
A Social Software-based Coordination Platform

Tool Paper

Davide Rossi

Computer Science Department - University of Bologna - Italy
rossi@cs.unibo.it

Abstract. Organizational best practices are unstructured, emergent pro-
cesses that freely coordinate actors engaged in reaching organizations'
goals. In recent years we are witnessing the wide adoption of social soft-
ware (blogs, microblogs, wiki, forums, shared calendars, etc.) as primary
technological tools to support organizational best practices, fostering
their creation, evolution and sharing, allowing their continuous re�ne-
ment and alignment with the organization's mission and evolving know-
how.
While organizational best practices and social software tools are good
candidates to support speci�c processes within the organization (and
among organizations) they also present several issues, when compared
to classic BPM tools - those based on structured coordination and well-
de�ned process models: since they have no explicit representation it is
hard to analyze them (by analytic techniques or by simulation), to mon-
itor their evolution and to support their execution; moreover it is hard
to extract explicit knowledge from them.
In this paper we present a set of tools that complement social software
in creating a real coordination platform, mitigating some of the afore-
mentioned issues.

1 Introduction

Coordination can be structured or emergent. By this we mean that coordination
can be based on the idea of enforcing/supporting interaction patterns among
actors on the basis of a well-de�ned model or can be the result of independent
agents de�ning (and re�ning) their interactions in an emergent way.

BPMSs (Business Process Management Systems) and social software are in-
stances of these two models: BPMSs support process monitoring and enactment
on the basis of a process model de�ned by some kind of modeling language or
notation whereas social software is an emergent coordination facilitator. Social
software supports social interaction and social production and raises the level
and scope of the interaction facilitated by computer and computer networks [9].
It uses a self-organization and bottom-up approach where interaction is coordi-
nated by the collective intelligence of the individuals; the latter do not necessarily
know each other and are not organized a priori in a structured way. By publishing
and processing information in blogs, microblogs, wiki, forums; by using tagging

services; by collaboratively editing documents, users reach organizational goals
following sequences of activities that have been re�ned in previous interactions.

A BPMS is a coordination platform; social software, per se, is not. Social soft-
ware provides a set of basic tools to enable information sharing and exchange
but provides no support for automating interaction patterns. In this paper we
present a set of tools that, combined with social software, implement a coordi-
nation platform. We aim, speci�cally, at a platform supporting organizational
best practices: the unstructured, emergent processes that freely coordinate ac-
tors engaged in reaching organization's goals by interacting with social software
tools.

This paper is structured as follows: in the next section we describe how social
software can be augmented to become a coordination platform; in section 3 we
describe the tools we designed. Section 4 contains a case study that shows the
platform in action. Section 5 introduces the coordination model that underpins
the platform. Section 6 discusses our approach. Section 7 concludes the paper
by presenting some related work and possible future enhancements.

2 The Platform

Coordination allows actors (persons and software systems) to share information
and synchronize their activities. At a very basic level of analysis we can argue
that social software is not a coordination platform in which, while o�ering a
way to share information, it lacks the ability to synchronize actors. When social
software tools are used in a process in which, for example, user A has to wait
for user B to complete a given task before resuming their activities, it is respon-
sibility of user A to realize that user B completed their task (which is typically
performed by checking the information shared using the social software tools).
In other words, users have to manually extract the relevant state information in
order make their processes progress. Moreover social software does not provide
any method to automatize sequences of activities, even when they are basic para-
metric sequences of interaction via a web browser; while automatization is not
a basic requirement for a coordination platform in itself, it is evident that this
ability is essential in order to provide support for organizational best practices.

These observation lead us to the design of two tools, InFeed and WikiRec-
Play, whose role is, respectively, to provide mechanisms to extract/manipulate
information from web applications and to record/replay parametric sequences
of interactions with web applications. The interplay between these tools allows
users to de�ne sequences of parametric activities (performed on social software)
that can be synchronized with other actors' activities (monitored by extracting
relevant state information from social software).

Our goal is to support organizational best practices and it would have been
unreasonable to build a prescriptive coordination system, that is a system that
enforces coordination patterns; moreover we wanted to support the sharing
of best practices and this can be facilitated by sharing information extrac-
tions/manipulations and parametric interaction sequences. To achieve this the

two tools are themselves integrated with a social software tool (a wiki that is used
as a repository extractions/manipulations and parametric interaction sequences)
and can provide recommendations to the users on the basis of the currently vis-
ited page and the information stored on the wiki. The user can then decide to
adopt a recommendation, add it to their favorites and, eventually, make its �ring
automatic.

