
Mobile Process Description and Execution

Christian P. Kunze, Sonja Zaplata, and Winfried Lamersdorf

Distributed Systems and Information Systems
Computer Science Department, University of Hamburg

Vogt-Kölln-Str. 30, 22527 Hamburg, Germany
[kunze|zaplata|lamersdorf]@informatik.uni-hamburg.de

Abstract. Mobile devices are increasingly aware of their respective lo-
cations and vicinity and tend to communicate rather loosely with each
other; therefore asynchronous communication paradigms are used pre-
dominately so far for corresponding mobile applications. However, while
such communication mechanisms are suitable for simple activities, they
may become insufficient for more complex tasks which consist of longer
sequences of related activities tied together in application-oriented pro-
cesses. This is of particular importance if the resulting operating se-
quence spans several mobile devices in frequently changing vicinities.
Therefore, the work presented here provides a concept for integrating
explicit support for such mobile processes into mobile system infrastruc-
tures and for distributing their execution over different nodes in the
network. For this purpose, a corresponding middleware platform (ex-
tension) for context-aware mobile applications is proposed. It supports
such migrating processes and helps to execute them under the restric-
tions typically imposed by realistic mobile applications. In particular,
this paper proposes a corresponding process description language and an
execution model for mobile and distributed (business) processes in the
context of the project DEMAC (Distributed Environment for Mobility-
Aware Computing).

1 Introduction

Due to the constraints of mobile computing environments, mobile systems, in
general, cannot provide the same degree of distribution transparency as systems
in statically wired environments [4]. Just in contrast to those, the restrictions of
resources in comparison to static devices, the increased variability in performance
and reliability of wireless connections, the finite energy sources to rely on, and
the hazard of mobility itself [13] lead to the perception that mobile environments
should be aware of the changing vicinity and also should react and adapt to it
accordingly.

However, in current systems this so-called context awareness and adaptability
is, in most cases, still restricted to support more or less monolithic and ad-hoc
static applications in fulfilling their momentary tasks. In general, that means
that most existing middleware systems are rather application centric and thus
restricted to offer assistance for basic but rather simple tasks. But, in order to

approach the vision of pervasive computing [16, 17] more closely, also much more
complex and eventually even unknown tasks and thus more generality must be
supported by new mobile middleware systems.

Such complex application tasks can be regarded as sequences of related simple
tasks tied together in a (business) process which is managed by a mobile client
on behalf of a user. This means that a mobile client is required to reach and
invoke all the services needed to execute such a process. It must also be capable
of handling all intermediate results – regardless of their size and relevance to
the expected final output. As a consequence, it may become a single point of
failure and also a bottleneck during execution time. Altogether, this means that
the capabilities of a mobile client limit the quantity of possible processes to be
executed.

But since the user is, in most cases, just interested in some specific effects
of a process (and not in its execution or intermediate results), this effect could
be eased by transferring the control flow – and with it the whole process – to
other devices, if possible. In combination with the possibilities of mobile com-
puting middleware systems to utilise context information and to cooperate, such
long-time mobile processes and their distributed execution provide additional
efficiency to application process execution in mobile computing. Accordingly,
this paper presents an outline of the system platform Distributed Environment
for Mobility-Aware Computing (DEMAC) – which realises such an extension –
with a special focus on a new description language and execution model for such
mobile processes.

The following subsections of the paper introduce the definition of mobile
processes, section 2 addresses related work, and section 3 provides a closer look at
the coarse system architecture, the process definition language, and the execution
engine. Finally, section 4 concludes the paper with a summary and an outline of
future work.

1.1 Integrating Processes into Mobile Computing Systems

The work presented aims to extend the capabilities of mobile devices through co-
operation with other devices in their vicinity and thus increase of their potential.
This is achieved by integrating distributed (business) processes into an adequate
mobile system infrastructure. Such an approach is different to most existing ones
of integrating processes with mobile computing devices which just extend their
traditional process infrastructure by including mobile device as process partic-
ipants (cp. e.g. [12]). Accordingly, in our context, the term mobile process is
defined and used as followed:

A mobile process is a sequence of (remote) services which may last over
a longer period of time and span several devices during its execution.
The results of the process are the effects the initiator expects from it.

