
Model-Driven Development of Context-Aware Services

João Paulo A. Almeida1,2, Maria-Eugenia Iacob1, Henk Jonkers1, Dick Quartel2

1Telematica Instituut, P.O. Box 589, 7500 AN Enschede, The Netherlands
e-mail: { JoaoPaulo.Almeida, Maria-Eugenia.Iacob, Henk.Jonkers } @telin.nl

2Centre for Telematics and Information Technology, University of Twente,

P.O. Box 217, 7500AE, Enschede, The Netherlands
e-mail: quartel@cs.utwente.nl

Abstract. In this paper, we define a model-driven design trajectory for context-
aware services consisting of three levels of models with different degrees of
abstraction and platform independence. The models at the highest level of
platform independence describe the behaviour of a context-aware service and
its environment from an integrated perspective. The models at the intermediate
level describe abstract components, which realize the context-aware service in
terms of a service-oriented abstract platform. At the lowest level, the realization
of a context-aware service is described in terms of specific target technologies,
such as Web Services, BPEL and Parlay technologies. Our approach allows
service designers to concentrate their efforts on the services they intend to
create and offer, by facilitating the handling of context information and
automating design steps through model transformation. In addition, our
approach enables the reuse of platform-independent models for different target
platforms.

1 Introduction

The last few decades have led to an explosion of different means of communication
and the availability of ubiquitous (mobile) computing devices and sensors. This
combination has enabled the creation of mobile context-aware services, which sense
the users’ environment to provide relevant functionality to their users. The design and
provisioning of such mobile context-aware services is a challenging task, which has
justified the development of novel methods, abstractions and infrastructures for the
development of such services (e.g., [7, 8, 11, 20]). In addition, the complexity,
diversity and fast-changing nature of enabling technology platforms require design
approaches that shield designers and providers from platform-specific details allowing
them to concentrate their efforts on the services they intend to create and offer. These
factors have led us to propose the model-driven design trajectory addressed in this
paper.

Our model-driven design approach has three main objectives: (1) to facilitate
service design by providing abstractions for context-aware service specification; (2)
to improve the reusability of service specifications and designs, by promoting
independence from specific technology platforms; and (3) to improve the overall

efficiency of the service design process, by promoting the automation of design steps
by model transformations. The target platforms we consider include middleware
platforms and a part of the mobile telecommunications infrastructure, which is used to
send messages to mobile terminal users, to establish calls, and to determine the
current location and availability (or presence) of mobile terminal users.

We define three levels of models with different degrees of abstraction and platform
independence. The models at the highest level of platform independence describe the
behaviour of a context-aware service and its environment from an integrated
perspective. This level abstracts from the way context information is obtained,
focusing on context-aware behaviour. The models at the intermediate level describe
abstract components, which realize the context-aware service in terms of a service-
oriented abstract platform. This abstract platform is denoted as the A-MUSE Service
Platform (in the Freeband A-MUSE project [12]). The A-MUSE Service Platform
provides an abstraction of middleware and service discovery platforms and includes
context and action services that are provided by telecom platforms such as Parlay
[29]. In addition, this abstract platform supports service discovery with dynamic
service properties, which allows one to discover services based on context
information. At the platform-specific level, the realization of a context-aware service
is described in terms of specific target technologies, such as Web Services, BPEL and
Parlay technologies.

The paper is organised as follows. Section 2 sets the theoretical background for our
method. A number of concepts such as platform independence and abstract platform
are discussed here. Section 3 presents an overview of the different levels of models,
abstract platforms and model transformations that play an essential role in the design
trajectory. Section 4 discusses the specification of services at the highest level of
platform independence in further detail. Section 5 discusses the design of services at
the intermediate level of platform independence, and defines the A-MUSE Service
Platform. Section 6 describes a model transformation that derives a platform-
independent service design from a service specification. Finally, Section 7
summarises our results and indicate future research. The approach is illustrated in this
paper with a running example: the Telemonitoring service.