3 The Tools

3.1 WikiRecPlay

WikiRecPlay is a Firefox extension that allow users to record and re-play se-
quences of web activites (interactions with web sites using a browser). The way
users perform such activities has been subject to changes in the recent past:
web applications are getting more interactive, ubiquitous and easy to use; the
social dimension has become crucial: di�erent users |with di�erent skills and
tools| share content easily and complete tasks together, in a new and sponta-
neous way. From a technical perspective, monolithic server-side applications are
being replaced by Ajax-based ones that load and manipulate (pieces of) content
client-side. WikiRecPlay has been designed to support users in automating web
interactions within this context.

In order to de�ne what we wanted from WikiRecPlay we selected a number
of test cases built around known web applications 1: GoogleDocs for its very
sophisticated interface and Ajax-based machinery; MediaWiki and WordPress
for their relevance as social software tools; PizzaBo and JQueryUI for the large
amount of highly dynamic client-side code.

WikiRecPlay has been built on an event-based model, in order to work on
highly dynamic web pages: the application is able to record and re-play the events
occurring in the browser (mouse click, form �lling, selections, etc.). An alterna-
tive approach would have been to capture, store and reply HTTP transactions
but such an approach cannot cope with (client-side) dynamic pages, leaving all
Ajax-based applications unsupported.

Figure 1 shows the main interface of WikiRecPlay. The sidebar lists all loaded
sequences and allows users to edit or replay each of them. A new sequence can
be recorded and stored through the same interface.

Figure 2 shows the interface for editing a sequence. Once it has been recorded,
in fact, its details appear in the `Step list' panel. Each step can be con�gured,
moved or deleted separately.

Each step is associated to an event occurring on a page element. The interface
shows a screenshot of the page highlighting that element with a red bordered
rectangle, and allows users to decide:

{ which event needs to be captured

1 http://docs.google.com http://www.mediawiki.org http://wordpress.com
http://www.pizzabo.it http://jqueryui.com

Fig. 1. The sidebar

Fig. 2. Con�gure sequence steps
Fig. 3. Set parameters before re-
playing a sequence

{ which information users are expected to provide
{ how event-related data (like the content of a text �eld) will be set when
re-playing the same sequence. Three options are available: (i) default value,
to use the values originally recorded, (ii) ask at start time, to make users
provide that information before playing the whole sequence, or (iii) ask dur-
ing execution to let the application stop the sequence re-play and ask the
user to provide the required data right before they are used.

All these data are automatically collected by WikiRecPlay when recording a
sequence; users can update and customize them at any time.

Figure 3 shows a sample interface for inserting data when re-playing a se-
quence. Such a dialog is dynamically built by WikiRecPlay from the description
of [each step of] a registration.

A relevant feature of WikiRecPlay are synchronization steps, these are steps
that can be suspended until a given event occurs (or a timeout expires). The
event does not have to be necessarily triggered on the same page and can be
associated to di�erent web applications, like the publication of some content on
Twitter, the tagging of a photo on Facebook and so on. This mechanism makes
it possible to replay sequences that need to synchronize with activities carried
out by di�erent users. In order to support this feature WikiRecPlay can halt
a sequence until an XPath predicate on the content of a RSS stream changes
from false to true (see Sect. 5 for a discussion on this topic). InFeed, the second
tool presented below, has the ability of producing RSS streams as the result of
extractions and manipulations of data coming from di�erent sources (other feeds,
web applications like social software tools or services like microblogs and e-mails)
and is thus the ideal companion to WikiRecPlay. Synchronization steps can be
inserted in a sequence after it has been recorded and before storing it. When
a synchronization step is inserted as the �rst step of a sequence we call that a
guarded sequence. Guarded sequences can be inserted (as any other sequence)
among the favorites of a user and the user has the option to mark the sequence
so that any time its starting guard is satis�ed the sequence is automatically
replayed (or �red).

WikiRecPlay also allows users to share sequences. Users can store data in
two places: in a local XML �le or on a wiki (which the sidebar is con�gured to
communicate to). Wikis make it possible not only to easily share sequences but
also to edit and improve them collaboratively.