In traditional mobile middleware, a process executes the application logic by
explicitly assigning local or remote services to the processs activities and by

invoking them directly. In contrast to that, in our view, such application pro-
cesses may (partly) diffuse into the mobile middleware: They just form a stub
which collects information from the user to assemble the process and its general
conditions and to pass the mobile process to the middleware.

In addition, as activities of mobile processes can last very long (like hours,
days, or weeks) the changes of the device environment can be dramatic between
the executions of adjacent activities. Therefore, a late binding strategy to assign
services is – certainly – essential but not always sufficient. Consequently, the mo-
bile processes as proposed here are executed based on an opportunistic strategy :
As long as the process engine of a device is able to bind local or remote ser-
vices to it’s currently activity, it is responsible for the mobile process. However,
in cases of failures or lack of respective service instances the engine is able to
try to find other devices which are able to execute the mobile process and then
transfers the remaining process and its execution to one of them.

Such a process distribution is especially advantageous in (realistic) hetero-
geneous and frequently changing mobile environments where device capabilities
may highly differ. Thus, such process transfer opens up additional services which
were not accessible according to the traditional execution approach. This also
means that likelihood of a mobile process to be executed successfully increases
substantially.

1.2 Requirements for Descriptions of Mobile Processes

In order to describe processes in ways which allow for execution strategies as
described above, an abstract process description language has to be designed: In
such a view, mobile processes have rather similar requirements for their descrip-
tion as traditional (business) processes, these are among others: the need for
the ability to express the business logic with its data and control flow, the par-
ticipating parties (as roles or individuals), and routines to recover from failures
[9].

But they also have some specific requirements based on the nature of mobile
environments and the opportunistic and distributed execution strategy (cp. sec-
tion 1.1): E.g. mobile process descriptions must be lean and simple to process in
order to save memory, CPU power, and energy resources, it must also include
mechanisms to handle communication failures and the distribution of the pro-
cess itself. This means especially that the state of the process and the user’s
non-functional conditions for the execution of the process must be expressible.
The (late) binding mechanism to assign service instances to process activities
as late as possible must be integrated into the description language by using a
preferably very abstract notation of the desired services [13, 7].

Based on these ”related work” is briefly reviewed in section 2 and for mobile
process description languages in section 3.2.

2 Related Work

Since this paper concentrates specifically on the description and execution of
mobile processes, some specific aspects of our approach are pointed out first
- before, after that, related work in the area of mobile process descriptions is
reviewed more extensively.

System Infrastructure Since mobile process execution always relies on contex-
tual information, the context modelling and context data acquisition are crucial
for the respective developed concept and system infrastructure. The abstract
and generic definition of context and its data as used in the Context Toolkit [5]
by Dey is mainly suited for the mostly a priori unknown demands of mobile
processes. Whereas the understanding provided by Schilit [14] or Schmidt [15]
turned out to be too narrow to support the wide range of possible processes as
required in our approach. The idea of the NEXUS project [6] to ensemble the
context of an entity by federating local context clippings of entities within par-
ticular vicinity is used in the system infrastructure to construct a global context
representation efficiently.

The mobile process infrastructure as addressed here also relates to recent
research in the area of mobile agents [3]. However, in relation to that it differs
in some important aspects: In contrast to an agent a mobile process does not
contain executable code. In fact, mobile processes only provide meta-data about
the structure of the described application and, thus, the estimated effects but
not the way how this behaviour is achieved. In addition, they do not have a social
behaviour either, nor could they act autonomously or proactively. Nevertheless,
some parts, e.g. security and privacy concerns or the need to determine the
execution state, have, in principal, similar requirements and, thus, solutions.

Process Description A process description language for mobile processes has
to consider aspects of distribution as well as support for high level flexibility and
fault tolerance. An analysis of most prominent existing process description lan-
guages, such as XPDL, BPEL4WS, WSCI, JPDL, and ebBPSS, shows that the
concepts and constructs provided by these languages are not in total adequate
to describe highly dynamic processes on mobile distributed computing systems
[18].

