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Abstract. We introduce a weighted propositional configuration logic
over a product valuation monoid. Our logic is intended to serve as a
specification language for software architectures with quantitative fea-
tures such as the average of all interactions’ costs of the architecture and
the maximum cost among all costs occurring most frequently within a
specific number of components in an architecture. We provide formulas
of our logic which describe well-known architectures equipped with quan-
titative characteristics. Moreover, we prove an efficient construction of a
full normal form which leads to decidability of equivalence of formulas
in this logic.
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1 Introduction

Architectures are a critical issue in design and development of complex software
systems since they characterize coordination principles among the components
of a system. Whenever the construction of a software system is based on a
“good” architecture, then the system satisfies most of its functional and quality
requirements. Well-defined architectures require a formal treatment in order to
efficiently characterize their properties. A recent work towards this direction is
[13], where the authors introduced propositional configuration logic (PCL for
short) which was proved sufficient enough to describe architectures: the mean-
ing of every PCL formula is a configuration set, which intuitively represents
permissible component connections, and every architecture can be represented
by a configuration set on the collection of its components. Furthermore, the
authors of [13] studied the relation among architectures and architecture styles,
i.e., architectures with the same types of components and topologies.
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PCL is a specification logic of software architectures which is able to describe
their qualitative features. However, several practical applications require also
quantitative characteristics of architectures such as the cost of the interactions
among the components of an architecture, the time needed, or the probability
of the implementation of a concrete interaction. For instance, several IoT and
cloud applications, which are based on Publish/Subscribe architecture, require
quantitative features [14,18,19]. Moreover, considering a set of components and
an architecture style, there may occur several architectures where each of them
has a specific amount of some resource (e.g. memory or energy consumption).
In such a setting, the most suitable architecture must be chosen, depending
on the available resources or the performance. Generally, quantitative proper-
ties are essential for performance related properties and for resource-constrained
systems.

The authors in [17] introduced and investigated a weighted PCL (wPCL for
short) over a commutative semiring (K,⊕,⊗, 0, 1) which serves as a specification
language for the study of software architectures with quantitative features such
as the maximum cost of an architecture or the maximum priority of a component.
Nevertheless, operations like average for response time or power consumption
cannot be described within the algebraic structure of semirings. Such operations
are important for practical applications and have been investigated for weighted
automata in [4–6]. In [7,8] the authors provided valuation monoids as a general
algebraic framework, which describe several operations that cannot fit in the
structure of semirings. More recently, in [15] nested weighted automata have
been considered under probabilistic semantics for expressing properties such as
“the long-run average resource consumption is below a threshold”. Also, the
authors in [6] presented algorithms which are designed specifically for computing
the average response time on graphs, game graphs, and Markov chains.

However, the aforementioned works have not been developed for the setting
of systems’ architectures and therefore cannot express characteristics such as
the average cost of an architecture or the maximum most frequent cost/priority
that occurs in an architecture. In this paper, we tackle this problem by extend-
ing the work of [17]. Specifically, we introduce and investigate a weighted PCL
over product valuation monoids (wpvmPCL for short) which is proved sufficient
to serve as a specification language for software architectures with important
quantitative features that are not covered in [17].

The contributions of our work are the following. We introduce the syntax and
semantics of wpvmPCL. The semantics of wpvmPCL formulas are polynomials
with values in the product valuation monoid. Then, in our main result, we prove
that for every wpvmPCL formula over a set of ports and a product valuation
monoid with specific properties, we can effectively construct an equivalent one
in full normal form, which is unique up to the equivalence relation. The second
main result is the decidability of equivalence of wpvmPCL formulas. Lastly, we
describe in a strict logical way several well-known software architectures with
quantitative characteristics. We skip detailed proofs of our results which are
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similar to the corresponding ones of [17] and [16]. We refer the reader to the full
version of our paper on arXiv [11].

2 Preliminaries

In this section, we recall valuation monoids and product valuation monoids [8]. A
valuation monoid (D,⊕, val, 0) consists of a commutative monoid (D,⊕, 0) and
a valuation function val : D+ → D, where D+ denotes the set of nonempty finite
words over D, with val(d) = d for all d ∈ D and val(d1, . . . , dn) = 0 whenever
di = 0 for some i ∈ {1, . . . , n}.

(D,⊕, val,⊗, 0, 1) is a product valuation monoid, or pv-monoid for short if
(D,⊕, val, 0) is a valuation monoid, ⊗ : D2 → D is a binary operation, 1 ∈ D
with val(1)1≤i≤n = 1 for all n ≥ 1 and 0 ⊗ d = d ⊗ 0 = 0, 1 ⊗ d = d ⊗ 1 = d
for all d ∈ D. The pv-monoid is denoted simply by D if the operations and
the constant elements are understood. A pv-monoid D is left-⊕-distributive if
d ⊗ (d1 ⊕ d2) = (d ⊗ d1) ⊕ (d ⊗ d2) for any d, d1, d2 ∈ D. Right-⊕-distributivity
is defined analogously. If a pv-monoid D is both left- and right-⊕-distributive,
then it is ⊕-distributive. If ⊗ is associative, then D is called associative. We call
D left-val-distributive if for all n ≥ 1 and d, di ∈ D with i ∈ {1, . . . , n}, it holds
d⊗val(d1, . . . , dn) = val(d⊗d1, . . . , d⊗dn). Moreover, the pv-monoid D is called
(additively) idempotent if d ⊕ d = d for every d ∈ D.

In the following we recall some pv-monoids from [8]. The algebraic struc-
tures (R∪{−∞},max, avg, +,−∞, 0) and (R∪{+∞}, min, avg,+,+∞, 0) with
avg(d1, . . . , dn) = 1

n

∑n
i=1 di are pv-monoids. More precisely, they are left-val-

distributive and ⊕-distributive pv-monoids. Also, the structure (R∪{−∞,+∞},
min,maj,max,+∞,−∞), where maj(d1, . . . , dn) is the greatest value among
all values that occur most frequently among d1, . . . , dn, is a ⊕-distributive pv-
monoid but not left-val-distributive. Both avg and maj are symmetric functions,
i.e., the value of the function given n arguments is the same no matter the order
of the arguments. Moreover, the pv-monoids mentioned before are idempotent.

Throughout the paper (D,⊕, val,⊗, 0, 1) will denote an idempotent pv-
monoid where val is symmetric.