2 Model-Driven Development

In most traditional development practices, the ultimate product of the design process
is “the realization”, deployed on available realization platforms. In several model-
driven approaches, however, intermediate models are reusable and are considered
final products of the design process. These models are carefully defined so as to
abstract from details in platform technologies, and are therefore called platform-
independent models (PIMs), in line with OMG’s Model-Driven Architecture (MDA)
[18, 22, 28]. PIMs can be defined with different degrees of platform independence,
with respect to the extent to which these models constrain the selection of a target
platform. For this reason, we organize the various models of an application into
different levels of platform independence [3].

The concept of abstract platform [3, 4] is an important architectural concept of our
approach to model-driven design. An abstract platform is an abstraction of

infrastructure characteristics assumed to exist in the construction of platform-
independent models of an application at some point in the design process.

An abstract platform defines an acceptable or, to some extent, ideal platform from
an application developer’s point of view. The characteristics of an abstract platform
must have proper mappings onto the set of (concrete) target platforms that are
considered for a design. In this way, the notion of abstract platform allows a designer
to explicitly define levels of platform independence.

We follow a design process [5, 13] that covers two main phases: the preparation
phase and the service creation phase, both briefly described below.

In the preparation phase, experts identify (and, when necessary, define) the
required levels of models, their abstract platforms and the modelling language(s) to be
used. In addition, during the preparation phase an expert may identify or define
(automated) transformations between related levels of models. Since the design
trajectory is effectively defined in this phase, it requires careful consideration of
application domain requirements, target platform characteristics and design goals.

The results of the preparation phase are used in the service creation phase, as
illustrated schematically in Figure 1.

service creation
phase

application domain
requirements

preparation
phase

target platform
characteristics models and

realization

models and
realization

transforma-
tions

abstract
platforms

modelling
languages

user (application)
requirements

experts service
designers

Figure 1. The preparation phase and its results

The design process described in [5, 13] is neutral with respect to specific application
domains and target platforms. In this paper, however, we consider the specific case of
context-aware services, which are ultimately deployed on top of a
(telecommunications) services infrastructure and middleware platforms. In this case,
our objective in the preparation phase is to capture design knowledge that is
applicable to a large number of different context-aware services and that can be later
reused in the service creation phase in the design of a specific service, which
addresses specific service requirements. This includes knowledge on how to cope
with distribution in the middleware platforms targeted, but also includes knowledge
on how context information is handled in the target context-aware services
infrastructure.

The service creation phase entails the creation of models of a specific service
using specific modelling languages and abstract platforms and applying (manual and
automated) transformations to models. The service creation phase leads ultimately to
a realization (or alternative realizations) of the service that satisfies user requirements,
while capturing reusable platform-independent models of the service design. This
phase also entails analysis, testing and validation of models and realizations. For an
extensive presentation of the methodological support for both the preparation and
service creation phase we refer to [5].

3 Design Trajectory Overview

This section explores the main activities and deliverables of the preparation phase in
the design trajectory for context-aware services. We first consider a generic
decomposition (architecture) of a context service. Based on this decomposition, we
identify the characteristics of the A-MUSE Service Platform, and derive the necessary
levels of models to be used in the service creation phase.

3.1 Context-Aware Services and the A-MUSE Service Platform

Context-awareness refers to the capabilities of applications to provide relevant
services to their users by sensing and exploring the users’ context [7, 11, 20]. Context
is defined as a “collection of interrelated conditions in which something exists or
occurs” [11]. The users’ context often consists of a collection of conditions, such as,
e.g., the users’ location, environmental aspects (temperature, light intensity, etc.) and
activities [8]. The users’ context may change dynamically, and, therefore, a basic
requirement for a context-aware system is its ability to sense context and to react to
context changes (without intervention of the user). Changes in context can be
considered external stimuli, namely events, which require a (re)action from the
context-aware system.