Closest to the required concepts as mentioned above is the meta-model lan-
guage XPDL [10], which was developed as an abstract interchange format for
different workflow engines. It provides a very general view on processes, is open
for extensions and ready for all kind of automated and manual services. On the
other hand, due to its high level of abstraction, it does not provide sufficient
concepts to perform distributed process execution and handle errors as well as
transactions.

In contrast, BPEL4WS [1] as a language for the orchestration of activi-
ties defined as web services, offers very specific and powerful elements to link
tasks and to deal with unexpected circumstances as well. Processes defined with

BPEL4WS are ready to be executed but limit cooperations between business
partners using the Web Service protocol stack. Furthermore, process descrip-
tions tend to become rather complex due to possible combinations of sequential
blocks with graph-structured elements in order to express parallel behaviour.
Again, the definition language is developed for running on a central workflow
engine and does not provide concepts for distributed process execution.

The Web Service Choreography Interface (WSCI) [2] is an add-on of WSDL
and concentrates on the choreography of web services by describing a task from
the individual perspective of its participating services. Therefore, the description
itself is lean because each one is intended for only one single participant. The
disadvantage of WSCI, however, is that all possible participants have to be
determined in advance so the processes’ information can be distributed and a
fixed compatible interface can be implemented within the WSDL description of
each participant. Also dynamic processes or ad-hoc workflows as well as often
changing vicinities of mobile devices cannot be handled with WSCI.

A very lean description language is provided by JPDL [8], which is an integral
part of the Java Business Process Management (JBPM). JPDL supports manual
tasks, but the description of automated function logic is matched to the Java
programming language and the composition of web services is not provided at
all. For error handling, JPDL also relies on the JAVA platform and, therefore,
cannot be considered to be totally platform-independent.

EbBPSS is the Business Process Specification Scheme of the EbXML frame-
work [11]. In particular, it is designed to describe business transactions and there-
fore it focuses on the aspect of binary collaboration between several companies.
Although EbBPSS has the ability to describe quality and security issues as fixed
requirements for the scheduled cooperation, it depends highly on the ebXML
framework which is in itself too complex for most of today’s mobile computing
systems. Standing alone, it does not support the description of required control
flow constructs, such as error handling mechanisms or the possibility to integrate
users and different kind of services.

So, in summary, none of the considered approaches supports transfers of pro-
cess descriptions and allows a completely distributed administration of mobile
processes. Late binding of participants is often possible, but there are no ad-
equate concepts to choose participants by their respective quality or by other
non-functional criteria. In most cases, the description of activities and their de-
pendencies within the process is very extensive or requires a lot of computing
power to work on it. This, however, is not suitable for relatively weak mobile
devices. Finally, concepts for handling faults are insufficient for the error-prone
mobile computing systems and the handling of connection resets and security
issues has not been considered at all since these process description languages
have been developed basically for reliable central workflow engines.

3 A Mobile Process Integration Service

These deficiencies of already established approaches for describing mobile pro-
cesses (cp. section 2) adequately motivate the development of an enhanced de-
scription language which fulfils all of the specified requirements. Accordingly,
this section presents relevant features such an approach based on (a) a process
description language for distributed processes and (b) a corresponding mobile
process execution engine. But as such an engine cannot be realised without an
underlying system infrastructure, subsection 3.1 first provides an outline of the
middleware architecture as developed for that purpose in the DEMAC project.

3.1 A Middleware Architecture for Supporting Distributed and
Mobile Processes

The decision to design a tailored system infrastructure for supporting a seamless
integration of mobile processes into a mobile computing middleware evolved from
an analysis of the processes’ requirements and the respective features as offered
by existing middleware approaches. Especially the close cooperation between the
mobile processes and the context model to distribute and execute the processes
lead to the need of a specifically adjusted model and service architecture.

The resulting system architecture is based on four basic service components
(see figure 1) which are briefly described overview before section 3 introduces
the integration of mobile processes in more detail.

Figure 1. The DEMAC Abstract Architecture

The Communication Basis The asynchronous transport service and the event
service form the communication platform of the architecture and provide com-
munication with both push and pull semantics. This service abstracts from con-
crete transport protocols – like TCP/IP, Bluetooth or IrDA. To be independent
from the underpinning protocols, the transport service uses its own addressing
schema. These addresses are bound to a device and translated into concrete pro-
tocol specific addresses by the transport service. If the device is reachable by
different protocols, non-functional aspects, like e.g. quality of service attributes,
can be used to make an optimal choice.