Another relevant feature of WikiRecPlay is the ability, given the current
web page the user is visiting and the set of sequences stored in the Wiki to
propose to the user the execution of all the sequences that start from the current
page (possibly �ltering only guarded sequences that would be activated). This
becomes a kind of recommendation system that improves the awareness of the
user with respect to existing sequences that are (possibly) description of (part
of) organizational best practices.

WikiRecPlay: Implementation Details WikiRecPlay is built on the stan-
dard Firefox extension mechanisms and, in particular, the XPCOM framework.

The overall application follows the MVC (Model-View-Controller) design pat-
tern. An internal XML format |whose details are not relevant here| has been
de�ned to describe sequences and steps and is used throughout the application.
The main modules of WikiRecPlay are listed below:

Recorder: captures all the activities (DOM events) performed by the user.
Player: reads a sequence descriptor and replays it, in case asking input data
to the user; the player exploits browser facilities to send HTTP requests and to
parse responses. LocalStorageManager: saves sequence descriptors in a local
repository, by epxloiting the browser storage space. WikiStorageManager:
saves sequence descriptors on a wiki. This module is in charge of login to the wiki,
posting data, retrieving sequences or updating them. It uses the WikiGateway
API [14] |that de�nes a set of operations exported by multiple wiki clones| so
that WikiRecPlay is not bounded to a speci�c server-side platform. Validator:
validates sequence descriptors, before saving and exporting them. This module
actually communicates with a web-service exporting validation features.

While a detailed description of the inner workings of WikiRecPlay is out
the scope of this paper we want to highlight that one of the main problems
we had to face is related to dynamic web pages: since most elements can be
created/moved/deleted at any time it can be tricky (if at all possible) to associate
events and current page elements; in several occasions we had to rely on smart
heuristics to overcome these kind of problems.

3.2 InFeed

InFeed is a feed aggregator/manipulator with an integrated e-mail gateway. It is
implemented as a mixed client and server side mashup making use of Dapper2

(a web content extractor) and Pipes3 (a visual, interactive feed aggregator and
manipulator), both from Yahoo!. With InFeed it is possible to extract data from
web applications (this includes usual social software tools but also services like
Google Docs, Google Calendar, Twitter, etc...), process them and render them
as a feed. The resulting feed can be very terse and easy to parse. For example it is
possible to set up a InFeed process that generates a simple \run, I'm away" item
in a feed when a Google calendar alarm e-mail has been received and the user
tweeted \#infeed away" (after any eventual previous \#infeed available" tweet).
This simple feed can easily be used in a synchronization step in WikiRecPlay
and let a sequence being played automatically.

4 A Case Study

Consider the following organizational best practice. A group of bird watchers
(that interact by participating to a public forum) decides to set up a photo-
graphic context. In order to run the context the forum itself will be used: a

2 http://open.dapper.net/
3 http://pipes.yahoo.com/

new section is created (e.g. \photo contests"); each time a new contest is run,
a thread is created in this section (e.g. \photo contest for the month of May").
The user who created this thread is the contest manager. The contest manager,
in the �rst post, details the subject of the contest (e.g. \eagles in the wild").
Participants have to submit their photos by replying on this same thread; their
post have to include a link to the image and an embedded Goggle map detailing
the place where the photo was taken. Once the submission period is over the
manager locks the thread and starts a poll. The poll runs for a period of time
after which it is closed and the manager announces the winner by editing the
�rst post of the contest thread.

This is a glaring example of emergent coordination: users de�ned how to
interact with social software tools in order to complete the photographic contest
process; no formal description of the process exists but all participant are ex-
pected to follow a best practice. In case of anomalies (e.g. too few votes received)
it is easy to modify the process (e.g. ask the participant to vote for others' sub-
mission). Notice that while we are giving a rather detailed description of the
workow, still this is not a well-de�ned process in which no formal description of
it exists, since this is the result of emergent behavior, and it is very well possible
that it will be freely subject to re�nements and modi�cations in future iterations
of the contest.

