
JErlang: Erlang with Joins

Hubert Plociniczak1 and Susan Eisenbach2

1 École Polytechnique Fédérale de Lausanne??

hubert.plociniczak@epfl.ch
2 Imperial College London

s.eisenbach@imperial.ac.uk
http://www.doc.ic.ac.uk/˜susan/jerlang/

Abstract. Erlang is an industrially successful functional language that
uses the Actor model for concurrency. It supports the message-passing
paradigm by providing pattern-matching over received messages. Un-
fortunately coding synchronisation between multiple processes is not
straightforward. To overcome this limitation we designed and imple-
mented JErlang, a Join-Calculus inspired extension to Erlang. We
provide a rich set of language features with our joins. We present imple-
mentation details of our two alternative solutions, a library and an al-
tered VM. Our optimisations provide JErlang with good performance.

Keywords: Concurrency, Join-Calculus, Erlang, Static Analysis

1 Introduction

Writing concurrent and distributed applications is at the heart of current soft-
ware development. Even though these problems are not new, language develop-
ment has yet to catch up with the current reality and programmers still have
to use error prone techniques such as primitive locking mechanisms. An effort
that improves on this situation is the single assignment functional language, Er-
lang [1], for the development of concurrent, distributed, fault-tolerant and now
multi-core systems. Erlang, designed by Joe Armstrong from Ericsson, was
aimed at tackling telecom problems, such as building zero-downtime systems,
which manage millions of concurrent processes.

For concurrency and distribution Erlang relies on the message passing,
Actor paradigm, which defines the communication between processes. How-
ever synchronisation is required in many concurrent problems and Actors are
not the most natural paradigm for providing it. Our aim is to extend the
choice of constructs provided to the programmer, without threatening the safety
that a non-shared memory language provides. For this we chose the join, a
synchronisation construct from the Join-Calculus [2], a calculus designed
with implementation in mind, which with its firm formal foundation fits well
with Erlang, while providing elegant, powerful and expressive constructs. In
?? The author worked on this research during his studies at Imperial College London.

this paper we introduce our Erlang extension, JErlang, which is available
with the companion technical report, source code and many examples from
http://www.doc.ic.ac.uk/˜susan/jerlang/.

In Section 2 we show the need for adding joins with an Erlang example
that is problematical. Section 3 is devoted to the definition and design decisions
for JErlang. We wanted it to remain backward-compatible with the original
version and introduce features which current Erlang programmers would want
to use. Hence we couldn’t just copy the ideas from existing implementations of
JoCaml [3], C$ [4], or Scala [5], but adapted joins to Erlang’s powerful
message receive and pattern matching. Erlang wouldn’t have become so pop-
ular without the existence of its Open Telecom Platform (OTP) design patterns
that provide customisable solutions for client-server, fault-tolerant applications
development. Therefore in order to attract the Erlang audience we provide
join inspired client-server behaviour that we call gen joins, for building
synchronisation patterns within server applications.

We provide our joins implementation in the form of a stand-alone library,
which contains transformation functions, available for the compiler, that con-
vert JErlang into Erlang source code before it is actually checked. We have
also developed a second version of JErlang which uses Erlang’s Virtual Ma-
chine in modified form for performance reasons. In Section 4 we describe both
implementations. We also present the algorithms used in the non-trivial im-
plementation of our join-solver. Section 5 explains novel optimisations in the
implementation done in order to boost the performance.

Our analysis in Section 6 has shown acceptable performance in most of the
shown situations and more importantly an improved expressiveness and clarity in
comparison with the original language. Finally we present related work in Section
7 and conclude in Section 8. A formal definition of our extension, included in the
companion technical report, gave us a better understanding of how joins should
fit into the Erlang language and what semantics we should chose for it.

2 From Erlang to JErlang

Central to Erlang is the notion of a process, created with a spawn statement
which upon successful execution returns a process id (PID). To enable inter-
process communication, each Erlang process has a single mailbox containing a
queue for incoming messages. Sending asynchronous messages to other processes
is done through a ! (send) operator: Pid ! Value.

1 receive
2 {msg, Val1, Res} when (Val1 == test) -> Res; %% pattern with guard
3 {error, Error} -> none
4 after DefaultTimeout -> timeout end

Listing 1.1. Typical actor programming in Erlang

A process analyses the contents of the mailbox using the Selective Receive
construct, as shown in listing 1.1. The incoming messages are tested against all

patterns until a match is found (with satisfied guards) or the timeout limit is
reached. Only the idle time of waiting for new messages contributes towards the
latter.