A decomposition of a context-aware service reveals the architecture shown in
Figure 2. This architecture consists of context sources, which are able to sense context
and represent it as context information in the scope of the system. The service
provided by context sources is used by a coordination component, which requests
actions to be executed by action providers depending on situations that can be
inferred from context information. For example, two users may require a service to
establish a call between them when they are located within a certain range of each
other. An example of an action provider suitable for this service is a Parlay gateway
[29], which can be requested to establish a telephone call between two users. Each
user accesses the service through a user component, which provides the user interface
and interacts with the coordination component.

condition 1

condition 3

…

context

condition 2

service users

context-aware
service

user
component

context
sources

context
sources

coordination
component

 action
providers

user
components

service
trader

Figure 2. Decomposition of a context-aware service

The user components and the coordination component exhibit service-specific
behaviour, and are called service components. In contrast, context sources and action
providers are general-purpose and, therefore, can be reused in several different
context-aware services. For this reason, we consider context sources and action

providers as part of the A-MUSE Service Platform (see elements encircled with
dashed lines in Figure 2). This platform also supports the interaction between the user
components and the coordination component and the interactions between the
coordination component and context sources and action providers. The service
provided by context sources and action providers to the coordination component is
registered in a service trader. This allows the coordination component to select
context sources and action providers dynamically according to service offers that are
registered in the service trader. Service offers have properties that can be used to
select a particular service offer. For example, an action provider can be selected
according to its geographical proximity to a user.

3.2 Levels of Models for Context-Aware Services Development

We define the scope of the design trajectory to include the design activities from the
specification of a service at a high-level of abstraction to the realization of this
service. Given this scope, one extreme approach to organizing the design trajectory
would be to have one level of service specification and one level of service realization
and one transformation that relates these two levels. However, the gap between these
two levels of models may be very large. This means that a lot of effort should be
invested in defining the transformation. This effort is rendered useless when changes
in the target platform invalidate the transformation. Therefore, the opportunities for
reuse can be increased if an intermediate level of models is introduced. This level of
models uses an abstract platform to achieve platform independence, and, hence,
models at this level can be reused for different target platforms. The organization of
the design trajectory is depicted in Figure 3. The three levels of models we have
identified are:

Service specification level. This level of models describes the behaviour of a
context-aware service from an external perspective. At this level, we do not
distinguish the environment (including service users) and the service provider. The
concept of action is used to model both the occurrence of events originated from
context sources and the execution of actions. This allows modelling context-aware
behaviour at a high-level of abstraction. At this level of abstraction, the service
specifier ignores how context information is obtained from context sources. Services
are described in a domain-specific language called Events-Conditions-Actions
Domain Language (ECA-DL).

Platform-independent service design level. This level of models describes the
behaviour of a context-aware service from an internal perspective, revealing a
service-specific coordination component and the A-MUSE Service Platform. The A-
MUSE Service Platform is the result of the composition of: a Service-Oriented-
Architecture (SOA) abstract platform, which uses abstract interactions [2] to support
the communication of application parts in this design; a service discovery platform
which consists of a service trader; and general-purpose context and action services.
This level of models reveals how context and action services are registered, searched
for, and used by coordination components. The transformation denoted with T1 in
Figure 3 introduces the coordination component so that the behaviour of the
composition of the coordination component and the A-MUSE Service Platform
performs the service specified at the service specification level.

Platform-specific service design level. This level of models describes the
realization of the service for particular platforms. The flexibility of the relation
between the platform-independent service design level and the platform-specific
service design level allows different middleware platforms to be used. Model
transformations can be used to create models at this level. For example, one could use
them to generate the BPEL specification of the context-aware service that orchestrates
(using a BPEL engine and SOAP [30]) web services (e.g. Parlay-X services [29]) for
which WSDL interfaces [31] are provided. This transformation is illustrated in Figure
3 denoted by T2. In this figure, T3 denotes a transformation to CORBA and Parlay.