The Context Service The context service collects and maintains all informa-
tion about the context of the device. It acquires its knowledge either by events
from the event service or by direct message exchange using the transport service.
Towards the entities which use the service, it filters and partitions the informa-
tion and provides only the amount of data they need. These are next to quality of
service parameters also information about reachable devices and their services,
location parameters and data about other users and their identity. To acquire
the context information, a federated approach is chosen. Every device provides
only local context information. To get the overall context, the information of
the devices in the environment is merged. To find and resolve devices and ser-
vices in the vicinity, the context service contains a distributed registry which uses
peer-to-peer mechanisms to obtain its knowledge.

The Process Service The process service realises the integration of process
management into the DEMAC architecture. It is comprised of two parts: The
first one is a definition language in order to describe the mobile process as
well as the users’ and applications’ non-functional demands (cp. section 3.2).
Using this language, an application is able to define a sequence of activities,
intermediary results which must be achieved, and constraints for the execution.
The second part of the service is an execution engine for process definitions.
This unit resolves and executes processes (cp. section 3.3). It can either invoke
the activities locally or delegate the process to a remote process service. When
delegating a process, the description and all necessary data is transferred to the
remote unit by use of the transport service. Thereby the process service relies on
the information provided by the context service to find a device providing the
needed service and to enforce the non-functional demands and constraints. The
execution engine’s architecture provides the ability to extend a compact core by
plugging in functional modules to adapt to the capabilities of the underlying
device.

3.2 DEMAC Process Description Language

The DEMAC Process Description Language1 (DPDL) is an XML-based descrip-
tion language to integrate distributed long-time processes into mobile computing
1 http://vsis-www.informatik.uni-hamburg.de/projects/demac/dpdl1.0.xsd

systems. DPDL follows the meta-description language XPDL [10] and inherits
the structure and those constructs of XPDL which turned out to be suitable for
describing mobile processes.

The basic idea of DPDL is to allow a distributed handling of the process over
heterogeneous systems. An entire process may be passed on to another device
to continue work on the process’s tasks. So devices which are not capable of
executing a particular task of the process can mark its latest execution state
and search for other devices able to carry on at the position established so far.
So, by sharing the potential of several mobile devices, this approach increases the
likelihood of successful process execution - even under the (generally unstable)
conditionals which are typical for mobile devices and applications.

Meta-model and Structure As shown in figure 2, the basic container for the
DPDL process description and all its data is a Package. A Package contains at
least a single WorkflowProcess, which holds all tasks to be worked on (Activities)
and the control flow as a fixed sequence to execute these tasks. Activities can be
atomic or can be grouped to simple reusable blocks (Activity Sets), to a sequence
of activities to be executed as a Transaction or to a set of repeatable actions
within a Loop. Furthermore, an activity can represent an entire Subprocess.

To integrate non-functional criteria, the Package can also contain definitions
of requirements for service qualities or for quality aspects of devices or networks.
These requirements are modelled as Strategies and can be bound to activities or
to the entire process.

To deal with likely occurrences of errors and connection resets DPDL intro-
duces Exception Handlers and Connection Reset Handlers. These elements refer
to another set of activities which should be executed in cases where the normal
execution fails.

The introduction of ActivityReferences allows reusing the description of ac-
tivities within the process, for example as a part of several error handling de-
scriptions. ActivityReferences are linked by Transitions to describe the processes’
control flow. ActivityReferences are unique within the process. They contain all
information which is relevant for the execution of the activity in dependence of
its position in the control flow, such as references to participants, error handling
and non-functional criteria.

State Concept The state of each single activity within the process is modelled
as a property of its respective unique ActivityReference, so the execution state of
an activity is well-defined and the progress in processing the activities is visible
for every participating device at any time during execution.