The receive construct has its limitations. Consider synchronising on two
messages that match the patterns {get, A} and {set, B}, where A and B are
equal, given the following mailbox (the oldest message is on the left): ({get, 1}
· {set, 4} · {set, 2} · {get, 2}). A typical implementation by a beginner
Erlang programmer is presented below:

1 receive
2 {get, X} -> receive {set, Y} when (X == Y) -> {found, X} end;
3 {set, X} -> receive {get, Y} when (X == Y) -> {found, X} end
4 end

When retrieving messages from a mailbox, the operation will match the first
{get, X} pattern and get stuck, since there is no message {set, 1} in the
mailbox, as X is now bounded. The programmers must consider the possible
layouts of the mailbox and how the processes would interact.

Listing 1.2 presents a refined program where we continuously fetch messages
from the queue and at the stage when no synchronisation can be fulfilled with the
first message (after 0), we resend it (self() !) and call the function again
until successful (Func(Func)). The order of the messages in the queue is not
preserved, the solution is error prone and inefficient and wastes computational
power, whenever the second pattern cannot be satisfied. Erlang programmers
also lack the language support they need in several other areas, such as matching
on multiple messages that convey priority values. This limitation of the language
leads to complicated code, which in turn leads to the re-invention of the mailbox
mechanism at the application level.

1 A = fun(Func) ->
2 receive
3 {get, X} -> receive {set, Y} when (X == Y) -> {found, X}
4 after 0 -> self() ! {get, X}, Func(Func) end
5 {set, X} -> receive {get, Y} when (X == Y) -> {found, X}
6 after 0 -> self() ! {set, X}, Func(Func) end
7 end,
8 A(A)

Listing 1.2. Synchronisation on two messages without order preservation

The Join-Calculus [2] is a process calculus, computationally equivalent to
the π-Calculus [2], but designed to be a basis for a concurrent programming
language. The Join-Calculus introduces multi-way join patterns that enable
synchronisation of multiple message patterns on different communication chan-
nels. It is this construct that made it our choice for adding to Erlang. As
a Join-Calculus example program consider a single-cell stack. In this buffer
you can only push an item if the buffer is empty. If the buffer is full and a pop
occurs, the pop and push join is reduced, and the item is retrieved, making the

buffer empty.

def pop〈µ〉 | s〈ν〉 . empty〈〉 | µ〈ν〉 ∧ push〈t〉 | empty〈〉 . s〈t〉

Symbol | defines the and semantics in the join operation, symbol ∧ combines
the related join definitions together and . precedes the join’s action definition.

3 JErlang language features

JErlang provides synchronisation semantics with a receive-like join con-
struct. Using the guards in listing 1.3 we end up with the intuitive (and correct)
solution to the motivating problem from listing 1.2 which reduces the eight lines
to one.

1 receive {get, X} and {set, Y} when (X == Y) -> {found, X} end

Listing 1.3. Synchronisation on two messages with guards in JErlang

In the Join-Calculus implementations of JoCaml [3] and C$ [4] whenever
there is more than one satisfiable join then the execution is non-deterministic. In
the implementation of receive in JErlang we assume that the semantics of
First-Match [6] provides more predictable behaviour. With First-Match strategy
we gradually increase the “window” of the mailbox which is used to analyse
deterministically if any join can be satisfied with it. The strategy ensures that
whenever a join is satisfied by a strict prefix of the original mailbox then it is the
smallest prefix that can satisfy any join. Whenever the current mailbox prefix is
able to satisfy more than a single join, then the order of declaration of the joins
determines the successful one. Obviously, the order of messages for such prefix
is significant for matching, but here it is enough to assume that the matching of
the messages follows the total ordering scheme.

Example 1.4 underlines the consequence of our matching strategy where the
result of the joins depends on the ordering of the messages. JErlang’s priority
is to preserve the original sequence of the messages during each pattern-matching
attempt. By looking only at the first two messages of the mailbox in the example
(starting with an empty mailbox), the second join is satisfied after the analysis
of the first two messages, whereas the first join at this stage still misses one more
successful pattern. By ensuring this deterministic behaviour in our implementa-
tion we believe that developers gain more control. First-Match also allows for
having the typical design schema where patterns are described from the least to
the most general.