Let Q be a set. A formal series (or simply series) over Q and D is a mapping
s : Q → D. The support of s is the set supp(s) = {q ∈ Q | s(q) 	= 0}. A series
with finite support is called also a polynomial. We denote by D 〈Q〉 the class of
all polynomials over Q and D.

3 Weighted Propositional Interaction Logic

In this section, we introduce the weighted propositional interaction logic over
pv-monoids. Firstly, we recall from [13] the propositional interaction logic.

Let P be a nonempty finite set of ports. We let I(P ) = P(P )\{∅}, where
P(P ) denotes the power set of P . Every set α ∈ I(P ) is called an interaction.
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The syntax of propositional interaction logic (PIL for short) formulas over P is
given by the grammar

φ ::= true | p | φ | φ ∨ φ

where p ∈ P . As usual, we set φ = φ for every PIL formula φ and false = true.

Hence, the conjunction of two PIL formulas φ, φ′ is defined by φ∧φ′ =
(
φ ∨ φ′).

A PIL formula of the form p1 ∧ · · · ∧ pn with n > 0, and pi ∈ P or pi = p′
i with

p′
i ∈ P for every 1 ≤ i ≤ n, is called a monomial. For simplicity we denote a

monomial p1 ∧ · · · ∧ pn by p1 . . . pn. Monomials of the form
∧

p∈P+
p ∧∧p∈P− p

with P+ ∪ P− = P and P+ ∩ P− = ∅ are called full monomials.
Let φ be a PIL formula and α an interaction. We define the satisfaction

relation α |=i φ by induction on the structure of φ as follows:

- α |=i true, - α |=i φ iff α �|=i φ,
- α |=i p iff p ∈ α, - α |=i φ1 ∨ φ2 iff α |=i φ1 or α |=i φ2.

For every α ∈ I(P ) it holds α 	|=i false. Moreover, for every interaction
α ∈ I(P ) we define its characteristic monomial mα =

∧
p∈α p∧∧p�∈α p. A charac-

teristic monomial mα is actually a full monomial that formalises the interaction
α. Then, for every α′ ∈ I(P ) we trivially get α′ |=i mα iff α′ = α.

Throughout the paper P will denote a nonempty finite set of ports.

Definition 1. Let D be a pv-monoid. Then, the syntax of formulas of weighted
PIL (wpvmPIL for short) over P and D is given by the grammar

ϕ ::= d | φ | ϕ ⊕ ϕ | ϕ ⊗ ϕ

where d ∈ D and φ denotes a PIL formula over P.

We denote by PIL(D,P ) the set of all wpvmPIL formulas over P and D.
Next, we present the semantics of formulas ϕ ∈ PIL(D,P ) as polynomials ‖ϕ‖ ∈
D 〈I(P )〉. For the semantics of PIL formulas φ over P we use the satisfaction
relation as defined above. Hence, the semantics of PIL formulas φ gets only the
values 0 and 1.

Definition 2. Let ϕ ∈ PIL(D,P ). The semantics of ϕ is a polynomial ‖ϕ‖ ∈
D 〈I(P )〉. For every α ∈ I(P ) the value ‖ϕ‖ (α) is defined inductively on the
structure of ϕ as follows:

- ‖d‖ (α) = d, - ‖ϕ1 ⊕ ϕ2‖ (α) = ‖ϕ1‖ (α) ⊕ ‖ϕ2‖ (α),

- ‖φ‖ (α) =
{

1 if α |=i φ
0 otherwise , - ‖ϕ1 ⊗ ϕ2‖ (α) = ‖ϕ1‖ (α) ⊗ ‖ϕ2‖ (α).

4 Weighted Propositional Configuration Logic

In this section, we introduce and investigate the weighted propositional configu-
ration logic over pv-monoids. But first, we recall the propositional configuration
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logic (PCL for short) from [13]. The syntax of PCL formulas over P is given by
the grammar

f ::= true | φ | ¬f | f � f | f + f

where φ denotes a PIL formula over P. The operators ¬, �, and + are called com-
plementation, union, and coalescing, respectively. The intersection � is defined
by f1 � f2 := ¬ (¬f1 � ¬f2).

We let C(P ) = P(I(P ))\{∅}. For every PCL formula f and γ ∈ C(P ) the
satisfaction relation γ |= f is defined inductively on the structure of f as follows:

- γ |= true, - γ |= ¬f iff γ 	|= f,
- γ |= φ iff α |=i φ for every α ∈ γ, - γ |= f1 � f2 iff γ |= f1 or γ |= f2,
- γ |= f1 + f2 iff there exist γ1, γ2 ∈ C(P ) such that γ = γ1 ∪ γ2,

and γ1 |= f1 and γ2 |= f2.

We define the closure ∼ f of every PCL formula f by ∼ f := f + true.
Two PCL formulas f, f ′ are called equivalent, and we denote it by f ≡ f ′,

whenever γ |= f iff γ |= f ′ for every γ ∈ C(P ). We refer the reader to [13] and
[17] for properties of PCL formulas.

Next, we introduce our weighted PCL over pv-monoids.

Definition 3. Let D be a pv-monoid. The syntax of formulas of the weighted
PCL (wpvmPCL for short) over P and D is given by the grammar

ζ ::= d | f | ζ ⊕ ζ | ζ ⊗ ζ | ζ � ζ | ∗ζ

where d ∈ D, f denotes a PCL formula over P , and � denotes the coalescing
operator among wpvmPCL formulas. The operator ∗ is called valuation operator.

We denote by PCL(D,P) the set of all wpvmPCL formulas over P and D.
We present the semantics of formulas ζ ∈ PCL(D,P ) as polynomials ‖ζ‖ ∈
D 〈C(P )〉. For the semantics of PCL formulas we use the satisfaction relation as
defined previously.

