
Interfering effects of adaptation: implications on
self-adapting systems architecture

Jacqueline Floch, Erlend Stav, and Svein Hallsteinsen

SINTEF ICT NO-7465 Trondheim, Norway
{jacqueline.floch, erlend.stav, svein.hallsteinsen}@sintef.no

Abstract. When people are moving around using handheld networked devices,
the environment for the provided services vary influencing service quality prop-
erties and user needs. In order to maintain usability and usefulness for mobile
users, dynamic service adaptation is needed. Several forms of adaptation may
be applied. For example, the application structure may adapt from thin client to
self-reliant client, or network handover may be performed. The selection of an
adaptation type is however far from obvious. Adaptation usually has impact on
system resources or service quality. Also, one adaptation may require other adap-
tations that again have impact on resources and quality. This paper illustrates the
complexity of selecting an adequate adaptation form. We argue that adaptation
selection requires advanced reasoning and identify implications on the architec-
ture of self-adapting systems.

1 Introduction

When people are moving around using handheld networked devices, the operating en-
vironment for the provided services vary influencing service quality properties and user
needs. To retain usability, usefulness, and reliability under such circumstances, systems
should adapt to the changing environments. Service adaptation is about finding the ap-
plication configuration that best fits the context, where context includes both system
context such as battery level and network resources, and user context such as position,
noise and user needs. Adaptation may be performed at several levels and in different
ways. Adaptation may be applied on the applications, or on the resources and devices
required by the applications. It may require modifications to the application structure,
to the selection of application components, or to their deployment. A close analysis
of the problem of adaptation shows that the selection of the “best configuration” is
complex and requires reasoning on dependent context elements and adaptation forms.
This paper presents a mobile service scenario that illustrates this complexity and draws
out a set of requirements on the architecture of self-adapting systems. The MADAM
project is currently developing solutions based on the requirements derived from the
scenario analysis [1]. Current approaches to self-adaptation usually describe abstract
motivations. The research literature lacks presentations of scenarios that would pro-
vide a common base for understanding business problems, extracting valuable business
requirements, and justifying the research problem relevance.

2 Jacqueline Floch, Erlend Stav, Svein Hallsteinsen

2 Scenario Example

The application domain for our scenario is inspection and maintenance support for jan-
itors. Janitors use handheld networked devices during their work. They are involved in
various working situations, ranging from administrative work in a quiet and connected
office environment, through travelling between technical installations in rugged indus-
trial environments with varying network coverage. We assume that the companies where
inspection is performed make an intensive use of ICT systems for registering informa-
tion, tagging and controlling equipment. In the following, our scenario is structured in
a set of scenes that relate to various working situations and contexts.

Scene 1 – Morning at home: The janitor checks his assignments for the day be-
fore he leaves home, using his company planning application on his handheld device.
He is also running a video player on the device showing morning news on a screen in
the kitchen. The first assignment is about fixing a ventilation system in a large build-
ing. He starts looking at information about the first assignment. There is little memory
because the video player uses a lot. The home WLAN provides high capacity network
connection. The device has been charging during the night and is still connected to
outlet power, so power is abundant and the load on the server is low. In this situation,
a thin client configuration is chosen as the initial configuration of the work planning
application.

Scene 2 – Leaving home: The janitor shuts down the video player and prepares to
leave home. This new situation raises a relevant context change: the memory available
on the handheld becomes high. In order to increase application response time and relia-
bility, the work planning application is reconfigured with a richer client caching data to
save power on the handheld and to become less vulnerable to network instability.

Scene 3 – Driving: The janitor enters his car to go to the company building where
the faulty installation is located. While he is driving the janitor wants to check more
details, but since his eyes and hands are busy with the driving, he prefers hands-free
user interface. The janitor selects tools and information for guiding the inspection as-
signment and initiates their downloading. The device is now connected through GPRS
to the janitor company server. As the cost of using GPRS is high and the capacity of the
network low, the downloading of the tools is postponed.

Scene 4 – Arriving at the customer: When the janitor arrives to the company
site, he gets access to the company WLAN. He can now download tools. However the
network cannot be regarded as trusted, and a VPN tunnel has to be established.

Scene 5 – Measurement: The janitor starts the inspection of the ventilation sys-
tem. He starts the inspection application and is guided around in the building to mea-
sure temperature. During the work, he has to deal with different kinds of temperature
sensors. Measurement is performed manually or automatically using Bluetooth. In the
later case, various sensor drivers are needed depending on the sensor types. Drivers can
be downloaded from the company equipment server. The building under inspection is
large and the measurement collection has already lasted a long time. In order to reduce
battery consumption, the measurement application switches to a stand-alone mode and
measurements are stored locally. However, the network coverage is good and measure-
ments data are saved centrally periodically.