T2

platform-
independent

service design

level B – platform-specific realization

level A – service specification

level X – platform-independent service design

platform
selection

platform-
independent

design

platform-
specific design

T3

A-MUSE abstract platform =
SOA + trader + context/action services

WS + Parlay-X CORBA + Parlay

service
specification

T1

model transformations

models

ECA-DL

platform-
specific

service design

platform-
specific

service design

Figure 3. Design trajectory consisting of three levels of models

4 Service Specification Level

At the level of service specification a context-aware service can be described in terms
of events, which represent contextual changes, queries to context sources, and actions,
which represent actions to be performed in order to provide the service to the user.
We defined this level through a domain-specific language for the domain of context-
aware services specification. We specialize elements of a general-purpose design
language, namely the Interaction System Design Language (ISDL) [15, 26, 27], thus
defining a dialect of it, which we call Events-Conditions-Actions Domain Language
(ECA-DL). This language provides a means to specify behaviours in terms of actions
and causality relations between these actions. The specialization consists of defining
special types of actions, namely, context events (CE), context query requests (CQ),
context query responses (CQ’) and action invocation requests (AI) and action
invocation responses (AI’). Context query requests and context query responses are
always related by causality, forming a pattern. The definition of the ECA-DL is
illustrated schematically in Figure 4 (complete meta-models for ECA-DL in OMG’s
Meta-Object Facility (MOF) are described in [6]).

ISDL

language-level

service
specification

instantiation of language
elements

model-level

additional
constraints

and patterns

+
language elements

+

CE

specialization
of language

elements
CQ

AI

CQ’

AI’

CE
AI

…

…

ECA-DL

+ UML and
OCL

Figure 4. Definition of the ECA-DL language for context-aware service specification

In order to illustrate the usage of the proposed language and approach, we consider
the design of a “Telemonitoring service” for epilepsy patients [17]. The service
assumes the availability of sensor technology that enables a wearable 24-hour seizure
monitoring system. A couple of minutes before the onset of a seizure, the monitoring
system detects its signs. The patient is warned of an imminent seizure and based on
location information a voluntary aid person (e.g., spouse) or a health team can be
dispatched for assistance.

The Telemonitoring service specification is depicted in Figure 5. Ovals represent
specialized actions (with a naming convention with suffixes). Arrows indicate
enabling relations between actions; white diamonds represent choice and white
squares denote disjunction.

Figure 5. The Telemonitoring service specification (exported from Grizzle [14] ISDL tool)

A simple naming convention has been used to indicate the type of action: suffix
_indC denotes context events; suffixes _reqC and _rspC denote context query
requests and context query responses; and suffixes _reqA and _rspA denote action
invocation requests and action invocation responses. The event seizureAlert_indC
represents that an (imminent) epileptic seizure has been detected in a patient being

monitored. The action alertPatient_reqA requests the patient to be informed about the
seizure. Following a seizure alert, the patient’s current location and speed is requested
(position_reqC followed by position_rspC). An aid person within range of the patient
is informed of the seizure and the current location of the patient (alertAid_reqA).
When no aid persons are available or the speed of the patient exceeds a certain value
(which could indicate a hazardous situation) a health team capable of handling
epileptic seizures is dispatched to the location of the patient. The Grizzle ISDL tool
[14] is used for model editing and simulation of service specifications.

ISDL allows designers to use a modelling language of their choice to define the
attributes of actions and constraints on these attributes. For ECA-DL, we have chosen
to use UML class diagrams [25] for the (context) information attributes. Further, we
use a subset of the Object Constraint Language (OCL) [24] to express constraints on
information attributes. Constraints on information attributes serve to specify context-
dependent conditions and action results, and can also be used to specify required
properties of action services. This is illustrated in the constraints of action
alertAid_reqA in Figure 5: only an aid person within range of the patient is informed
of the seizure.