Definition 4. Let ζ ∈ PCL(D,P ). The semantics of ζ is a polynomial ‖ζ‖ ∈
D 〈C(P )〉 where for every γ ∈ C(P ) the value ‖ζ‖ (γ) is defined inductively on
the structure of ζ as follows:

– ‖d‖ (γ) = d,

– ‖f‖ (γ) =
{

1 if γ |= f
0 otherwise ,

– ‖ζ1 ⊕ ζ2‖ (γ) = ‖ζ1‖ (γ) ⊕ ‖ζ2‖ (γ),
– ‖ζ1 ⊗ ζ2‖ (γ) = ‖ζ1‖ (γ) ⊗ ‖ζ2‖ (γ),
– ‖ζ1 � ζ2‖ (γ) =

⊕
γ1 ·∪γ2=γ (‖ζ1‖ (γ1) ⊗ ‖ζ2‖ (γ2)),

– ‖∗ζ‖ (γ) =
⊕

n>0

⊕
⋃· n

i=1γi=γ val (‖ζ‖ (γ1), . . . , ‖ζ‖ (γn))

where ·∪ denotes that the sets γ1, . . . , γn consist a partition of γ for every n > 0.
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It is important to note here that since the semantics of every wpvmPCL
formula is defined on C(P ), the sets γ1 and γ2 in ‖ζ1 � ζ2‖ (γ) and the sets
γ1, . . . , γn in ‖∗ζ‖ (γ) are nonempty. Trivially in ‖∗ζ‖ (γ), the maximum value
of n is |γ|, i.e., the cardinality of γ. Hence,

‖∗ζ‖ (γ) =
⊕

n∈{1,...,|γ|}

⊕

⋃· n
i=1γi=γ

val (‖ζ‖ (γ1), . . . , ‖ζ‖ (γn)) .

Moreover, in ‖∗ζ‖ (γ), let the sets γi ∈ C(P ) where i ∈ {1, . . . , n} and
⋃· n

i=1

γi = γ. Consider a permutation (i1, . . . , in) of (1, . . . , n). Then

val(‖ζ‖ (γ1) . . . , ‖ζ‖ (γn)) = val(‖ζ‖ (γi1), . . . , ‖ζ‖ (γin)).

Hence, val(‖ζ‖ (γ1), . . . , ‖ζ‖ (γn)) ⊕ val(‖ζ‖ (γi1), . . . , ‖ζ‖ (γin)) = val(‖ζ‖ (γ1),
. . . , ‖ζ‖ (γn)) by the idempotency of D. Therefore, for every analysis of γ =⋃· n

i=1γi, the value val (‖ζ‖ (γ1), . . . , ‖ζ‖ (γn)) in ‖∗ζ‖ (γ) is computed only once.
Two wpvmPCL formulas ζ1, ζ2 are called equivalent, and we write ζ1 ≡ ζ2,

whenever ‖ζ1‖ (γ) = ‖ζ2‖ (γ) for every γ ∈ C(P ). The closure ∼ ζ of every
wpvmPCL formula ζ ∈ PCL(D,P ) is determined by:

– ∼ ζ := ζ ⊕ (ζ � 1).

Lemma 1. Let ζ ∈ PCL(D,P ). Then

‖∼ζ‖ (γ) =
⊕

γ′⊆γ
‖ζ‖ (γ′)

for every γ ∈ C(P ).

Next, we present several properties of our wpvmPCL formulas.

Proposition 1. Let ζ, ζ1, ζ2, ζ3 ∈ PCL(D,P ) and d ∈ D. Then

(i) ζ � 0 ≡ 0 ≡ 0 � ζ.

If ⊗ is commutative, then

(ii) ζ1 � ζ2 ≡ ζ2 � ζ1.

If D is associative and ⊕-distributive, then

(iii) (ζ1 � ζ2) � ζ3 ≡ ζ1 � (ζ2 � ζ3).

If D is left-⊕-distributive, then

(iv) ζ ⊗ (ζ1 ⊕ ζ2) ≡ (ζ ⊗ ζ1) ⊕ (ζ ⊗ ζ2).

If D is right-⊕-distributive, then

(v) (ζ1 ⊕ ζ2) ⊗ ζ ≡ (ζ1 ⊗ ζ) ⊕ (ζ2 ⊗ ζ).
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Proposition 2. Let ζ ∈ PCL(D,P ) with ζ = d ∈ D. If D is left-val-distributi-
ve, then

∗ζ ≡ d.

Proof. For every γ = {a1, . . . , as} where s ∈ N, we have

‖∗ζ‖ (γ) =
⊕

n∈{1,...,s}

⊕

γ1 ·∪... ·∪γn=γ

val(‖ζ‖ (γ1), ..., ‖ζ‖ (γn))

= val(d) ⊕ val(d, d) ⊕ ... ⊕ val(

s times
︷ ︸︸ ︷
d, ..., d)

= (d ⊗ val(1)) ⊕ (d ⊗ val(1, 1)) ⊕ ... ⊕ (d ⊗ val(1, ..., 1))
= (d ⊗ 1) ⊕ (d ⊗ 1) ⊕ ... ⊕ (d ⊗ 1) = d ⊕ ... ⊕ d = d

where the second and the last equalities hold since D is idempotent, and the
third one since D is left-val-distributive.

Moreover, D is called ⊕-preservative whenever val(d1 ⊕ d2, d) = val(d1, d) ⊕
val(d2, d) and val(d, d1 ⊕ d2) = val(d, d1)⊕ val(d, d2) for every d, d1, d2 ∈ D. The
pv-monoids (R ∪ {−∞},max, avg,+,−∞, 0) and (R ∪ {+∞}, min, avg,+,+∞,
0), are ⊕-preservative.

By a straightforward calculation we can show the next proposition.

Proposition 3. Let D be a valuation monoid. If val is ⊕-preservative, then

val

⎛

⎝
⊕

i∈I

di,
⊕

j∈J

d′
j

⎞

⎠ =
⊕

i∈I,j∈J

val
(
di, d

′
j

)

where I, J are finite index sets and di, d
′
j ∈ D for every i ∈ I and j ∈ J .

Proposition 4. Let ζ ∈ PCL(D,P ). If D is ⊕-preservative, then

∼ (∗ζ) ≡ ∗(∼ ζ).