Figure 3 shows the potential lifecycle of an ActivityReference. An Activi-
tyReference is inactive if preliminary activities are not executed or conditions
for the execution of the referenced activity are not checked yet. In case one or
more of these conditions can not be fulfilled, the ActivityReference is set to the
error state skipped. If these conditions evaluate to true or there are no conditions
defined, the ActivityReference is set to the state ready. It may happen that a

Workflow
Process

Activity Set

Activity

Transition

Block
Activity

Sub-Process

Atomic
Activity

1

1

from to

*

*

*

*
*

Transaction

Transaction
Activity

Loop

Loop
Activity

**

Exception
Handler

Connection
Reset Handler

1

1
1

1

1

*

*

*

**

1
1

*

*

1
1

1
1

1

11

Native XPDL Elements

Additional Constructs in DPDL

in case of exception

Activity Reference

1

1

*

1

1

Package
1

StrategyApplicationWorkflow
Relevant DataParticipant

** *

1 1 1

*

1

1

1

in case of
connection reset

Figure 2. DPDL Meta-model

mobile device is capable of checking the conditions of an activity, but is not able
to perform the execution itself. In this case, it will possibly take some time to
transfer the process description to another device and it has to be checked close
to the execution if the activity is still valid or if a defined expiration date is
exceeded (error state expired). The states skipped and expired are also relevant
for the appliance of a Dead Path Elimination. If all prerequisites are fulfilled and
the actual execution starts, the ActivityReference is set to the state executing.
The appearance of errors during the execution will result in a general error state
in error. An activity is executed when its execution is successfully completed. It
might now be set back to the ready state to be restarted later (for example if
the activity is part of a loop) or it is set to the state finished which indicates the
execution of the ActivityReference is terminated and finally closed.

Furthermore, a particular ActivityReference can be referenced as a start ac-
tivity to mark the next task to be executed. This relieves other participating
devices of dealing with tasks which have already been finished.

inactive ready executing executed finished

skipped expired in error
execution states

error states

Figure 3. Possible States of Activities in DPDL

Description of Activities and External Data Transfer and execution of
processes on mobile computing systems also require rather efficient use of the
available amount of system memory. This means, one of the most important
requirements of mobile processes is to make process descriptions as lean as pos-
sible. DPDL allows describing activities as a short but significant identifier and
supports to store data external to the actual process. For example, huge docu-
ments may be kept completely out of the description until their processing time
has arrived. This is particularly suitable if the data is needed only once or is
used in very few activities within the process. On the other hand the provision
of flexibility is essential in this case because the availability of devices and their
connectivity may appear as a bottleneck to the dynamic integration of exter-
nal features. So, it depends on the kind of application to decide whether or not
obtaining data from a remote location.

Listing 1 shows the declaration of two variables by the use of the DataField
construct and the definition of the corresponding data. While the content for
the variable ”PaintingName” can easily be hold within the process description
for immediate access, the data item of the type ”Image” is represented by an
ExternalReference in order to save memory and network costs. Furthermore, the
generic Application ”Printer” is abstracted in the example listing by a universal
unique identifier (UUID) which represents the category of adequate services to
execute the respective activity, e.g. printing an image. The data involved in the
task, in this case the painting’s name and the image data itself, is finally called
and mapped to the Formal Parameters of the generic Application.

Listing 1. Description of Data and Activities
<DataFields >

<DataField Id ="PaintingName" >
<DataType >

<BasicType Type ="String"/ >
</ DataType >
<InitialValue >Mona Lisa </ InitialValue >

</ DataField >
<DataField Id ="NewPainting" >

<DataType >
<DeclaredType Type ="Image"/ >

</ DataType >
<ExternalReference Location ="http://www.xyz.com/Very Large Image.bmp"/ >

</ DataField >
</ DataFields >

<Applications >
<Application Id ="Printer" >

<UUID>12345678901234567890123456789012 </ UUID>
<FormalParameters >

<FormalParameter Id ="SomeName" Index ="1" Mode="IN" >
<DataType >

<BasicType Type ="String"/ >
</ DataType >

</ FormalParameter >
<FormalParameter Id ="SomePicture" Index ="2" Mode="IN" >

<DataType >
<DeclaredType Id ="Image"/ >

</ DataType >
</ FormalParameter >

</ FormalParameters >
</ Application >

</ Applications >

...