1 self() ! {foo, one}, self() ! {error, 404}, self() ! {bar, two},
2 receive
3 {foo, A} and {bar, B} -> {error, {A, B}};
4 {error, 404} -> {ok, error_expected};
5 {error, Reason} -> {error, Reason} %% general error
6 end

Listing 1.4. Impact of First-match semantics on joins

1 receive
2 {amount, Transaction, Money} and {limit, LowerLimit, UpperLimit}
3 when (Money < UpperLimit and Money > LowerLimit) ->
4 commit_withdrawal(Money, Limit);
5 {abort, Trans} and {amount, Transaction, Money}
6 when (Trans == Transaction) ->
7 abort_withdrawal(Transaction, Money)
8 after Timeout -> abort_withdrawal_timeout(Transaction) end

Listing 1.5. Guards and timeout used in cash withdrawal in JErlang

Guards and timeouts in joins have often been omitted in Join-Calculus
implementations due to complexity and performance issues. Yet it was important
to include them in our work as they are commonly used in Erlang. In listing
1.5 we use guards (using when) to perform sanity checks for the withdrawal
transaction that was requested by an external user and a timeout (after) to
abort withdrawal actions that take too long. As in Erlang, guards in JErlang
cannot contain side effects, therefore assignments or user-defined functions are
prohibited.

Unlike all of the other Join-Calculus’s implementations JErlang allows
for non-linear patterns. In other words patterns in joins can contain the same
unbound variables and therefore synchronise on their values as well (due to Er-
lang’s single value assignment) in a structural equivalence manner. Listing 1.6
presents a shorter version of example 1.3. Non-linear patterns are often used by
Erlang programmers in function headers or simple matching with variables.
Non Erlang programmers might initially regard it as a possible source of con-
fusion when mixing bound and unbound variables, yet as we said its usage is
very common in the original language.

1 receive {get, X} and {set, X} -> {found, X} end

Listing 1.6. A one-cell buffer in JErlang

JErlang introduces an optional propagation attribute which allows devel-
opers to say that whenever a pattern matches, all the unbound variables in it
should become bound in the join’s body but the message itself should not be
removed from the mailbox. To enable it, the programmer wraps the pattern with
the prop closure. Propagation is not known in the Join-Calculus world but
introduced successfully in Constraint Handling Rules[7, 6]. It can obviously
be implemented by implicitly sending the same message in the body of the join
(see Haskell prototype by Lam and Sulzmann in [8]), however we are convinced
that our feature is more readable and less error prone. More importantly, when-
ever a search is performed on the mailbox again, the message will not be placed
at the end of the queue, and thus will get higher priority so that the matching
should be performed faster. Dynamic propagation within the body would signif-
icantly deteriorate the clarity of the matching logic, as for example it is unclear
at which point the other messages should be discarded. Listing 1.7 presents an
authorisation procedure using propagation.

1 receive
2 prop({session, Id}) and {action, A, Id} -> doAction(A, Id);
3 {session, Id} and {logout, Id} -> logout_user(Id)
4 end

Listing 1.7. Session support using propagation in JErlang

JErlang, as in Erlang, allows for the creation of synchronous calls. This
can be achieved by appending a process identifier value to the message, so that
the receiver knows where to send the reply.

To provide full conformance with the Erlang infrastructure we decided to
implement an extension of gen server3, a popular design pattern used for
building complex, fault-tolerant client-server applications. gen joins is a nat-
ural extension of the gen server design pattern that allows for the definition
of joins, i.e. for synchronisation on multiple synchronous and asynchronous mes-
sages (calls). Listing 1.8 shows an extract of a JErlang program that has
synchronous (accept, enter) and asynchronous (valid) tuple messages in
the join. We follow Erlang’s standards, where the former is represented by
execution of call and the latter by cast. Functions for sending the mes-
sages (dest is just the name of the target process) and a separate callback
function handle join allow for clear separation of the API from the server
implementation. The callback function mirrors the action of receive with the
additional parameter (here named State) representing the internal state of the
server process. Asynchronous messages should always return a noreply value,
whereas synchronous ones can either return a value (that conforms to the struc-
ture {reply, ReplyVal}) or noreply. In the latter case the caller will stall
forever or timeout.