Our platform can support users in participating to this organizational best
practice: sequences can be recorded and shared with respect to the various ac-
tions required: open a new contest, submit a photo, vote, and so on. These
sequences can be used to automate some of the more time consuming (and bor-
ing) actions, like submitting a photo, by allowing users to replay (in a parametric
way) the sequence in which the user �rst has to submit his photo to a photo host-
ing site (like Photobucket), retrieve the URL to access it from outside, connect
to Google maps, enter the coordinate for the place, retrieve the HTML fragment
to embed the map then, at last, connect to the forum, identify the active con-
test thread and post the submission. WikiRecPlay can also assist new users in
which it has the ability, once users enter the contest thread, to suggest them
that a \submit photo" sequence is available, thus allowing them to participate
to the contest even if they are not aware about the rules that the community
decided. Other useful sequences include, for example, close a contest thread and
create a poll. By adding a synchronization step at the beginning of the sequence
and setting up a InFeed process as explained in section 3 it is possible to let
this sequence �re automatically when a Google calendar signals an event (so the
manager just has to set up the correct event in its calendar and can forget about
closing the contest manually). It is even possible for a user willing to participate
to the next context, whose subject has been anticipated, but who is going to
be away with limited connectivity in the period when the context is be run,
to prepare his submission and let the corresponding sequence �re automatically
when he tweets \#photocontest submit".

Users, by creating and sharing these sequences (that are generally created
for their own bene�t, to automatize repetitive/boring interactions) concur to

the spreading of organizational know-how. Several experiments [8] have been
conducted on using groupware tools within organizations in order to share how-
to knowledge but most failed because users have no immediate gain in publishing
their knowledge (to the contrary, they feel they are wasting time); with this
respect our platform elicits user participation by giving them immediate bene�ts.

5 The Coordination Model

Up to this point our description of the platform focused on its usage; this decision
postponed a discussion to its underpinning model for the last part of the paper.
While unusual, we believe this decision helps in better assessing its relevance in
the context for which the platform has been designed. In this section we present
a more formalized view of the adopted coordination model.

First of all we introduce the concept of process state that we previously infor-
mally hinted. Please notice that in this section we assume for process the broad
de�nition of a coordinated set of activities leading to a goal (and not, for exam-
ple, the instance of a process model), a de�nition that includes organizational
best practices. In our context the state of a process is the combination of all
the data related to the process, data that can be scattered through the various
social software tools (like blog posts, twitter messages, RSS feed items and so
on) and emails exchanged by the actors involved in the process.

Actors pursue their goals through sequences of interactions with various web
applications; these sequences are composed of steps; each interaction step results
in a modi�cation of the process state (of course there are interactions between
the actors and the tools that does not result in a state modi�cation, we simply
do not take these into account here). We can then represent a sequence through
its steps:

a1; a2; :::; an

Some of the steps can be freely performed after their preceding ones has been ex-
ecuted; others require that di�erent actions in the process are performed before
being activated. A typical example of this behavior is that of a scienti�c journal
editor waiting for three reviews from di�erent reviewers to be received before
deciding whether to accept or reject a submitted article (using social software
tools we can support this process using a forum and an organizational best prac-
tice that suggest that reviews should to be posted as replies in a thread where
the submitted article is attached to the �rst message). We make these synchro-
nization requirements explicit in the sequence by introducing synchronization
steps. These steps halt the execution of a sequence until the process reaches a
speci�c state (or, more precisely, until a condition upon a subset of the state is
satis�ed). In the aforementioned example the synchronization steps that halts
the sequence waiting for the three reviews to be posted is satis�ed when the
number of the posts in the submission thread (that is displayed in the forum
web interface) reaches the value 4.

By denoting with s a synchronization step, the sequence becomes:

a1; :::; aj ; s1; aj+1; :::; ak; s2; ak+1; :::

We can add a dummy sequence step at the beginning of the sequence and split
it at the synchronization steps obtaining sub-sequences of the form:

s1; a
0

1; :::; a
0

n0

s2; a
00

1 ; :::; a
00

n00

:::

By adding a causal requirement to each step s1; :::; sn (in order to impose
the sequential activation of the sub-sequences) we produce s

0

1; :::; s
0

n that we use
to replace the original synchronization steps in our sub-sequences.

The sub-sequences thus obtained are rules in which the �rst step is a guard
and the following ones are actions that change the state of the system. The
use of state-based rules to realize coordination belongs to several well-known
coordination models, languages and systems: this is the case of Gamma [3] -
inspired languages (such as the CHAM [4]), of Interaction Abstract Machine [12]
-inspired languages (such as LO [1]), of blackboard-inspired languages (such as
(Extended) Shared Prolog [6]) and, to some extent, to Event-Condition-Action-
based workow execution engines too (such as the one described in [5]).