<Activity Id ="Print" >
<Implementation >

<Tool ApplicationId ="Printer" >
<ActualParameters >

<ActualParameter >PaintingName </ ActualParameter >
<ActualParameter >NewPainting </ ActualParameter >

</ ActualParameters >
</ Tool >

</ Implementation >
</ Activity >

Users and Devices Mobile processes are highly related to tasks which require
interaction with mobile participants such as users or devices or a combination
of both. Therefore, special constructs are needed to describe which individuals
are involved in which task and by what kind of communication channels these
persons might be addressed or accessed. In DPDL, a participant is either totally
specified or described in a generic way, e.g. by the declaration of a certain role.
Descriptive properties of users (for example a digital identity) and devices (for
example unique identifiers) can be combined to characterize a participant and
help finding the required instance to execute the upcoming task (see listing 2).

Listing 2. Participants
<Participant Id ="Smith" Name="John Smith" >

<Devices >
<Device Id ="111" Name="Personal Computer" >

<UUID>12345678901234567890123456789012 </ UUID>
</ Device >
<Device Id ="222" Name="Mobile Phone" >

<Devicetype Type ="Cellphone"/ >
</ Device >

</ Devices >
</ Participant >
...
<ActivityRef Id ="1" ActivityId ="Activity1" ParticipantId ="Smith" ... / >

Handling Errors and Connection Resets Due to the high incidence of faults
appearing in mobile computing systems, DPDL provides constructs to handle
errors and unexpected connection resets. The description of Exception Handlers
provides a definition of alternative control flow constructs to be executed when

an error occurs. In case of a connection reset, the communication may be either
restarted, the service partner may be changed, or the activity may be skipped.
The actual behaviour depends on the involved applications and the specific use-
case and can also be modelled as a combination of activities (see listing 3).

Listing 3. Connection Reset Handler
<ConnectionResetHandler Id ="1" >

<ExceptionId >someException </ ExceptionId >
<Retries >2</ Retries >
<NewSearch>true </ NewSearch>

</ ConnectionResetHandler >
...
<ActivityRef Id ="1" ActivityId ="Activity1" ConnectionResetHandlerId ="1" ... / >

Parallel Execution In case there is no relevant data dependency within the
control flow, parallel paths of the process can be executed by different mobile
computing systems. To share a process description, the responsible mobile device
decides to execute an arbitrary parallel path and thereby sets its first ActivityRef-
erence to the state executing. While in this state, it produces a snapshot of the
process description as a copy of its own process and forwards this copy to exactly
one other device. Because the path chosen by the first device is already in the
state executing, the second device can only select one of the remaining parallel
paths.

In order to synchronize parallel paths, there has to be a defined meeting
point, for example a stationary device. The participating devices can pass their
copies of the process description to the given address. The service at the meeting
point collects all incoming parallel paths belonging to the shared identifier and
merges the copies to a single process description. If required, this one can be
forwarded again to continue execution.

Modification of Activities In order to provide a maximum of flexibility, the
description considers the possibility that activities may be modified throughout
the execution of the process. For example, the single activity ”Send a new text
by e-mail” may be substituted by a more detailed Activity Set containing the two
activities ”Write text” and ”Send e-mail”. If no suitable service for executing the
entire task can be found, other services may cooperate to compensate this lack
of capability by executing intermediate steps. However, to control the amount of
modification the initiator of the process can protect activities against uninten-
tional changes by using suitable values for the Activity’s Editable attribute. For
example, the activity may be declared not editable at all, or the modifications
might be further restricted by the definition of non-functional criteria, such that
no semantically dependent activity can be substituted without compromising
the overall correctness of the process.

The responsibility for exchanging or modifying activities resides with the
context service which decides whether or not the upcoming task can be executed
locally. The necessary knowledge about semantic equivalence of services and their

exchangeability or possible reconfiguration is kept by the distributed registry as
part of the federated context services of all vicinal devices (cp. section 3.1).

Integration of Non-Functional Criteria To narrow the selection of poten-
tially participating devices and services according to the user’s interests and
intentions, the process description may contain a set of non-functional criteria.
The user who initiated a process can define a Strategy to assert a certain level
of quality throughout the execution of the process. This way, Strategies help to
ensure the user’s goals as they were intended originally. Each Strategy contains
a set of requirements which each hold a key-value-pair consisting of an identifi-
cation argument and a target value. Listing 4 shows, exemplarily, how to define
a limitation of the factor ”cost” for the execution of a certain activity.