5 Platform-Independent Service Design Level

At the platform-independent service design level, the service is provided by a service-
specific coordination component in cooperation with the A-MUSE Service Platform.
This abstract platform is the result of the composition of: a Service-Oriented-
Architecture (SOA) abstract platform; a service discovery platform; and general-
purpose context and action services. The structure of platform-independent service
designs is depicted schematically in Figure 6, revealing the hierarchy of elements that
constitute the A-MUSE Abstract Platform. This figure also shows the relation
between the service specification level and the platform-independent service design
level.

model MB1

model MA

T1

T2

model MX

service specification

platform-independent
service design

platform
selection

platform-
independent

design

platform-
specific
design

T3

model MB2

WS + Parlay-X CORBA + Parlay

context-aware
service

service decomposition

A-MUSE abstract
platform

SOA abstract platform + service trader
(service discovery) run -time

repository

action and
context services

SOA abstract platform
(services, service providers, service endpoints)

service-specific coordination components

Figure 6. Abstract platforms at the platform-independent service design level

A schematic overview of the approach for the definition of the hierarchy of abstract
platforms that constitutes the A-MUSE Service Platform is shown in Figure 7. The
service-oriented abstract platform is defined using a pure language-level approach
[4], i.e., the modelling language used defines the characteristics of the abstract
platform. The language adopted is ISDL (meta-models for ISDL in MOF are
described in [6], based on [9]). The information and location attributes of actions are
described with UML. Constraints on these attributes are described with OCL. Since
this level defines a composition of various (potentially distributed) components,
which operates through services, it is necessary to describe the interactions between
components. This is done with abstract interactions, which can be represented in
ISDL ([2] discusses how these abstract interactions can be realized on different
middleware platforms). The service discovery abstract platform is built on top of the
underlying service-oriented abstract platform and is defined with a model-level
approach, i.e., with the definition of reusable modelling artefacts. This abstract
platform consists of a service trader component, defined in ISDL. On top of that,
context and action services are defined, completing the A-MUSE Service Platform.

ISDL
concepts

language-level

service
components

Instantiation of language
elements

model-level

language elements
SOA platform

pre-defined
artefacts from

abstract platform

…

Incorporation of
pre-defined artefacts

Service Discovery platform

Service Trader

…

A-MUSE Abstract Platform

Context Sources and
Action Services

platform-independent
service design

+

UML class diagrams and OCL

…

Figure 7. Defining the hierarchy of abstract platforms definition

We omit any detailed ISDL descriptions of the service trader and context and action
services due to space limitations. We refer the reader to [6] for the complete ISDL
specifications with OCL constraints and UML class diagrams for information
attributes.

6 Model transformation

Given a service specification in ECA-DL, a platform-independent service design,
specified in standard ISDL, can be derived automatically using model transformation.
As a proof of concept, we have implemented this transformation using the Graph
Rewriting And Transformation (GReAT) software developed at Vanderbilt University

[1, 18]. GReAT has been implemented within the Generic Modelling Environment
(GME) [19], a configurable toolset for the creation of domain-specific modelling
environments. An editor for a domain-specific language (called a ‘paradigm’ in
GME) can be created based on a metamodel of the language specified in MetaGME, a
graphical UML-like metamodelling language (which in itself has been defined as a
GME paradigm) [18]. One of the main drawbacks of the GME is its use of proprietary
formats for metamodelling and model exchange, rather than conforming to standards
such as MOF and XMI.

In GReAT, model transformations are specified using a graphical graph
transformation language called UML Model Transformer (UMT), which has also
been defined as a GME paradigm. The transformation specification makes use of
metamodels of the source and destination languages defined in MetaGME. For our
example, we have defined metamodels for ECA-DL (source) and ISDL (target), and a
UMT specification to derive a platform-independent service design from a service
specification. Figure 8 illustrates this.