Proof. Let γ ∈ C(P ). Then

‖∗(∼ ζ)‖ (γ) =
⊕

n>0

⊕

γ1 ·∪... ·∪γn=γ

val(‖∼ ζ‖ (γ1), ... , ‖∼ ζ‖ (γn))

=
⊕

n>0

⊕

γ1 ·∪... ·∪γn=γ

val

⎛

⎝
⊕

γ′
1⊆γ1

‖ζ‖ (γ′
1), ... ,

⊕

γ′
n⊆γn

‖ζ‖ (γ′
n)

⎞

⎠

=
⊕

n>0

⊕

γ1 ·∪... ·∪γn=γ

⊕

γ′
1⊆γ1

...
⊕

γ′
n⊆γn

val(‖ζ‖ (γ′
1), ... , ‖ζ‖ (γ′

n))

=
⊕

γ′⊆γ

⊕

n>0

⊕

γ1 ·∪... ·∪γn=γ′
val(‖ζ‖ (γ1), ... , ‖ζ‖ (γn))

=
⊕

γ′⊆γ

‖∗ζ‖ (γ′) = ‖∼ (∗ζ)‖ (γ)



308 V. Karyoti and P. Paraponiari

where the third equality holds since D is ⊕-preservative and the next equalities
due to the commutativity of ⊕.

Proposition 5. Let ζ, ζ1, ζ2 ∈ PCL(D,P ). If D is left-⊕-distributive, then

ζ � (ζ1 ⊕ ζ2) ≡ (ζ � ζ1) ⊕ (ζ � ζ2).

Next, we show a special case when ⊗ distributes over �. In general ⊗ does
not distribute over �. For example, let P = {p, q} and the wpvmPCL formulas
ζ, ζ1, ζ2, where ζ = 2 and ζ1 = ζ2 = 1. If we consider the set γ = {{p}, {q}}
and the pv-monoid (R∪{−∞},max, avg,+,−∞, 0), then it is easy to show that
‖ζ ⊗ (ζ1 � ζ2)‖ (γ) 	= ‖(ζ ⊗ ζ1) � (ζ ⊗ ζ2)‖ (γ). Hence, ζ ⊗ (ζ1 � ζ2) 	≡ (ζ ⊗ ζ1) �
(ζ ⊗ ζ2). However, this is not the case when ζ is a PIL formula and D is left-⊕-
distributive.

Proposition 6. Let φ be a PIL formula over P and ζ1, ζ2 ∈ PCL(D,P ). If D
is left-⊕-distributive, then

φ ⊗ (ζ1 � ζ2) ≡ (φ ⊗ ζ1) � (φ ⊗ ζ2).

5 Full Normal Form for WpvmPCL Formulas

In this section, we show that for every wpvmPCL formula ζ ∈ PCL(D,P ), where
D is a pv-monoid satisfying specific properties, we can effectively construct an
equivalent formula of a special form which is called full normal form. For this,
we will use corresponding results from [13] and [17]. More precisely, for every
PCL formula f over P we can effectively construct a unique equivalent PCL
formula of the form true1 or

⊔
i∈I

∑
j∈Ji

mi,j (cf. Theorem 4.43 in [13]), and for
every weighted PCL formula ζ over P and a commutative semiring (K,⊕,⊗, 0, 1)
we can construct a unique equivalent weighted PCL formula of the form k or
⊕

i∈I

(
ki ⊗∑j∈Ji

mi,j

)
(cf. Theorem 1 in [17] and Theorem 25 in [16]). The

index sets I and Ji, for every i ∈ I, are finite, k and ki ∈ K and mi,j ’s are full
monomials over P. We show that we can also effectively build a unique full normal
form for every wpvmPCL formula over P and a pv-monoid D satisfying specific
properties shown below. Uniqueness is up to the equivalence relation. Lastly, we
show that the equivalence problem of wpvmPCL formulas is decidable.

Definition 5. A wpvmPCL formula ζ ∈ PCL(D,P ) is said to be in full normal
form if either

1. ζ = d, with d ∈ D, or
2. there are finite index sets I and Ji for every i ∈ I, di ∈ D, and full monomials

mi,j for every i ∈ I and j ∈ Ji such that ζ =
⊕

i∈I

(
di ⊗∑j∈Ji

mi,j

)
.

1 Following [16] we consider true as a full normal form.
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Following [16], for every full normal form we can construct an equivalent one
satisfying the subsequent statements:

(i) j 	= j′ implies mi,j 	≡ mi,j′ for every i ∈ I, j, j′ ∈ Ji, and
(ii) i 	= i′ implies

∑
j∈Ji

mi,j 	≡∑j∈Ji′
mi′,j for every i, i′ ∈ I.

By Lemma 1 in [17], if mi,j ≡ mi,j′ for some j 	= j′, then we get mi,j +
mi,j′ ≡ mi,j . So, we replace mi,j + mi,j′ by mi,j . For the second case, let
∑

j∈Ji
mi,j ≡ ∑j∈Ji′

mi′,j for some i 	= i′. Then, we replace
(
di ⊗∑j∈Ji

mi,j

)

⊕
(
di′ ⊗∑j∈Ji′

mi′,j

)
by its equivalent formula (di ⊕ di′) ⊗∑j∈Ji

mi,j . In the
sequel, we assume that every full normal form satisfies Statements (i) and (ii).

For the construction of the full normal form of every ζ ∈ PCL(D,P ) we
shall need the next results. Specifically, we omit the proofs of Lemmas 2, 3 and
Proposition 7 which are similar to the corresponding ones in [16].

Lemma 2. Let J be an index set and mj full monomials for every j ∈ J .
Then, there exists a unique γ ∈ C(P ) such that for every γ ∈ C(P ) we have∥
∥
∥
∑

j∈J mj

∥
∥
∥ (γ) = 1 if γ = γ and

∥
∥
∥
∑

j∈J mj

∥
∥
∥ (γ) = 0, otherwise.

Proposition 7. Let f be a PCL formula over P and D a pv-monoid. Then
there exist finite index sets I and Ji for every i ∈ I, and full monomials mi,j for
every i ∈ I and j ∈ Ji such that

f ≡
⊕

i∈I

∑

j∈Ji

mi,j ≡
⊕

i∈I

⎛

⎝1 ⊗
∑

j∈Ji

mi,j

⎞

⎠ .

Lemma 3. Let mi,m
′
j be full monomials for every i ∈ I and j ∈ J . Then,

(
∑

i∈I

mi

)

⊗
⎛

⎝
∑

j∈J

m′
j

⎞

⎠ ≡
{∑

i∈I

mi if
∑

i∈I

mi ≡ ∑

j∈J

m′
j ,

0 otherwise.

