numerical ranges matching against the loan amount of the

consumer. For the second guard on loan purpose, we first use ontological matching
(Section 5.1) to check the ontological value RealEstate. Assume that there is a do-
main ontology which defines an IS-A taxonomy for RealEstate with subconcepts such
as Housing and Land. S1’s purpose will be a generalised match, and by matching
logical constraints (Section 5.3), this second guard will also fire. Therefore, S1 will
perform department approval process under the constraints placed by the query.
When S1 matches with all aspects defined in the query, it will be returned as a match
to the consumer. With this approach, S2 will fail to match the query because the con-
sumer’s loan purpose will not cause the loan purpose guard associated with its de-
partment approval process to fire. Similarly, S3 will also fail to match the query be-
cause the consumer’s loan amount does not satisfy the loan amount guard associated
with its department approval process.

Process-based discovery is effective when a shared process ontology of a particu-
lar service domain is assumed. The shared process ontology defines common pattern
of the process within a domain which includes internal tasks and relevant conditions.
This approach is possible as the concept of business process patterns exists [20], [21].
Service providers should publish process specifications that are derived from the
domain process ontology, and service consumers should have some knowledge about
the behaviour and workflow of the domain in order to compose an effective query. In
our example, it should be commonly known that a bank loan process usually involves
several classes of approval, and factors that influence the approvals include loan
amount, loan purpose, and earning capability of the loaner. Although this process is
internal to the bank, it is not classified business information since bank staff would
normally give such information to the loaners. With a shared process ontology, the
service consumer can submit a query without having to know other details of the
candidate Web Services which may be considered as classified business rules; in our
case, the service consumer does not need to know that the bank with a process speci-
fication such as S1 has set a boundary of 1 million bahts for a head quarter approval.
Process specifications are maintained by service providers; our approach does not
require service consumers to have access to them.

7 Discovery Framework

The agent-based discovery framework in our previous work [6] is extended to ac-
commodate process-based discovery. We develop the components within the archi-
tecture in Fig. 8 while also adopting existing ontology-based tools and rule engine.

Fig. 8. Process-based discovery framework

In the figure, a service provider will define the process specification of the service as
well as any necessary local ontology (1), using an ontology editor (e.g. Protégé). The
definition may be based on shared ontology of the domain, which is defined by ser-
vice domain experts. The service provider maintains the process specification and the
local ontology, but also registers the specification with the agent via the publishing
proxy (2). The publishing proxy will store the URL of the process specification and
local ontology in the ontology repository (3). The agent may preprocess to extract
knowledge and to reason from the shared ontologies prior to the matchmaking by
using an inference engine (e.g. Jena [22]); the results are stored in a knowledge base
(4). At discovery time, the process specification will be processed and rule con-
straints are extracted and translated into a rule script by a parser (i.e. SWRL2Jess
parser) (5). The agent can provide the service consumers with a GUI template that
corresponds to the process ontology of the domain so that the consumers can specify
query onto the process specifications more easily (6). Internally, the query will be
translated into RDF-based relation expressions and will pass through the query proxy.
Rule constraints in the query are translated into a rule script so that it is evaluated
against constraints in the process specification (7). The constraint evaluation module
is integrated with a rule engine (e.g. Jess engine). Matchmaking module considers
matching criteria and reports the result in an XML document which will be returned
to the consumer (8).

8 Conclusion

We present a new approach to service discovery by using OWL-S process model to
model functional behaviour and workflow of the services and querying on such proc-
ess specifications. Constraints can be placed on the functional behaviour and guard
the flow of process execution. Matchmaking uses ontological reasoning and con-
straints evaluation to determine the actual behaviour of the services. Service con-
sumers can then look for the services with a satisfied internal process.

The example in this paper shows a query concerning if-then-else and sequence
constructs. Query based on other constructs is also meaningful and possible. We are
in the process of finishing the integration of process-based discovery with the frame-
work in [6] so that the integrated service profile is more complete and fits well with
the service description model in Fig. 1.