Conforms
to

Conforms
to

Conforms
to

Uses

ECA-DL
metamodel
(MetaGME)

ECA-DL
metamodel
(MetaGME)

ISDL
metamodel
(MetaGME)

ISDL
metamodel
(MetaGME)

Service
specification

(ECA-DL)

Service
specification

(ECA-DL)

Platform-
independent

service design
(ISDL)

Platform-
independent

service design
(ISDL)

Transformation
specification

(UMT)

Transformation
specification

(UMT)

Uses

GReAT
transformationIs

applied to Creates
Figure 8. Overview of the transformation approach

One of the central concepts of the GReAT model transformation approach is the
substitution of graph patterns, which provides an intuitive way to express the types of
transformations that we want to perform here. Figure 9 shows an example of a UMT
transformation rule, which for each ECA-DL action of type AI (action invocation
request), creates a sequence of three interactions in the ISDL design. These are
interactions between the coordination service component and the A-MUSE abstract
platform.

Figure 9. Example of a UMT transformation rule

The interactions realize the abstract action, involving a request to the service trader, a
response from the service trader and the invocation of the appropriate action service
according to the response issued by the service trader. Similarly, rules have been
defined for the other ECA-DL action types, as well as rules to derive the relations
between actions and rules concerning the action attributes. Figure 10 shows the effect
of this rule in an informal way.

Figure 10. Informal illustration of the AI transformation rule

The platform-independent service design is the result of the application of all the
transformation rules to the service specification. Figure 11 shows the generated
coordination component. The dashed lines represent causality relations already
present in the service specifications.

Figure 11. Coordination component for Telemonitoring service (exported from Grizzle)

The TelemonitoringECAServiceCoordination enforces the behaviour defined at the
service specification level (shown in Figure 5). The coordination component uses
context and action services that constitute the A-MUSE Service Platform, including
the ability to send and receive SMSs and to check the position and availability of
mobile terminal users. The service trader is consulted to find appropriate context
sources and action services depending on the constraints on information attributes that
have been specified at the service specification level. For example, the
seizureAlert_indC context event is refined in a number of interactions that lead to the
notifyEvent_SeizureAlert_indC between the TelemonitoringECAServiceCoordination
and the EventBasedSeizureService. The constraint on the location of aid persons in
alertAid_reqA has been transformed into a constraint on the value of a service
property in the query of the reqServiceQuery_alertAid_reqA interaction. This is a
dynamic service property that is evaluated by the service trader after the query is
issued.

7 Conclusions

In this paper we have proposed a model-driven design trajectory for context-aware
and mobile services, in which a number of concepts such as platform independence,
abstract platform, context-awareness and service orientation play an important role.
We have presented the design trajectory by discussing the necessary levels of models,
the choice of modelling languages, and the definition of platforms and
transformations. Further, we have illustrated the application of our approach by means
of an example (i.e., the Telemonitoring service). The Telemonitoring design exercise
helped us to emphasize the role of model transformations, but also to understand to
what extent the whole design process can be automated.

The service specification level emphasizes ease of use for the service specifier and
platform independence for service specifications. A context-aware service is defined
from its integrated perspective abstracting from any components that may support the
execution of the service in terms of technology platforms such as Parlay or Parlay-X
(which provide context and action services in the telecommunications domain) and
Web Services or CORBA (which provide service-oriented middleware architectures,
including some service discovery functionality).

The abstract platform at the platform-independent service design level has been
chosen based on the pattern of service discovery found in a number of middleware
platforms (e.g., OMG CORBA trader [23] and the UDDI registry [21]) and in the
ODP trader [16]. The trader service in the A-MUSE Service Platform is capable of
supporting a simple constraint language and is capable of supporting dynamic service
properties, which allows contextual information to be used to trade for services, as we
have shown in the Telemonitoring example. These capabilities of the service trader do
not have to be implemented in the coordination component, therefore simplifying the
design of transformations that use the A-MUSE platform as target. For a discussion
on the realization of the service trader in UDDI and CORBA trader we refer the
reader to [6]. We believe the service discovery abstract platform described in this
paper is domain neutral and can be used where a service-oriented architecture is
needed, without dependence on a particular technology platform such as Web
Services.