Proposition 8. Let d1, d2 ∈ D and ζ1, ζ2 ∈ PCL(D,P ). If D is left-⊕-distribu-
tive and ⊗ is commutative and associative, then

(d1 ⊗ ζ1) � (d2 ⊗ ζ2) ≡ d1 ⊗ d2 ⊗ (ζ1 � ζ2).

Proposition 9. Let mi,m
′
j be full monomials for every i ∈ I and j ∈ J . Then

(
∑

i∈I

mi

)

�
⎛

⎝
∑

j∈J

m′
j

⎞

⎠ ≡
⎧
⎨

⎩

∑
i∈I mi +

∑
j∈J m′

j if mi 	≡ m′
j for every i ∈ I

and j ∈ J
0 otherwise.

Proposition 10. Let ζ ∈ PCL(D,P ) which is in full normal form, i.e., ζ =
⊕

i∈I

(
di ⊗∑j∈Ji

mi,j

)
. Then
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i. ∗ζ ≡⊕I′⊆I

(
val(di)i∈I′ ⊗

(⊎
i∈I′
∑

j∈Ji
mi,j

))
,

ii. (∗ζ) ⊗
(⊎

i∈I

∑
j∈Ji

mi,j

)
≡ val(d1, . . . , d|I|) ⊗

(⊎
i∈I

∑
j∈Ji

mi,j

)
.

Proof. i. Let γ ∈ C(P ). Then we get

‖∗ζ‖ (γ) =
⊕

n>0

⊕

⋃· n
i=1γi=γ

val (‖ζ‖ (γ1), . . . , ‖ζ‖ (γn)) .

By Lemma 2, for every i ∈ I there exists a unique γi ∈ C(P ) such that for every
γ ∈ C(P ) we have

∥
∥∑

i∈Ji
mi,j

∥
∥ (γ) = 1 if γ = γi and

∥
∥∑

i∈Ji
mi,j

∥
∥ (γ) = 0,

otherwise. Hence, val (‖ζ‖ (γ1), . . . , ‖ζ‖ (γn)) 	= 0 when for every i ∈ {1, . . . , n}
there exists ji ∈ I such that γi = γji and, by definition of ‖∗ζ‖ (γ), the sets
γ1, . . . , γn consist a partition of γ. Moreover,

val (‖ζ‖ (γj1), . . . , ‖ζ‖ (γjn)) = val (dj1 , . . . , djn) .

Since val is a symmetric function and D is idempotent, we get ‖∗ζ‖ (γ) =⊕
I′′⊆I val(di)i∈I′′ where for every I ′′ ⊆ I it holds γ =

⋃· i∈I′′γi or equiva-

lently
∥
∥
∥
⊎

i∈I′′
∑

j∈Ji
mi,j

∥
∥
∥ (γ) = 1. For every other I ′′′ subset of I it holds

∥
∥
∥
⊎

i∈I′′′
∑

j∈Ji
mi,j

∥
∥
∥ (γ) = 0. So, we get the following ∗ζ ≡ ⊕I′⊆I (val(di)i∈I′

⊗
(⊎

i∈I′
∑

j∈Ji
mi,j

))
.

ii. Let γ ∈ C(P ). Then we get
∥
∥
∥
∥
∥
∥
(∗ζ) ⊗

⎛

⎝
⊎

i∈I

∑

j∈Ji

mi,j

⎞

⎠

∥
∥
∥
∥
∥
∥

(γ) = ‖∗ζ‖ (γ) ⊗
∥
∥
∥
∥
∥
∥

⊎

i∈I

∑

j∈Ji

mi,j

∥
∥
∥
∥
∥
∥

(γ).

We can easily prove that
∥
∥
∥
⊎

i∈I

∑
j∈Ji

mi,j

∥
∥
∥ (γ) = 1 if γ =

⋃· i∈Iγi and
∥
∥⊎

i∈I
∑

j∈Ji
mi,j

∥
∥
∥ (γ) = 0 otherwise. If γ =

⋃· i∈Iγi, then since D is idempotent we

get ‖∗ζ‖ (γ) = val
(
d1, . . . , d|I|

)
. Hence,

∥
∥
∥
∥
∥
∥
(∗ζ) ⊗

⎛

⎝
⊎

i∈I

∑

j∈Ji

mi,j

⎞

⎠

∥
∥
∥
∥
∥
∥

(γ) =
{

val(d1, . . . , d|I|) if γ =
⋃· i∈Iγi

0 otherwise.

= val(d1, . . . , d|I|) ⊗
∥
∥
∥
∥
∥
∥

⊎

i∈I

∑

j∈Ji

mi,j

∥
∥
∥
∥
∥
∥

(γ)

=

∥
∥
∥
∥
∥
∥
val(d1, . . . , d|I|) ⊗

⎛

⎝
⊎

i∈I

∑

j∈Ji

mi,j

⎞

⎠

∥
∥
∥
∥
∥
∥

(γ),

and we are done.
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Theorem 1. Let D be an associative, idempotent and ⊕-distributive pv-monoid,
where ⊗ is commutative. Then, for every wpvmPCL formula ζ ∈ PCL(D,P ) we
can effectively construct an equivalent wpvmPCL formula ζ ′ ∈ PCL(D,P ) in
full normal form which is unique up to the equivalence relation.

Proof. We prove our theorem by induction on the structure of wpvmPCL formu-
las over P and D. Let ζ = f be a PCL formula. Then, we conclude our claim by
Proposition 7. Next let ζ = d with d ∈ D, then we have nothing to prove.

In the sequel, assume that ζ1, ζ2 ∈ PCL(D,P ). In [11] we show how we can
construct wpvmPCL formulas ζ(1), ζ(2) and ζ(3) in full normal form which are
equivalent to ζ1 ⊕ ζ2, ζ1 ⊗ ζ2 and ζ1 � ζ2, respectively.

Finally, let ζ = ∗ζ1 and ζ ′
1 =

⊕
i1∈I1

(
di1 ⊗∑j1∈Ji1

mi1,j1

)
be its equivalent

wpvmPCL formula in full normal form. We consider the formula ζ ′ = ∗ζ ′
1. By

Proposition 10, ζ ′ can be equivalently written as follows

ζ ′ ≡
⊕

I′
1⊆I1

⎛

⎝val(di1)i1∈I′
1
⊗
⎛

⎝
⊎

i1∈I′
1

∑

j1∈Ji1

mi1,j1

⎞

⎠

⎞

⎠ .