1 accept(Key) -> jerlang_gen_joins:call(dest, {accept, self(), Key}).
2 enter(Value) -> jerlang_gen_joins:call(dest, {enter, Value}).
3 valid(Amount) -> jerlang_gen_joins:cast(dest, {valid, Amount}).
4

5 handle_join({accept, PidA, Key} and {enter, Pid1, Val1} and
6 {enter, Pid2, Val2} and {valid, 2}, State) ->
7 {[{reply, {ok, 2}}, {reply, {ok, Key}}, {reply, {ok, Key}}, noreply],
8 [{Key, Pid, Val1, Val2} | State] } %% new state

Listing 1.8. Barrier synchronisation in gen joins with combination of syn-
chronous and asynchronous messages

4 Implementation

The main problem with implementing joins inside Erlang’s VM was the lack
of the necessary operators to enable us to manipulate and inspect the processes’
mailboxes. Apart from that we were constrained by consistency, intuitiveness

3 see http://erlang.org/doc/man/gen_server.html

and determinism of execution of the standard Erlang, so that current program-
mers feel eager to try out our extension. We decided to implement two different
systems, both of which include a transformation module (parse transform,
explained later) that can produce valid Erlang code:

– The pure library version. It supports an internal queue that fetches, analyses
and stores messages in the same order as they appear in the VM mailbox.
The main drawback lies in its performance.

– We provide low-level functions, constructs and logic to manipulate the mail-
boxes inside Erlang’s VM and then use them from a higher-level JErlang
library (different from the above) to provide the necessary joins logic. The
main drawback lies in it providing a non-standard VM.

Join constructs are written using the familiar receive (or handle join)
construct. In order to facilitate this feature we use parse transform, an exper-
imental module available in Erlang’s standard library, that allows the develop-
ers to use Erlang syntax, but with different semantics. The transform-function
receives syntactically valid Erlang abstract syntax tree (AST), JErlang in
our case, and creates a new semantically valid AST. The aim of our transfor-
mation is to find joins patterns, create necessary tests for patterns and joins (in
the form of multiple anonymous functions) and the code that initiates the call
to the library modules, which perform the actual join operations. This allows
the programmers to write clear and intuitive join definitions without studying a
library API.

Since in the implementation of JErlang, we perform isolated tests only
for patterns, without taking into consideration the body of the join, the former
would create multiple false unused variable warnings by the compiler. Therefore
we perform a simplified (syntax) Reaching Definitions Analysis [9]. This allows
us to create valid test functions for patterns: we leave the original name for
the bound variables and substitute the unbound variables with the neutral as
presented in listing 1.9. Without this analysis, line 6 would create an unused
variable warning for header [A, Rest].

1 test_receive(Input) ->
2 A = 12,
3 receive {ok, Input} and [A, Rest] -> valid end.
4 -------------------
5 FirstPartialTest = fun({ok, Input}) -> true end,
6 SecondPartialTest = fun([A, _]) -> true end,
7 FinalTest = fun([{ok, Input}, [A, Rest]]) -> true end.

Listing 1.9. Simple joins in JErlang and corresponding tests

In gen joins behaviour joins are specified in the header of the function instead
of in the body and hence do not require any past knowledge of the variables.
To avoid unbound variable errors and execute the partial matching tests on non-
linear patterns as soon as possible, we perform a variant of static Live Variable
Analysis [9]. This enables us to determine whether the variable in the test for

partial joins should be substituted with the neutral or left unchanged because it
used more than once in the join. This way we can also eliminate the unsatisfiable
branches in the joins solver quickly and still create valid code.

The Erlang VM executes the bytecode, called BEAM, which is the result of
a few transformation phases on the initial Abstract Syntax Tree. As an example
of execution we consider accessing the process’ mailbox using the receive
construct, which results roughly in the following set of steps:

1. Each process maintains a pointer to the last tested message within the mail-
box. The pointer is re-set to the beginning of the queue only when first
entering the receive construct.

2. Take the next message as the operand for matching.
3. Take the current instruction representing the pattern, and try to match it

with the message from step 2.
If matching is not successful, we go to step 4, otherwise we go to step 6.

4. If there are more patterns then we increment the current program counter
(PC) and go to step 3. If we reached the last pattern and there are still
some messages left then we update the pointer of the mailbox to the next
message, update the PC to the first pattern of receive and execute step
2. Otherwise we go to step 5.

5. The VM sets up the timeout counter (if this were not done already), and
the process is suspended. It will either be awakened by the timer (and jump
to the timeout action) or by a new message (go to step 1).