It should be noted, however, that while most of the aforementioned propos-
als assume a rewriting approach in which the rules (atomically) consume and
produce elements of state, in our approach the guards do not consume state el-
ements but simply check a state-based predicate. One of the main consequences
of this approach is that, if no countermeasures are applied, once a rule has its
guard satis�ed that rule can �re an inde�nite amount of times until the predi-
cate associated to the guard becomes false. In order to avoid this behavior, as
described in Sect. 3, rules are activated only when a predicate associated to a
guard changes from false to true which means that, technically, the rules are
based on a state-transition event. Another relevant issue to keep in mind with
respect to the coordination model and its actual implementation is that our
systems realizes a coordination overlay on top of social software and, as such,
it inherits most of its limitations. This means that there is not a synchronized
view of the shared state and locking is not available (since is not provided by the
underlying system), thus it is not possible to guarantee transactionality, atom-
icity and mutual exclusion. Consider also that state changes are not noti�ed by
the Web applications and our system has to recur to polling (which ampli�es
the state-view synchronization problem).

While these limits are signi�cant the reader has to keep in mind that this
system has been designed to support (and sometimes replace) the users in their
interactions within Web applications and, as such, these are the very same limits
human users have to cope with.

The coordination model we just introduced is quite similar to the one pro-
posed in X-Folders [13]. The di�erences in the platform, however, are notewor-
thy: X-Folders operates on information stored in document spaces and actions
are sequences of Web service calls.

In general we argue that the use of a rule based coordination model in the
context of social software is quite natural: the fact that actions depend on a
shared state and not on the state of singular actors and the fact that interaction
patterns are not imposed from the environment (coordination is endogenous,
not exogenous [2]) clearly point to rule-based models as the better candidates.
It is interesting to notice that the structured/emergent dichotomy we cited in
Sect. 1 is related to the one between exogenous and endogenous coordination
languages: exogenous coordination languages (most business process modeling
languages and notations fall under this category) are the ideal partners of struc-
tured coordination whereas emergent coordination is naturally better addressed
by endogenous languages (the astute reader may argue that structured coordi-
nation can be addressed with endogenous coordination languages as well; true,
but this case in not relevant in the context of this paper).

It is worth to notice that, whereas internally WikiRecPlay is implemented
on the basis of the presented model, the rule-based approach is never directly
exposed to the end user who can keep thinking in terms of long interaction
sequences that are usually easier to understand since users tend to take a personal
perspective of the process that ultimately results in the sequence of actions they
are in charge of.

6 Discussion and Related Works

Most of the existing coordination systems proposed to complement social soft-
ware tools are based on a prescriptive approach and usually require the modi�-
cation of the tools (that, ultimately, means that usual online services cannot be
adopted); this is for example the case for [7]. Some research work has also been
carried on the idea of sharing interaction sequences for web applications (part
of what WikiRecPlay does), CoScripter [10] (and its evolution ActionShot [11])
being notable examples. Just like WikiRecPlay, CoScripter allow users to share
recordings into a Wiki to share them. The main di�erences between WikiRecPlay
and CoScripter are: (i) CoScripter encodes user gestures with an easy-to-read
scripting language that mimics natural language whereas WikiRecPlay adopts
a much more re�ned user interface; (ii) CoScripter does not support most dy-
namic pages in which elements are created/modi�ed after the page is loaded
in the web browser whereas WikiRecPlay has been designed to support most
of these pages; (iii) recordings personalization in CoScripter is implemented by
using a personal database in which user-dependent data can be stored whereas
WikiRecPlay allows the user to personalize recordings by showing dialogs in
which instance data can be provided; (iv) CoScripter has only basic support to
halt a sequence replay whereas WikiRecPlay can halt an action sequence and
resume its execution when a speci�c event takes place. This last point is possibly
the most glaring di�erence with respect to our approach: CoScripter, in fact, can
only be used to replay the interactions of a single user with a web application
but cannot be used in the context of multi-user coordinated processes since it
lacks support any explicit synchronization support.