References

1. Huhns, M. N., Singh, M. P.: Service-Oriented Computing: Key Concepts and Principles.
IEEE Internet Computing. January-February (2005) 75-81

2. uddi.org: UDDI: Universal Description, Discovery, and Integration of Web Services
(Online). (2002). http://www.uddi.org

3. Tapabut, C., Senivongse, T., Futatsugi, K.: Defining Attribute Templates for Descriptions
of Distributed Services. In: Proceedings of 9th Asia-Pacific Software Engineering Confer-
ence (APSEC 2002), Gold Coast, Australia, December (2002) 425-434

4. Burstein, M. et al.: Semantic Web Services Architecture. IEEE Internet Computing. Sep-
tember-October (2005) 72-81

5. OWL-S Coalition. OWL-S 1.1 Release (online). http://www.daml.org/services/owl-s/1.1/
6. Sriharee, N., Senivongse, T.: Matchmaking and Ranking of Semantic Web Services Using

Integrated Service Profile. To be published in International Journal of Metadata, Semantics
and Ontologies, Vol. 1, No. 2, Inderscience Publishers

7. WSMO. Web Services Modeling Ontology (online). (2004). http://www.wsmo.org
8. Bruijn, D.J., Lausen, H., Polleres, A., Fensel, D.: The Web Service Modeling Language

WSML: An Overview. DERI Technical Report, June 16 (2005)
9. Paolucci, M., Sycara, K.: UDDI Spec TC V4 Proposal Semantic Search (online). (2004).

http://www.oasis-open.org/committees/uddi-spec/doc/req/uddi-spec-tc-req029-
semanticsearch-20040308.doc

10. Trastour, D., Bartolini, C., Gonzalez-Castillo, J.: A Semantic Web Approach to Service
Description for Matchmaking of Services. In: Proceedings of the International Semantic
Web Working Symposium (SWWS’01) (2001)

11. Paolucci, M. et al.: Semantic Matching of Web Services Capabilities. In: Proceedings of
the 1st International Semantic Web Conference (ISWC 2002), Sardinia (Italy), Lecture
Notes in Computer Science, Vol. 2342. Springer Verlag (2002)

12. Sivashanmugan, K., Verma, K., Sheth, A., Miller, J.: Adding Semantics to Web Services
Standards. In: Proceedings of the International Conference on Web Services (2003)

13. Srinivasan, N., Paolucci, M., Sycara, K.: An Efficient Algorithm for OWL-S
Based Semantic Search in UDDI. In: Proceedings of 1st International Workshop on Seman-
tic Web Services and Web Process Composition (SWSWPC 2004), San Diego, CA, USA,
July 6, (2004)

http://www.uddi.org/
http://www.daml.org/services/owl-s/1.1/
http://www.wsmo.org/
http://www.oasis-open.org/committees/uddi-spec/doc/req/uddi-spec-tc-req029-semanticsearch-20040308.doc
http://www.oasis-open.org/committees/uddi-spec/doc/req/uddi-spec-tc-req029-semanticsearch-20040308.doc

14. Klein, M., Bernstein, A.: Searching for Services on the Semantic Web Using Process On-
tologies. The Emerging Semantic Web – Selected papers from 1st Semantic Web Working
Symposium. I. Cruz et al. (Eds.) IOS press, Amsterdam (2002) 159-172

15. Klusch, M., Gerber, A., Schmidt, M.: Semantic Web Service Composition Planning with
OWLS-Xplan. In: Proceedings of 1st Intl. AAAI Fall Symposium on Agents and the Se-
mantic Web, Arlington, VA, USA, AAAI Press (2005)

16. Sirin, E., Parsia, B.: Planning for Semantic Web Services. In Proceedings of Semantic Web
Services Workshop at 3rd International Semantic Web Conference (ISWC’04) (2004)

17. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.: SWRL: A
Semantic Web Rule Language combining OWL and RuleML. (Online). (2003).
http://daml.org/2003/11/swrl/

18. Li, L., Horrocks, I.: A Software Framework for Matchmaking Based on Semantic Web
Technology. In: Proceedings of 12th International World Wide Web Conference (2003)

19. Jess the Rule Engine for the JAVATM Platform. (online). http://herzberg.ca. sandia.gov/jess
20. Havey, M.: Essential Business Process Modeling. O’Rielly (2005)
21. Barros, O. H.: Business Information System Design Based on Process Patterns and Frame-

works. (online). (2004). http://www.bptrends.com
22. Jena Semantic Web Framework: Jena. (online). http://jena.sourceforge.net/ index.html

http://daml.org/2003/11/swrl/
http://herzberg.ca.%20sandia.gov/jess
http://www.bptrends.com/
http://jena.sourceforge.net/%20index.html