6. A successful match frees the memory associated with the currently pointed-
to message, sets the mailbox pointer to the head of the queue and jumps to
the BEAM instruction associated with the pattern.

One of the constructs that we incorporated into the modified VM and which
enabled us to parse the message queues more freely without immediate discards
(and duplicate queues), is search. It follows the same syntax as a standard
receive, yet has slightly different semantics. Namely it maintains a separate
search pointer on the mailbox that is independent from the original mailbox’s
pointer. For large mailboxes and complicated join combinations, it could be the
case that a large number of calls to the mailbox need to be made to do pattern
tests. To improve the performance over a queue based implementation, we use
orthogonally the uthash4 hash tables for each JErlang process, which maps
identifiers to the addresses of the messages.

To reduce the number of repeated (and often unnecessary) pattern match-
ing, which most other Join-Calculus implementations do not do, we added a
new data structure that serves as a cache for storage and retrieval of the par-
tial results of the matching. The overhead is acceptable, because we store only
the messages’ indices. We also had to modify the already presented Erlang
receive algorithm to incorporate the joins resolution mechanism. The simpli-
fied description, which follows the formal definition of the operational semantics,
is given below:
4 http://uthash.sourceforge.net

1. Take the message from the queue and the first join.
2. Take the list of tests associated with the join and check the message on each

of the patterns. For each successful test, we store the message’s index in the
cache of the corresponding pattern.

3. We go to step 6 if none of the patterns’ caches was updated, otherwise to
step 4.

4. We take the final test function, i.e. the one that checks all the patterns
and guards together, associated with the join and run it on all possible
permutations of the satisfying messages. We go to step 5 if there is at least
one successful run, or step 6 otherwise.

5. Retrieve the associated messages for each pattern and execute the join’s
body in the new context that updates the previously unbound variables.

6. We take the next join and go to step 2. If the current join is the last one
and there are still some messages left in the queue, we update the message
pointer to the next message and go to step 1, otherwise we stall until a new
message arrives to the process.5

In JErlang with the modified VM, step 1 uses the search construct. In the
non-VM version we use a standard receive construct that matches any message
and puts it into the “internal” library queue for analysis.

Joins that exist in the gen joins behaviour offer more optimisation possi-
bilities because unlike in receive, they are defined only once, during compile
time, and there is the possibility of reusing gathered knowledge. The joins solver
doesn’t have to repeat the tests for the patterns for the already parsed messages
since successful running of the test function is independent of other factors.
Another challenge introduced by gen joins is the addition of the status vari-
able6. Since the execution of a join may have side-effects on its value, joins that
previously couldn’t be fired may now have become successful. Our algorithm
takes into account the possibility of a chain of join actions that does not involve
analysis of any new messages (similar to [10]).

5 Optimisations

For performance reasons we incorporated ideas from the Rete algorithm [11],
used for efficient solving of Production Rule Systems. Rete reduces the amount
of redundant operations through partial evaluation, thus allowing for steady
building of knowledge. RETE uses so called alpha- and beta-reductions to build
an efficient network of information nodes representing knowledge. The former
focuses on testing independent nodes, irrespective of any connections they can
have, whereas the latter gradually, from the left-hand side, tries to find a satis-
fying connection. As a simplified example assume the existence of a statement
consisting of A, B, C and D predicates. The alpha-reduction will correspond to
testing A, B, C and D individually, and beta-reduction will incrementally check
5 Timeout is treated as in the description of receive.
6 The status variable allows for internal storage in the client-server pattern.

A and B, A and B and C and A and B and C and D.
We implemented the algorithm sequentially because:

– We still can profit from First-Match semantics.
– The order of the messages in the mailbox is preserved.
– JErlang has to preserve the no-shared-memory principle between pro-

cesses.

JErlang’s alpha-reduction is performed by having local test functions for each
of the patterns of the joins. Beta-reduction has to be performed by having
multiple test functions that perform partial checks of the joins. Checking for
consistency is performed through the matching of the headers. Joins of length 1
would have a single beta function and for joins with n patterns, we produce n -
1 beta functions. Listing 1.10 presents a handle join function with 4 patterns
and the corresponding beta-functions for the Rete algorithm.

In gen joins, the internal state can be changed during the execution of
the body of the join so care is taken to preserve possible knowledge instead of
repeating all the partial tests when not necessary.