7 Conclusions

Social software is an enabling technology for emergent processes. Social software,
however, is not a coordination platform in which it o�ers no support other than
making information available. In this paper we presented a coordination plat-
form built on top of social software, that requires no modi�cations to the existing
tools and that plays nicely with the open collaboration idea that is promoted by
social software. The platform is implemented by augmenting social software tools
with WikiRecPlay and InFeed providing support for de�ning, sharing, automat-
ing interaction sequences and synchronizing users' activities, that is: providing
support to share and enact organizational best practices.

Both WikiRecPlay and InFeed, while actual running software, are to be
mainly intended as poofs-of-concept, as such they present several limitations.
One of the current limits of WikiRecPlay is that it is only available when the
user's browser is in execution. This means that automatic guarded sequences are
not �red when the browser is not running. While this is a major limit to the
actual use of our platform (we acknowledge this, and in fact we are working on a
o�-line, server-side version of the sequence player) the existing implementation
has to be intended as a proof-of-concept and as such it serves its purpose. InFeed
does not su�er from the major limitations present in WikiRecPlay, and it is also
a much simpler system, since it delegates most of its functionalities to Dapper
and Pipes. This also mean, however, that it inherits all the limits of these sys-
tems (that are usually restriction with respect to the intended use rather than
technical limitations - for example Dapper cannot be used, by design, to extract
content from sites that can be accessed only after authentication).

Future versions will enhance the tools and improve their \on-the �eld usabil-
ity" but the basic working mechanism are going to be the same of the current
proof-of-concept implementations.

References

1. J.-M. Andreoli and R. Pareschi. Communication as fair distribution of knowledge.
In OOPSLA, pages 212{229, 1991.

2. F. Arbab. What do you mean, coordination? Technical report, Bulletin of the
Dutch Association for Theoretical Computer Science, NVTI, 1998.

3. J.-P. Banâtre and D. Le M�etayer. Programming by multiset transformation. Com-

mun. ACM, 36(1):98{111, Jan. 1993.

4. G. Berry and G. Boudol. The chemical abstract machine. Theor. Comput. Sci.,
96(1):217{248, 1992.

5. C. Bussler and S. Jablonski. Implementing agent coordination for workow man-
agement systems using active database systems. In Research Issues in Data Engi-

neering, 1994. Active Database Systems. Proceedings Fourth International Work-

shop on, pages 53 {59, feb 1994.

6. P. Ciancarini. Coordinating rule-based software processes with esp. ACM Trans.

Softw. Eng. Methodol., 2(3):203{227, 1993.

7. F. Dengler, A. Koschmider, A. Oberweis, and H. Zhang. Social software for coordi-
nation of collaborative process activities. In Business Process Management, pages
396{407, 2010.

8. C. A. Ellis, S. J. Gibbs, and G. Rein. Groupware: some issues and experiences.
Commun. ACM, 34(1):39{58, Jan. 1991.

9. S. Erol, M. Granitzer, S. Happ, S. Jantunen, B. Jennings, P. Johannesson,
A. Koschmider, S. Nurcan, D. Rossi, and R. Schmidt. Combining bpm and social
software: contradiction or chance? Journal of Software Maintenance and Evolution:

Research and Practice, 22(6-7):449{476, 2010.
10. G. Leshed, E. M. Haber, T. Matthews, and T. Lau. Coscripter: automating &

sharing how-to knowledge in the enterprise. In Proceeding of the twenty-sixth an-

nual SIGCHI conference on Human factors in computing systems, CHI '08, pages
1719{1728, New York, NY, USA, 2008. ACM.

11. I. Li, J. Nichols, T. Lau, C. Drews, and A. Cypher. Here's what i did: sharing
and reusing web activity with actionshot. In Proceedings of the 28th international

conference on Human factors in computing systems, CHI '10, pages 723{732, New
York, NY, USA, 2010. ACM.

12. J. marc Andreoli, P. Ciancarini, and R. Pareschi. Interaction abstract machines. In
Trends in Object-Based Concurrent Computing, pages 257{280. MIT Press, 1993.

13. D. Rossi. X-folders: documents on the move. Concurr. Comput. : Pract. Exper.,
18(4):409{425, 2006.

14. B. Shanks. Wikigateway: a library for interoperability and accelerated wiki devel-
opment. In Proceedings of the 2005 international symposium on Wikis, WikiSym
'05, pages 53{66, New York, NY, USA, 2005. ACM.