Listing 4. Description of non functional Criteria
<Strategy Id ="123" Name="ActivityStrategy" >

<StrategyProperty Id ="1" Name="Cost" >
<Requirements >

<Requirement Name ="MaxNetworkCost" Value ="10"/ >
<Requirement Name ="MaxServiceCost" Value ="0"/ >

</ Requirements >
</ StrategyProperty >

</ Strategy >
...
<ActivityRef Id ="1" ActivityId ="TestActivity1" StrategyId ="123"/ >

Before executing an activity with specific requirements, the context service
has to collect the relevant quality information, so the process service can ensure
that only those services and devices are involved in the activity’s execution which
meets the specified requirements.

3.3 Mobile Process Execution

Depending on their intended purpose, mobile devices can have many different
properties and a wide range of capabilities. To integrate most mobile devices and
to benefit from the collaboration of heterogeneous systems, the mobile process
execution engine must support different levels of performance.

Therefore, the execution engine is characterized by a modular design (cp.
figure 4). A Core Module provides basic functionality such as receiving, stor-
ing, and forwarding process descriptions. It can be run independently on less
powerful devices, like PDAs or cellphones, which do not provide enough mem-
ory or computing power to execute complex tasks but are useful to transport
the process descriptions to other (different) environments. The core module also
provides the interface for applications to initiate processes by passing the DPDL
process description to the execution engine.

A more powerful Base Module is responsible for executing the described tasks
of the process. It uses the core component to communicate with other devices and
can be enhanced by further task-specific Extension Modules. Extension Modules
are strongly dependent on the characteristics of the device, for example, an

Core
Module

Base Module
Extension

Module

Extension
Module

Extension
Module

<Security>

<User
Interaction>

<Transactions>

Receive and forward process
descriptions considering non-
functional criteria

Interprete process descriptions and
execute processes

Enhance the functionality
of devices being more powerful

Figure 4. Modular Execution Engine for Mobile Processes

additional component supporting user interaction can only be realised if the
respective device has a proper user interface.

The complete set of all installed components together with the DPDL de-
scription of mobile processes realises the DEMAC process service, which can
have different combinations of execution modules, as shown in figure 4.

Finally, the mobile process execution engine cooperates closely with the
DEMAC context service in order to get information about the device’s vicin-
ity, such as available services, environmental data or its own identity. If a new
process description is received by the core module, the process data is made
persistent and the process’s Strategies are extracted from the Package. In case
there is no base module attached or the proper component to execute the process
locally is missing, the context service is requested to find a device suitable to the
specified constraints to continue the execution. Otherwise, the execution engine
within the responsible mobile device starts working on the process itself. It picks
the upcoming Start Activity, examines it and requests the context service to
find suitable services to process the task, depending on the defined Participants,
Strategies and/or Conditions of this activity. If an adequate service for execut-
ing the upcoming activity cannot be found, the local execution engines marks
the latest execution state, stops working on the process and again requests to
find an alternative device to continue. This way, sharing the different properties
and potentials of context aware mobile computing systems even complex and
long-time processes can be executed in a step-by-step-manner.

4 Conclusion

This paper describes an approach to make mobile computing middleware plat-
forms capable of supporting abstract descriptions as well as new execution mod-
els of mobile distributed long-term business processes. Due to (a) distributed and
cooperative nature of such processes and (b) restrictions and specific character-
istic of mobile computing environments, already existing description languages
and execution models for centrally coordinated processes do not suffice. There-
fore, an extended, technology independent description language is proposed and
a corresponding execution platform and its realisation are described in this pa-
per.

Thus, the paper presents the DEMAC Process Description Language which
extends the XPDL meta-model by concepts for distributing and executing pro-
cesses in mobile and frequently changing vicinities. It also describes the proto-
type realisation of an execution engine for such mobile processes. Thereby the
paper argues that the presented modular design is able to support most of the
heterogeneous capabilities of typical mobile devices.