To improve the efficiency of the algorithm we prune branches of the search
space that cannot be satisfied or that are satisfiable by some previous branches in
the search order. Hence sequences of messages that only permute equal messages
are pruned. This radically increased the performance of the Santa Claus problem
solution (see Section 6). In example 1.10 guards and the status variable are
applied only to the last test function. We believe that this (typical) construction
insufficiently uses knowledge about the patterns, because variables A and B in
line 7 already provide information necessary to use the guard A > B. Therefore
we check the earliest beta-function to which we can apply guards and additional
variables, so that the filtering of invalid message combinations is done as soon as
possible. This feature is especially interesting for the case when JErlang has
to handle very large mailboxes, an Achilles’ heel of Erlang.

1 handle_join({operation, Id, Op} and {num, Id, A} and {num, Id, B}
2 and {num, Id, C}, State) when (A > B) ->
3 Res = Op([A,B,C]),
4 {[{reply, {ok, Res}}, noreply, noreply, noreply], [Res | State]}.
5 %% -------------------------------
6 [fun([{operation, Id, _}, {num, Id, _}], _) -> true end,
7 fun([{operation, Id, _}, {num, Id, _}, {num, Id, _}], _)
8 -> true end,
9 fun([{operation, Id, _}, {num, Id, A}, {num, Id, B},

10 {num, Id, _}], Status) when (A > B) -> true end]

Listing 1.10. Multi-pattern join in gen joins and the corresponding beta-
reduction tests

We decided to investigate the dependency between ordering of the patterns
and efficiency of the joins solver, especially in the context of the Rete algorithm.
It is important to remember that each set of messages that satisfies a partial

test from the joins increases the time to solve it. Therefore it is crucial to abort
any incorrect sequence of messages as soon as it is possible. The analysis of
the structure of the joins assigns a rank to each pattern, which depends on the
number of variables that it shares with other patterns, taking into account the
occurrence of the variables inside guards and the status parameter (if available).
Using this information we can reorder the patterns in the join during compile
time, without actually losing the deterministic ordering guarantee, gaining rea-
sonable speed-ups for joins with multiple dependencies. This feature worked well
along with the guard optimisations described above.

6 Evaluation

With JErlang we aimed to increase the expressiveness of Erlang for handling
concurrency problems while keeping negative effects on performance as small as
possible. One of the problems that drove the development of JErlang is the
Santa Claus problem first defined by Trono [12]. In this synchronisation problem,
Santa sleeps at the North Pole waiting to be awakened by nine reindeer or three
elves and then performs work with them. However the waiting group of the
former has higher priority if both full groups gather at the same time.

1 receive
2 {reindeer, Pid1} and {reindeer, Pid2} and {reindeer, Pid3}
3 and {reindeer, Pid4} and {reindeer, Pid5} and {reindeer, Pid6}
4 and {reindeer, Pid7} and {reindeer, Pid8} and {reindeer, Pid9} ->
5 io:format("Ho, ho, ho! Let’s deliver presents! ñ"),
6 [Pid1, Pid2, Pid3, Pid4, Pid5, Pid6, Pid7, Pid8, Pid9];
7 {elf, Pid1} and {elf, Pid2} and {elf, Pid3} ->
8 io:format("Ho, ho, ho! Let’s discuss R&D possibilities! ñ"),
9 [Pid1, Pid2, Pid3]

10 end

Listing 1.11. Santa Claus solution in JErlang

Many solutions were proposed, using semaphores (or similar), but since the
advent of the Join-Calculus a more elegant solution is possible. We compare
our JErlang solution with one provided by Richard A. O’Keefe 7 written in
Erlang. Listing 1.11 presents an extract from our solution (the pids allow us to
reply to the processes representing the reindeer and elves). With JErlang we
are able to say: ”Synchronise on 9 reindeer or 3 elves, with the priority given to
the former”. Typically the priority remains the hardest part to solve but with our
First-Match semantics we get it for free. An Erlang solution contains multiple
nested receive statements therefore it is hard to understand immediately what
is the aim of the code and how the priority is resolved. The JErlang version
of Santa Claus is half the size of the original Erlang version.