We consider the sets I
(1)
1 , . . . , I

(k)
1 with k ∈ N to be an enumeration of all I ′

1’s such
that

⊎
i1∈I′

1

∑
j1∈Ji1

mi1,j1 	≡ 0. Hence, by Proposition 9,
⊎

i∈I
(s)
1

∑
j∈Ji

mi,j ≡
∑

i∈I
(s)
1

∑
j∈Ji

mi,j for every s ∈ {1, . . . , k}. Moreover, for every s ∈ {1, . . . , k}
we let d′

s = val(di)i∈I
(s)
1

. So,

ζ ′ ≡
⊕

s∈{1,...,k}

⎛

⎜
⎝d′

s ⊗

⎛

⎜
⎝
∑

i∈I
(s)
1

∑

j∈Ji

mi,j

⎞

⎟
⎠

⎞

⎟
⎠ .

Lastly, if
∑

i∈I
(s)
1

∑
j∈Ji

mi,j 	≡ ∑
i∈I

(s′)
1

∑
j∈Ji

mi,j for every s, s′ ∈ {1, . . . , k}
with s 	= s′, then we are done. However, let

∑
i∈I

(s)
1

∑
j∈Ji

mi,j ≡∑
i∈I

(s′)
1

∑
j∈Ji

mi,j for some s 	= s′. Then, we replace
(
d′

s ⊗
(∑

i∈I
(s)
1

∑
j∈Ji

mi,j

))
⊕

(
d′

s′ ⊗
(∑

i∈I
(s′)
1

∑
j∈Ji

mi,j

))
by its equivalent formula (d′

s ⊕ d′
s′) ⊗

∑
i∈I

(s)
1

∑
j∈Ji

mi,j . We conclude to a full normal form which by construction, it
is equivalent to ζ.

The uniqueness of ζ(1), ζ(2), ζ(3) and ζ ′, up to equivalence, is derived in a
straightforward way using Statements (i) and (ii).

In the sequel, we present an example where we compute the full normal form
of a wpvmPCL formula.

Example 1. Let P be the set of ports and D a pv-monoid which satisfies the
properties of Theorem 1. We consider the wpvmPCL formula

ζ = ((d1 ⊗ m1) � (d2 ⊗ (m2 ⊕ m3))) ⊕ (d3 ⊗ (m4 + m5))
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where d1, d2, d3 ∈ D and mi is a full monomial over P for every i ∈ {1, . . . , 5}.
We will compute the full normal form of ζ ′ = ∗ζ. Firstly, we compute the full
normal form of ζ.

ζ ≡ ((d1 ⊗ d2) ⊗ (m1 + m2)) ⊕ ((d1 ⊗ d2) ⊗ (m1 + m3)) ⊕ (d3 ⊗ (m4 + m5)).

By Proposition 10 we get

ζ ′ ≡ ((d1 ⊗ d2) ⊗ (m1 + m2)) ⊕ ((d1 ⊗ d2) ⊗ (m1 + m3)) ⊕ (d3 ⊗ (m4 + m5)) ⊕
(val(d1 ⊗ d2, d3) ⊗ (m1 + m2 + m4 + m5)) ⊕

(val(d1 ⊗ d2) ⊗ (m1 + m3 + m4 + m5)))

which is in full normal form.

Theorem 2. Let D be an associative, idempotent and ⊕-distributive pv-monoid,
where ⊗ is commutative, and P a finite nonempty set of ports. Then for every
ζ, ξ ∈ PCL(D,P ) the equality ‖ζ‖ = ‖ξ‖ is decidable.

Proof. We follow the proof of Theorem 26 in [16]. By Theorem 1 we can
effectively construct wpvmPCL formulas ζ ′, ξ′ in full normal form such that

‖ζ‖ = ‖ζ ′‖ and ‖ξ‖ = ‖ξ′‖. Let us assume that ζ ′ =
⊕

i∈I

(
di ⊗∑j∈Ji

mi,j

)
and

ξ′ =
⊕

l∈L

(
d′

l ⊗∑r∈Ml
m′

l,r

)
which moreover satisfy Statements (i) and (ii).

Then, by Statement (ii) we get that ‖ζ ′‖ = ‖ξ′‖ iff the following requirements
(1)–(3) hold:

1) card(I) = card(L),
2) {di | i ∈ I} = {d′

l | l ∈ L}, and
3) a) if card(I) = card({di | i ∈ I}), then

∑
j∈Ji

mi,j ≡ ∑r∈Ml
m′

l,r for every
i ∈ I and l ∈ L such that di = d′

l,
or

b) if card(I) > card({di | i ∈ I}), then we get
ζ ′ ≡ ⊕

i′∈I′

(
di′ ⊗⊔i∈Ri′

∑
j∈Ji

mi,j

)
where I ′

� I, di′ ’s (i′ ∈ I ′) are
pairwise disjoint, and Ri′ (i′ ∈ I ′) is the set of all i in I such that di = di′ .
Similarly, we get ξ′ ≡ ⊕l′∈L′

(
d′

l′ ⊗⊔l∈Sl′

∑
r∈Ml

m′
l,r

)
where L′

� L,
d′

l′ ’s (l′ ∈ L′) are pairwise disjoint, and Sl′ (l′ ∈ L′) is the set of all l in
L such that d′

l = d′
l′ . Then

⊔
i∈Ri′

∑
j∈Ji

mi,j ≡ ⊔l∈Sl′

∑
r∈Ml

m′
l,r for

every i′ ∈ I ′ and l′ ∈ L′ such that di′ = d′
l′ .

By Lemma 2 the decidability of equivalences in (3a) is reduced to decidability
of equality of sets of interactions corresponding to full monomials, whereas the
decidability of equivalences in (3b) is reduced to the decidability of equality of
sets whose elements are sets of interactions corresponding to full monomials.
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6 Examples

In this section, we provide wpvmPCL formulas which describe well-known archi-
tectures equipped with quantitative features. But first, we introduce a new sym-
bol which we use in order to simplify the form of the formulas in our examples.

Let ζ be a wpvmPCL formula. By Theorem 1, ζ can be written in full normal

form, hence ζ ≡ ⊕i∈I

(
di ⊗∑j∈Ji

mi,j

)
. We define the full valuation �ζ of ζ

by:

– �ζ := (∗ζ) ⊗
(⊎

i∈I

∑
j∈Ji

mi,j

)
.