Interfering effects of adaptation: implications on self-adapting systems architecture 3

Scene 6 – Notification: During the measurement activity, the janitor is interrupted
by a notification about a new task. The planning support application requires more
resources than currently available on the handheld. In order to enable planning, mea-
surements data are saved to the company equipment server, and the measurement ap-
plication is partially suspended.

Scene 7 – Measurement analysis: When all measurements are collected, the janitor
moves to the technical office where he can use a more powerful stationary computer to
perform measurement analysis. When he enters the office, the janitor work session is
automatically moved from the handheld to the stationary computer.

Table 1 summarizes the scenario in a situation-action style where each situation
leads to an adaptation action. In that simple scenario, we observe that each situation
requires taking into account various kinds of context. We also observe that various
adaptation forms such as adaptation of functional richness, adaptation of behaviour and
data deployment, and adaptation of the user interface modality, may take place.

Table 1. Scenario: adaptation summary in a situation-action style

Scene Relevant context and context changes Adaptation

1

Handheld: available memory: low; high
battery level
Network: WLAN: high bandwidth, low
cost

The initial configuration is selected. A
thin client configuration is chosen.

2 Handheld: available memory: high
The application is reconfigured from thin
to caching client.
Assignment information is downloaded.

3a User needs: hands-free mode A hands-free UI is added.

3b
User: location: driving to customer
Network: GPRS: medium bandwidth,
high cost

The downloading of inspection tools is
postponed

4
User needs: security policy
Network: WLAN: high bandwidth, low
cost

A VPN tunnel is established.
The downloading that was postponed is
started.

5a Infrastructure: new sensor The sensor drivers are downloaded and
installed.

5b

Handheld: rapidly decreasing battery
level
Network: WLAN: high bandwidth, low
cost

The application is reconfigured from a
network connected mode to stand-alone
mode.
The data measurements are saved
periodically

6

User: application priority
Handheld: available memory: low
Network: WLAN: high bandwidth, low
cost

The data measurements are saved and
the inspection application is suspended.
The planning application is started.

7 Infrastructure: new computer The inspection application is redeployed.

4 Jacqueline Floch, Erlend Stav, Svein Hallsteinsen

3 Adaptation Effects

While Table 1 describes simple relations between situations and adaptation mecha-
nisms, this section provides a deeper analysis demonstrating the complex dependencies
between adaptation and context, and the effects of adaptation on system resources and
offered service quality. We do not restrict to the single scenario, but generalize adding
new context conditions that may occur under the janitor work.

Table 2 presents the analysis in a goal-oriented style. A goal describes a high-level
behaviour objective that the self-adapting system should attempt to fulfil in order to
maintain service usefulness and quality when context changes occur. Usually several
adaptation mechanisms may be applied to achieve a goal. A classification according to
goals allows us to present the relations between context and adaptation mechanisms in
a concise way. Table 2 distinguishes between “primary context elements” i.e. the main
triggers for adaptation, and “secondary context elements” that complement the primary
elements when making a decision about adaptation. The “adaptation effects” describe
the impact of adaptation: “(C)” indicates an impact on context, “(S)” on service quality,
“(G)” on other goals, and “(A)” indicates an inferred new adaptation need.

Table 2. Adaptation analysis in a goal-oriented style

Goal Context Adaptation mechanism Adaptation effect (s)

Primary: low power
level
Secondary:
availability of external,
handheld device or PC

Redeploy application
session

(A) Adapt application
configuration to new
platform

Maintain
service
availability

Primary: network
coverage/no coverage

Redeploy application
and data

(S) data integrity

Primary: user activity,
hands occupation
Secondary: audio
capabilities

Select UI modality (e.g.
voice or text based UI)

(C) handheld resources
consumption

Enrich application
functionality

(C) handheld resources
consumption

Enhance
operability

Primary: equipment,
device and service
extensions
Secondary: network
coverage (e.g.
Bluetooth)

Launch new application
automatically depending
on extension type

(C) handheld and
network resources
consumption

Adjust power demanding
operations: network
access

(A) Redeploy
application;
tune data synch.
(C) network resources
consumption

Control
power
consumption Primary | Secondary

user activity duration
Secondary | Primary
limited power
resources Adjust power demanding

operations:
CPU frequency

(S) service response
time

Interfering effects of adaptation: implications on self-adapting systems architecture 5

Goal Context Adaptation mechanism Adaptation effect (s)