Our tests have shown that VM-supported JErlang gives better results but
only for larger mailboxes. The overhead that we introduce is too big for small
7 http://www.cs.otago.ac.nz/staffpriv/ok/santa

 0

 20

 40

 60

 80

 100

 120

 140

 0 100 200 300 400 500 600

E
xe

cu
tio

n
tim

e
(s

ec
on

ds
)

The minimal number of reindeer or elves synchronisations

Erlang solution
JErlang solution non-VM
JErlang solution with VM

Comega solution

Fig. 1. Execution of the Santa Claus problem in gen joins, implemented in Erlang
as well as JErlang with and without VM support. The problem artificially limits the
synchronisation to measure the correct time of execution

mailboxes. Figure 1 presents an average time of execution of the Santa Claus
problem in Erlang, C$(using implementation from [4]), JErlang with and
without the VM support. The difference between the two JErlang versions is
minimal because consumers work at a similar rate as producers. Unsurprisingly,
the time of execution of the simulation increases linearly with the number of
required synchronisations. It is interesting that the optimised JErlang is faster
than the one implemented using Erlang, as a result of our optimisations, as one
would expect a manual, specific and overhead-free implementation to be more
efficient.

To experiment with the performance of joins we developed tests that create
competitive, heavy-load client-server scenarios. Our aim was to develop situa-
tions where the numerous producers contributed to a sudden increase in the
size of the mailbox. Additionally, we generated messages that do not necessarily
match the specific patterns or won’t match the full join, which is much closer
to real systems. Figure 2 shows the drop in the number of synchronisations that
our joins-solver was able to find, as we kept increasing the rate at which the mes-
sages were produced (exponentially), with the rate of messages that can actually
perform a join remaining constant. The empirical results have shown that the
difference between using the non-VM JErlang and a hash-map data structure
inside the VM is negligible for small mailboxes, but for this benchmark we were
seeing at least double boost in the performance for VM supported JErlang
(omitted on the graphs). Additionally for simple benchmarking we compared
different implementations of a single cell buffer (using the example from [4]) and
the performance of JErlang was better from its C$’s equivalent (roughly 20%)
but worse than the Scala version (10%), due to its speed for simple matching.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 5 10 15 20 25 30 35 40 45 50 55

N
um

be
r

of
 fu

ll
jo

in
 s

yn
ch

ro
ni

sa
tio

ns
 s

ol
ve

d
by

 J
E

rla
ng

Rate at which processes send asynchronous messages that flood the mailbox

10 seconds
20 seconds
40 seconds
60 seconds

120 seconds

Fig. 2. VM supported JErlang benchmark. The effect of increasing the rate at which
the processes produce asynchronous messages on the number of synchronisations that
the join solver is able to analyse in a given quantity of time (different lines). We intro-
duced random delays to clearly mark the tendency in the performance and therefore
the real numbers of synchronisations are higher.

7 Related work

The Join-Calculus has inspired many implementations, the first being Jo-
Caml[3], an extension of OCaml. Compilation of patterns is described in [10]
in the JoCaml implementation. In comparison to our work, JoCaml requires
the uniqueness of patterns in the joins and forces an awkward syntax when using
the same patterns in different join definitions. Guards are disallowed in JoCaml.

C$ (previously Polyphonic C#) [4] was introduced as an extension of the
popular C# language where it introduces an object-oriented version of joins,
known as chords. JErlang’s gen joins is similar if we want to synchronise
on multiple function calls but C$ allows for at most one synchronous method
call in the whole chord and suffers from similar feature limitations as JoCaml.
A C$ variant has been implemented as a library and can be used on the .Net
platform with languages like Visual Basic or C# itself.

In HaskellJoinRules8 project the authors designed efficient implementa-
tion of Constraint Handling Rules(CHR), concepts which were shown in [13] to
be comparable to Join-Calculus. HaskellJoinRules was one of the first to
propose guards along with the join patterns. It also inspired us to include a prop-
agation feature (included in CHR), however JErlang, unlike HaskellJoin-
Rules, proposes a more efficient approach instead of primitive re-send seman-
tics. Sulzmann and Lam proposed a join construct for Erlang in [6], but the
semantics of their approach was vague and no prototype was built. For their
Haskell extension they focused on the implementation of a parallel solver for

8 http://taichi.ddns.comp.nus.edu.sg/taichiwiki/HaskellJoinRules/

their Constraints[14, 8] a possible approach for future development of JErlang.
This way though they lose some of the important guarantee like deterministic
behaviour.