Then, by Proposition 10 we get �ζ ≡ val(d1, . . . , d|I|) ⊗
(⊎

i∈I

∑
j∈Ji

mi,j

)
.

Example 2. We recall from [13] the Master/Slave architecture for two masters
M1,M2 and two slaves S1, S2 with ports m1,m2 and s1, s2, respectively. Masters
can interact only with slaves, and vice versa, and each slave can interact with
only one master. In the following we present four different wpvmPCL formulas,
which according to the underlying pv-monoid we get interesting results.

The monomial φi,j = m{si,mj} for every i, j ∈ {1, 2} represents the
binary interaction between the ports si and mj . For every i, j ∈ {1, 2} we
consider a value di,j ∈ D and the wpvmPIL formula ϕi,j = di,j ⊗ φi,j .
Hence, di,j can be considered as the “cost” for the implementation of the
interaction {si,mj}. For our example we consider the configuration set γ =
{{s1,m1}, {s1,m2}, {s2,m1}, {s2,m2}} and the pv-monoid (R ∪ {−∞},max,
avg,+, −∞, 0).

Let us assume that we want to compute the average cost of each of the
possible architectures and then the maximum of those values. We consider the
wpvmPCL formula

ζ =∼
⊕

i,j∈{1,2}
� (ϕ1,i ⊕ ϕ2,j) .

Then, the value

‖ζ‖ (γ) =

∥
∥
∥
∥
∥
∥
∼

⊕

i,j∈{1,2}
� (ϕ1,i ⊕ ϕ2,j)

∥
∥
∥
∥
∥
∥

(γ)

= max {avg(d1,1, d2,1), avg(d1,1, d2,2), avg(d1,2, d2,1), avg(d1,2, d2,2)}
computes the average cost for each of the four possible instances and then the
maximum of those values. It is interesting to note that ‖ζ‖ (γ) = ‖ζ‖ (γ′) for
every γ′ ∈ C(P ) with γ ⊆ γ′.

Moreover, let the following wpvmPCL formula

ζ =
⊗

i,j∈{1,2}
∼ (� (ϕ1,i ⊕ ϕ2,j)) .
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P1
p1

P2
p2

T1t11 t12

T2t21 t22
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s1

S2
s2

S3
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s4
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dp1,t31

ds1,t12

ds1,t32

Fig. 1. Weighted Publish/Subscribe architecture.

Then, the value

‖ζ‖ (γ) = avg(d1,1, d2,1) + avg(d1,2, d2,1) + avg(d1,1, d2,2) + avg(d1,2, d2,2)

is the sum of the average costs of all architecture schemes.
As a third case, we want to compute the slave which has the maximum

average cost with the existing masters. Therefore, we consider the following
wpvmPCL formula:

ζ =∼
⊕

i∈{1,2}
(� (ϕi,1 ⊕ ϕi,2)) .

Then we get

‖ζ‖ (γ) =

∥
∥
∥
∥
∥
∥
∼
⊕

i∈{1,2}
(� (ϕi,1 ⊕ ϕi,2))

∥
∥
∥
∥
∥
∥

(γ) = max{avg(d1,1, d1,2), avg(d2,1, d2,2)}

which is the wanted outcome.

Example 3. Publish/Subscribe is a software architecture used in development
of applications in IoT [14], cloud computing [19] and robots’ operating systems
[12]. It has three types of components namely, publishers, topics, and subscribers
denoted by the letters P, T, S, respectively (cf. [9,10,17]). Publishers send mes-
sages to subscribers but they do not have any information about subscribers
and vice versa. So, in order to send messages, publishers characterize messages
according to classes/topics. Subscribers, on the other hand, express their interest
in one or more topics and receive all messages which have been published to the
topics to which they subscribe (Fig. 1).

In our example we assign weights, describing priorities, to interactions
among publishers and topics, and to interactions among topics and subscribers.
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Component P has one port p, T has two ports t1 and t2, and S has the
port s. We assume two publisher components P1, P2, four subscriber compo-
nents S1, S2, S3, S4 and three topic components T1, T2, T3. Hence, the set of ports
is P = {p1, p2, s1, s2, s3, s4, t11, t12, t21, t22, t31, t32}. For every i ∈ {1, 2, 3, 4},
j ∈ {1, 2, 3} and k ∈ {1, 2} we denote by dsi,tj2 ∈ D the weight of the interaction
among Si and Tj , i.e., the priority that the subscriber Si assigns to the receive-
ment of a message from Tj , and by dpk,tj1 ∈ D, the weight of the interaction
among Pk and Tj , i.e., the priority that the topic Tj assigns to the receivement
of a message from Pk.

In the sequel, we develop wpvmPCL formulas whose semantics compute the
maximum average priority with which a subscriber will receive a message and
also the maximum most frequent priority of each topic. For every i ∈ {1, 2} and
j ∈ {1, 2, 3}, the wpvmPIL formula ϕpt(pi, tj1) = dpi,tj1 ⊗ m{pi,tj1} character-
izes the interaction between a publisher Pi and a topic Tj with its correspond-
ing weight. Moreover, for every i ∈ {1, 2, 3, 4} and j ∈ {1, 2, 3}, the wpvmPIL
ϕst(si, tj2) = dsi,tj2 ⊗m{si,tj2} characterizes the interaction between a subscriber
Si and a topic Tj with its corresponding weight. Then, the wpvmPCL formula

ζsi
=

⊕

j∈{1,2,3}

⊕

k∈{1,2}
� (ϕpt(pk, tj1) ⊕ ϕst(si, tj2))

describes the behavior of subscriber Si with publishers P1, P2 and topics T1, T2,
T3. Let the configuration set γ = {{pi, tj1}, {sk, tj2} | i ∈ {1, 2}, j ∈ {1, 2, 3}, k ∈
{1, 2, 3, 4}} , and the pv-monoid (R ∪ {−∞},max, avg,+,−∞, 0). Then the
value ‖∼ ζsi

‖ (γ) represents the maximum average priority with which the
subscriber Si will receive a message. Also, consider the wpvmPCL formula
ζ =

⊗
i∈{1,2,3,4} (∼ ζsi

). Then, the following value

‖ζ‖ (γ) =
∑

i∈{1,2,3,4}

(

max
j∈{1,2,3}

{
avg(dp1,tj1 , dsi,tj2), avg(dp2,tj1 , dsi,tj2)

}
)

is the sum of the values ‖∼ ζsi
‖ (γ) for i ∈ {1, 2, 3, 4}.