We have used ISDL (and ECA-DL as a specialization thereof) to model the
behavioural aspects of services for three main reasons. Firstly, ISDL supports a broad
spectrum of abstraction levels which allows us to cover from service specification to
service design seamlessly. Secondly, the concept of abstract interaction enables us to
capture service designs in a middleware-platform-independent manner (as shown in
[2]). And, finally, conformance rules have been defined [26] which can be used to
verify whether service designs respect service specifications.

We have used UML class definitions and OCL constraints to model context
information. In the context of the A-MUSE project, we are investigating the use of
semantic models expressed in OWL. The latter may allow the designer to
automatically reason whether, for example, two services are semantically connectible.
We are also working on the further development of the ECA-DL and the A-MUSE
abstract platform. Tool support for the various levels of models in this design
trajectory will be incorporated in an integrated environment for model-driven service
engineering.

Acknowledgements

This work is part of the Freeband A-MUSE project (http://a-muse.freeband.nl), which
is sponsored by the Dutch government under contract BSIK 03025. Marten van
Sinderen, Luís Ferreira Pires and Remco Dijkman are acknowledged for their
suggestions and remarks on the model-driven approach reported in Sections 2 and 3.

References

1. Agrawal, A., Karsai, G., Ledeczi, A.: An end-to-end domain-driven software development
framework. In: Companion of the 18th Annual ACM SIGPLAN Conf. on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA), ACM Press (2003) 8–15

2. Almeida, J.P.A., Dijkman, R., Ferreira Pires, L., Quartel, D., van Sinderen, M.: Abstract
Interactions and Interaction Refinement in Model-Driven Design. In: Proc. 9th IEEE EDOC
Conference (EDOC 2005), IEEE Computer Society Press (2005) 273−286

3. Almeida, J.P.A., van Sinderen, M., Ferreira Pires, L., Quartel, D.: A systematic approach to
platform-independent design based on the service concept. In: Proc. 7th IEEE Int’l Conf. on
Enterprise Distributed Object Computing (EDOC 2003). IEEE Computer Society Press
(2003) 112−123

4. Almeida, J.P.A. Dijkman, R. van Sinderen, M., Ferreira Pires, L.: On the Notion of Abstract
Platform in MDA Development, In: Proc. 8th IEEE Int’l Conf. on Enterprise Distributed
Object Computing (EDOC 2004), IEEE Computer Society Press (2004) 253−263

5. Almeida, J.P.A., Iacob, M.E., Iacob, S.: Methodological Framework for Freeband Services
Development, Freeband A-MUSE/D2.3a, TI/RS/2004/092, Telematica Instituut, Enschede,
The Netherlands (2004); https://doc.telin.nl/dscgi/ds.py/Get/File-47390

6. Almeida, J.P.A., Iacob, M.E., Jonkers, H., Quartel, D.: Platform-Independent Modelling of
Service Infrastructure Components, Freeband A-MUSE/D1.6, TI/RS/2005/078, Telematica
Instituut, Enschede, The Netherlands (2005); https://doc.telin.nl/dscgi/ds.py/Get/File-59319

7. Dey, A. K., Salber, D., and Abowd, G. D.: A Conceptual Framework and a Toolkit for
Supporting the Rapid Prototyping of Context-Aware Applications. Human-Computer
Interaction, 16(2-4) (2001) 97−166

8. Chen, H. Finin, T., Joshi, A.: An ontology for context-aware pervasive computing
environments, Knowledge Engineering Review, Special Issue on Ontologies for Distributed
Systems, Vol. 18, No. 3. Cambridge University Press (2003) 197–207