Eugster and Jayaram presented an extension of Java for creating efficient
event-based systems. EventJava [15] allows for powerful expressions in guards,
which enables it to build complex relations between asynchronous-only messages.
In JErlang, guard conditions can also span over multiple messages, but we are
limited by Erlang functionality to disallow new variables or control constructs
in them. In EventJava the messages are transformed into a format acceptable
by the off-the-shelf RETE framework. In our implementation we have focused
on introducing optimisations which specifically target joins resolutions, because
of better control and a lack of existing solutions in Erlang. The Java extension
has the option of streams yet no event can appear in more than one correlation
pattern, which is reasonable for solving the problems presented in their work, but
opposite to our implementation. Finally EventJava allows for assigning timeouts
to specific events unlike JErlang, which forces timeouts on whole joins on
the receiver side. We believe that the former option would be more suitable to
message queueing systems rather than JErlang. Nevertheless the synchronous
calls in gen joins modules can specify timouts, therefore avoiding stalling for
long running operations.

8 Conclusions and Future Work

This paper presents JErlang, a Join-Calculus inspired extension of Erlang.
A number of examples have shown typical actor synchronisation problems that
programmers encounter while writing concurrent applications, and how they
can be solved using JErlang primitives. Unlike other Join-Calculus imple-
mentations we tightly integrated joins semantics, by adding guards, timeouts,
non-linear patterns and propagation to the original idea. The implementation of
these features allowed us to explore the role of First-Match semantics in JEr-
lang programs.

We intend to experiment further with the various join techniques to explore
the performance optimisations possibilities. It would be interesting to compare
the limits of the sequential algorithms to the parallel, out-of-order joins solver
and find a reasonable trade-off between JErlang’s performance and expres-
siveness. More in-depth static analysis of the patterns, as well as better data
structures for mailboxes, promises further optimisations.

Acknowledgements. We would like to thank our shepherd, Patrick Eugster, and
the reviewers for their helpful comments.

References

1. Armstrong, J.: Programming Erlang: Software for a Concurrent World. Pragmatic
Bookshelf (July 2007)

2. Gonthier, G., Rocquencourt, I.: The reflexive CHAM and the Join-Calculus. In:
In Proceedings of the 23rd ACM Symposium on Principles of Programming Lan-
guages, ACM Press (1996) 372–385

3. L. Mandel, L.M.: JoCaml Documentation and Manual (Release 3.11). INRA (2008)
4. Benton, N., Cardelli, L., C, P.: Modern Concurrency Abstractions for C#. In:

ACM Trans. Program. Lang. Syst, Springer (2002) 415–440
5. Haller, P., Van Cutsem, T.: Implementing Joins using Extensible Pattern Match-

ing. In: COORDINATION’08. Lecture Notes in Computer Science, Springer (2008)
135–152

6. Sulzmann, M., Lam, E.S.L., Weert, P.V.: Actors with multi-headed message receive
patterns. In Lea, D., Zavattaro, G., eds.: COORDINATION. Volume 5052 of
Lecture Notes in Computer Science., Springer (2008) 315–330

7. Sulzmann, M., Lam, E.S.: Haskell - join - rules. In Chitil, O., ed.: IFL ’07, Freiburg,
Germany (sep 2007) 195–210

8. Lam, E.S., Sulzmann, M.: Parallel join patterns with guards and propagation.
(2009)

9. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer-
Verlag New York, Inc., Secaucus, NJ, USA (1999)

10. Maranget, L., Fessant, F.L.: Compiling join-patterns. In: Electronic Notes in
Computer Science, Elsevier Science Publishers (1998)

11. Forgy, C.: RETE: a fast algorithm for the many pattern/many object pattern
match problem. Artificial Intelligence 19 (1982) 17–37

12. Trono, J.A.: A new exercise in concurrency. SIGCSE Bull. 26(3) (1994) 8–10
13. Lam, E., Sulzmann, M.: Finally, a comparison between Constraint Handling Rules

and Join-Calculus. In: Fifth Workshop on Constraint Handling Rules. (CHR 2008)
14. Sulzmann, M., Lam, E.S.: Compiling Constraint Handling Rules with lazy and

concurrent search techniques. In: CHR 2007. (2007) 139–149
15. Eugster, P., Jayaram, K.R.: Eventjava: An extension of java for event correlation.

In: ECOOP 2009, Berlin, Heidelberg, Springer-Verlag (2009) 570–594