Moreover, let us assume that we want to erase one component of the archi-
tecture in case, for example, where the system is overloaded and needs to be
‘lightened’. Consider the case where we choose to erase a topic which is not as
popular as the others. A way to do this is to compute for every topic the most
frequent priorities that the publishers and subscribers give to that component
and then the maximum one of those. Hence, the topic that has the minimum
most frequent priority among the other topics is the least popular topic and so
it can be erased. The following wpvmPCL formula

ζti = �

⎛

⎝
⊕

j∈{1,2}
ϕpt(pj , ti1) ⊕

⊕

k∈{1,2,3,4}
ϕst(sk, ti2)

⎞

⎠

for i ∈ {1, 2, 3} describes the full valuation of the weighted interactions of
the topic Ti with the publishers P1, P2 and the subscribers S1, S2, S3 and S4.
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Consider the configuration γ given above and the pv-monoid (R ∪ {+∞,−∞},
min,maj,max,+∞,−∞). Then,

‖∼ ζti‖ (γ) = maj (dp1,ti1 , dp2,ti1 , ds1,ti2 , ds2,ti2 , ds3,ti2 , ds4,ti2)

for i ∈ {1, 2, 3} is the maximum priority, among the most frequent ones, that the
publishers and subscribers give to topic Ti. Lastly, if we consider the wpvmPCL
formula

ζ ′ =∼ (ζt1 ⊕ ζt2 ⊕ ζt3) ,

then ‖ζ ′‖ (γ) = mini∈{1,2,3} {maj (dp1,ti1 , dp2,ti1 , ds1,ti2 , ds2,ti2 , ds3,ti2 , ds4,ti2)}
and so we erase the topic with the minimum value.

Example 4. Consider the Star architecture [13]. Star architecture is a software
architecture relating components of the same type. Given a set of components
one of them is considered as the central one and is connected to every other
component through a binary interaction. No other interactions are permitted.

In our example we consider five components. We assume that each component
has a single port, hence the set of ports is P = {s1, s2, s3, s4, s5}. We denote
by di,j ∈ D the weight of the binary interaction between si and sj for every
i, j ∈ I = {1, . . . , 5} with i 	= j, when si is considered as the central component.
The wpvmPIL formula characterizing this interaction, for every i, j ∈ I with
i 	= j, is given by ϕij = di,j ⊗ m{si,sj}. Therefore, the wpvmPCL formula

ζi = �

⎛

⎝
⊕

j∈I\{i}
ϕij

⎞

⎠

describes the full valuation of the binary interactions of the central component si

with the rest of all other components. Next, consider the wpvmPCL formula ζ =∼(⊕
i∈I ζi

)
which describes the five alternative versions of the Star architecture.

Let γ = {{si, sj}/ i, j ∈ I and i 	= j} and (R ∪ {+∞},min, avg,+,+∞, 0). Then
we get

‖ζ‖ (γ) = min{avg(d1,2, d1,3, d1,4, d1,5), ..., avg(d5,1, d5,2, d5,3, d5,4)}
which is the minimum value among the average costs of each component when
it is considered as the central one.

7 Discussion

In our definition of wpvmPIL and wpvmPCL over P and D, we excluded, follow-
ing [13], the empty interaction and the empty set of interactions. The empty
interaction satisfies only the PIL formula false. If we consider the empty inter-
action, then several properties do not hold in PCL of [13]. For instance the
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equivalence f +false ≡ false (Proposition 4.4 in [13]) for f 	≡ false, which is used
in the computation of the full normal form of a PCL formula (more specifically
in proof of Proposition 4.19 and in turn in proof of Proposition 4.35 in [13]).
Hence, it is clear that if we consider the empty interaction and the empty set of
interactions, then we need to rebuilt not only our theory but also the theory of
PCL. Moreover, the empty interaction adds no value in single interactions but
it does in architectural composition (cf. for instance [2,3]), where it represents
the case where two architectures cannot be composed. However, this is beyond
the scope of this paper.

In our logic we consider the algebraic structure of product valuation monoids.
The semantics of wpvmPCL formulas are polynomials with values in the prod-
uct valuation monoid. In Theorem 1 we prove that for every wpvmPCL formula
ζ ∈ PCL(D,P ), where D satisfies specific properties, we can effectively con-
struct an equivalent wpvmPCL formula ζ ′ ∈ PCL(D,P ) in full normal form.
For this, we require D to be an associative, idempotent and ⊕-distributive pv-
monoid, where ⊗ is commutative. We need to clarify that a pv-monoid D satis-
fying those properties is not a semiring since a pv-monoid contains a valuation
function which can not be supported by the structure of semirings. For instance,
let the pv-monoid (R ∪ {−∞},max, avg,+, −∞, 0) which is associative, idem-
potent, ⊕-distributive and the operator + is commutative. The valuation func-
tion avg can not be written using the operations max and + of the semiring
(R ∪ {−∞},max,+, −∞, 0). Hence, the pv-monoids satisfying the above prop-
erties constitute a different structure than the one of semirings.

8 Conclusion

We introduced a weighted PCL over a set of ports and a pv-monoid, and inves-
tigated several properties of the class of polynomials obtained as semantics of
this logic with the condition that our pv-monoid satisfies specific properties. We
proved that for every wpvmPCL formula ζ over a set of ports P and a pv-monoid
D which is associative, ⊕-distributive, idempotent and ⊗ is commutative, we can
effectively construct an equivalent one ζ ′ in full normal form. This result implied
the decidability of the equivalence problem for wpvmPCL formulas. Lastly, we
provided examples describing well-known software architectures with quantita-
tive characteristics such as the average cost of an architecture or the maximum
most frequent priority of a component in the architecture. These are important
properties which can not be represented by the framework of semirings in [17].
Future work includes the investigation of the complexity for the construction of
full normal form for formulas in our logic and the time needed for that construc-
tion using the Maude rewriting system [1]. Furthermore, it would be interesting
to study the first-order level of wpvmPCL for the description of architecture
styles with quantitative features.
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