9. Dijkman, R.M.: Consistency in Multi-Viewpoint Architectural Design, Ph.D. thesis,
University of Twente, The Netherlands (2006)

10. Dirgahayu, T.: Model-Driven Engineering of Web Service Compositions: A Transformation
from ISDL to BPEL, M.Sc. thesis, University of Twente, The Netherlands (2005)

11. Dockhorn Costa, P. Ferreira Pires, L., van Sinderen, M.: Designing a Configurable Services
Platform for Mobile Context-Aware Applications, International Journal of Pervasive
Computing and Communications (JPCC), Vol. 1, No. 1. Troubador Publishing (2005)

12. Freeband A-MUSE Project; http://a-muse.freeband.nl
13. Gavras, A., Belaunde, M., Ferreira Pires, L., Almeida, J.P.A.: Towards an MDA-based

Development Methodology for Distributed Applications. In: Software Architecture: First
European Workshop (EWSA2004), LNCS 3047, Springer (2004) 230–240

14. Grizzle; http://isdl.ctit.utwente.nl/tools/grizzle
15. ISDL home; http://isdl.ctit.utwente.nl/
16. ITU-T / ISO: ODP Trading Function: Specification, ITU-T Recommendation X.950 | IS

13235-1 (1997)

17. Jonkers, H., Iacob, M.E., Lankhorst, M., Strating, P.: Integration and Analysis of Functional
and Non-Functional Aspects in Model-Driven E-Service Development. In: Proc. 9th IEEE
EDOC Conference (EDOC 2005), IEEE Computer Society Press (2005) 229–238

18. Karsai, G., Agrawal, A.: Graph transformations in OMG’s Model Driven Architecture. In:
Applications of Graph Transformations with Industrial Relevance, Second International
Workshop (AGTIVE2003), Charlottesville, VA, USA (2003) 243–259

19. Ledeczi, A. et al.: The Generic Modeling Environment. In: Proc. Workshop on Intelligent
Signal Processing, Budapest, Hungary (2001)

20. McFadden, T., Henricksen, K., Indulska, J., Mascaro, P.: Applying a Disciplined Approach
to the Development of a Context-Aware Communication Application. In: 3rd IEEE Int’l
Conf. on Pervasive Computing and Communications (PerCom), IEEE Computer Society
Press (2005) 300–306

21. OASIS: OASIS - Committees - OASIS UDDI Specifications TC; http://oasis-
open.org/committees/uddi-spec/doc/tcspecs.htm

22. Object Management Group: MDA-Guide, Version 1.0.1, omg/03-06-01 (2003)
23. Object Management Group: Trading Object Service Specification, Version 1.0, formal/00-

06-27 (2000)
24. Object Management Group: Unified Modelling Language: Object Constraint Language

version 2.0, ptc/03-10-04 (2003)
25. Object Management Group: UML 2.0 Superstructure, ptc/03-08-02 (2003)
26. Quartel, D.: Action relations Basic design concepts for behaviour modelling and refinement,

Ph.D. thesis, University of Twente, Enschede, The Netherlands (1998)
27. Quartel, D. Ferreira Pires, L., van Sinderen, M.: On Architectural Support for Behaviour

Refinement. In: Journal of Integrated Design and Process Science, Vol. 6, No. 1. IOS (2002)
28. Selic, B.: The Pragmatics of Model-Driven Development. IEEE Software, Vol. 20, No. 5,

IEEE Computer Society Press (2003) 19–25
29. The Parlay Group: “The Parlay Group – Specifications”; http://www.parlay.org
30. World Wide Web Consortium: SOAP Version 1.2 Part 1: Messaging Framework, W3C

Proposed Recommendation (2003); http://www.w3.org/TR/soap12-part1
31. World Wide Web Consortium: Web Services Description Language (WSDL) 1.1, W3C

Note (2001); http://www.w3.org/TR/wsdl