As a prototypical implementation of the presented architecture has been re-
alised already, future work includes implementation – on top of this platform –
some of the project’s use cases and sample scenarios. These include, e.g., a pro-
totype of a claim manager application for an insurance company which creates
customised mobile processes out of a template base and executes them using
the DEMAC middleware. Furthermore, the overall performance of the system is
continuously evaluated and improved. More fundamental questions arise in the
fields of integrating privacy and security mechanisms as well as developing an
adequate transaction concept for distributed and mobile processes.

References

1. Andrews, Tony and Curbera, Francisco and Dholakia, Hitesh and Goland, Yaron
and Klein, Johannes and Leymann, Frank and Liu, Kevin and Roller, Dieter and
Smith, Doug and Thatte, Satish and Trickovic, Ivana and Weerawarana, Sanjiva.
Business Process Execution Language for Web Services Version 1.1. Specification,
IBM, BEA Systems, Microsoft, SAP AG, Siebel Systems, 2003.

2. Arkin, Assaf and Askary, Sid and Fordin, Scott and Jekeli, Scott and Kawaguchi,
Scott and Orchard, David and Pogliani, Stefano and Riemer, Karsten and Struble,
Susan and Takacsi-Nagy, Pal and Trickovic, Ivana and Zimek, Sinisa. Web Service
Choreography Interface (WSCI) 1.0. Specification NOTE-wsci-20020808, World
Wide Web Consortium, 2002.

3. Braun, Peter and Rossak, Wilhelm. Mobile Agents - Basic Concepts, Mobility
Models, and the Tracy Toolkit. Elsevier and Morgan Kaufmann and dpunkt.verlag,
2005.

4. Capra, Licia and Emmerich, Wolfgang and Mascolo, Cecilia. Middleware for Mobile
Computing: Awareness vs. Transparency. In In Proceedings of the 8th Workshop
on Hot Topics in Operating Systems, 2001. extended version.

5. Dey, Anind K. Understanding and Using Context. Personal and Ubiquitous Com-
puting Journal, 5(1):4–7, 2001.

6. Dürr, Frank and Hönle, Nicola and Nicklas, Daniela and Becker, Christian and
Rothermel, Kurt. Nexus–A Platform for Context-Aware Applications. In Roth,
Jörg, editor, 1. Fachgespräch Ortsbezogene Anwendungen und Dienste der GI-
Fachgruppe KuVS, 2004.

7. Forman, Georg H. and Zahorjan, John. The Challenges of Mobile Computing.
Technical Report TR-93-11-03, University of Woshington, 3 1994.

8. JBoss Company. JBoss jBPM 3.0 - Workflow and BPM made practical. Docu-
mentation, JBoss Company, 2005.

9. Leymann, Frank and Roller, Dieter. Production Workflow - Concepts and Tech-
niques. PTR Prentice Hall, 2000.

10. Norin, Roberta and Marin, Mike. Workflow Process Definition Interface – XML
Process Definition Language. Specification WFMC-TC-1025, Workflow Manage-
ment Coalition, 2002.

11. Riemer, K. EbBPSS Business Process Specification Schema, Version 1.01. Speci-
fication, Oasis ebXML Business Process Project Team, 2001.

12. SAP AG. SAP Mobile Infrastructure: An Open Platform for Enterprise Mobility.
Technical report, SAP AG, 2003.

13. Satyanarayanan, Mahadev. Fundamental Challenges in Mobile Computing. In Pro-
ceedings of the Fifteenth ACM Symposium on Principles of Distributed Computing
, 1996.

14. Schilit, Bill N. and Adams, Norman and Want, Roy . Context-Aware Computing
Applications. In Proceedings of the 1st International Workshop on Mobile Com-
puting Systems and Applications, pages 85–90, 1994.

15. Schmidt, Albrecht and Beigl, Michael and Gellersen, Hans-W. There is more to
Context than Location. In Proceedings of the International Workshop on Interac-
tive Applications of Mobile Computing, 1998.

16. Weiser, Mark. The Computer for the Twenty-First Century. Scientific American,
256(3):94–104, 1991.

17. Weiser, Mark. Ubiquitous Computing. IEEE Computer Hot Topics, 1993.
18. Zaplata, Sonja. Prozessintegration in Middleware für mobile Systeme. Master’s

thesis, University of Hamburg, 2005.