Redeploy application
(client / server split)

(S) service response
time; data integrity
(C) network resources
consumption

Primary
memory/CPU
resources Select media type and

richness adapted to
resource

(S) service accuracy

Optimize
memory
usage

or

Optimize
CPU usage Primary

memory/CPU
resources
Secondary
priority of user tasks

Suspend low-priority
applications

(G) service availability

Hand over (switch)
between networks

(C) resource
consumption
(S) cost and provided
QoS

Select a
satisfactory
network

Primary
available networks (e.g.
GSM, WiFi)
Secondary
user/application needs
(e.g. cost, response
time, security)

Select a network adaptor
adapted to network

(C) resource
consumption

Redeploy application
(client / server split)

(S) service response
time, data integrity
(C) power consumption

Select appropriate time
to perform operations
(e.g. postpone task)

(G) service availability
Primary
network capacity

Adjust data richness;
select media type;
tune data synch.

(S) service accuracy

Optimize
network
usage

Primary
network security

Select the appropriate
security model (e.g.
VPN, encryption level)

(C) resource
consumption
(S) response time

4 Implications on System Architecture

By illustrating the interfering effects of service adaptation, the analysis presented in ta-
ble 2 demonstrates the complexity of developing adaptive applications. In this section,
we extract a set of implications on the architecture of self-adapting systems. These im-
plications relate to the main functionality necessary for adapting applications: context
monitoring, adaptation reasoning and reconfiguration.

Firstly, we observe the complexity related to context monitoring. Multiple context
elements need to be taken into account. Further, these span from elementary elements,
such as network cost, to more complex aggregated or derived elements, such as pre-
dicted location. Most of these elements are domain independent. We expect the set of
relevant elements and the sources producing them to evolve in the same way as ap-
plications. This gives the following architectural implications: i1) Context monitoring
should be kept separate from the application and realized through reusable components
or context middleware. i2) The context middleware should be extensible and support the
addition of new elements and new forms of reasoning.

6 Jacqueline Floch, Erlend Stav, Svein Hallsteinsen

Secondly, concerning adaptation reasoning, we observe multiple relations between
context and adaptation mechanisms, and interfering effects of adaptation. During the
generalization done in section 3, we found it difficult to capture all relations. We also
expect that new relations will be introduced as applications and context monitoring
evolve. Two main approaches [2] have been proposed for self-adaptation: internal ap-
proaches where adaptation is realized as part of the application using programming lan-
guage features, and external approaches where adaptation mechanisms are realized by
an application-independent middleware. The main drawback of internal approaches is
the complexity introduced by intertwining adaptation and application behaviours. Also,
they poorly support application and adaptation evolution. Given our observations, these
drawbacks make internal approaches inappropriate in the context of mobile services,
and thus: i3) Adaptation mechanisms should be realized externally to the application.
External approaches require adaptations policies to be described separately from the
applications. These policies are used by the middleware to reason and decide about
adaptation. Three main approaches have been proposed for the description of policies.
Two of them are respectively illustrated by table 1 and table 2: situation-action ap-
proaches [3] and goal-oriented approaches [4]. The third approach uses utility function
that assign a utility value to each application variant as a function of application prop-
erties, context and goals [4]. The interfering effects of adaptation make the two first
approaches inappropriate, and thus: i4) Adaptation policies should be expressed using
utility functions.

Finally, concerning reconfiguration, we need to build adaptable applications. Two
general approaches have been proposed [5]: parameterization supports fine tuning of ap-
plications through the modification of program variables, while compositional variabil-
ity is specified at the component level allowing the modification of application structure
and algorithms. Parameterization is an effective way to implement variability, but may
also lead to a large set of variants and raise scalability issues, implying: i5) Adaptable
applications should be built on compositional variability combined with cautious use
of parameterization.

A main challenge given these implications is to develop effective and scalable solu-
tions for handheld devices with restricted processing and memory capabilities.

References

1. MADAM “http://www.ist-madam.org/”
2. Oreizy, P. et al. “Architecture-based approach to self-adaptive software”, IEEE Intelligent Sys-

tems and Their Applications, 1999, vol. 14 (3).
3. Garlan, D. et al.“Rainbow: Architecture-based self-adaptation with reusable infrastructure”,

IEEE Computer, 2004, vol. 37 (10).
4. Kephart, J.O. and Chess, D.M. “The vision of autonomic computing”, IEEE Computer, 2003,

vol. 36 (1).
5. McKinley, P.K. et al.“Composing adaptive software”, IEEE Computer, 2004, vol. 37 (7).

