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Abstract—This work specifies, implements, and evaluates ac-
cess management based on face recognition. The system de-
veloped uses Internet-of-Things (IoT) for video surveillance,
Artificial Intelligence (AI) for face recognition, and Blockchains
(BC) for immutable permanent storage and provides excellent
properties in terms of image quality, end-to-end delay, and energy
efficiency.

Index Terms—Management of Access Control, Video Surveil-
lance, Blockchains, Internet-of-Things, Artificial Intelligence

I. INTRODUCTION

Blockchains (BC) [3] offer immutable storage of data
records in a distributed Peer-to-Peer (P2P) network. BCs can
help IoT infrastructures deal with centralization by removing
a single point of failure [6], [16]–[18]. BCs bring signif-
icant advantages in terms of information provenance, non-
repudiation, authenticity, and immutability, thus, increasing the
overall information security [5].

Internet-of-Things (IoT) is transforming the world of things,
which impacts many economic sectors, such as manufactur-
ing, transportation, automotive, consumer goods, and health-
care [4]. IoT devices of new generation can run complex
tasks in a distributed fashion but IoT comes with challenges
such as platform centralization, security and privacy issues in
communication protocols as well as vulnerability to device
attacks, e.g., Mirai, related to poor maintenance of IoT infras-
tructures [6], [12].

Artificial Intelligence (AI) may provide accurate data anal-
ysis in real-time. However, the design and development of an
efficient AI-based data analysis tool comes with challenges
too, such as centralization and transparency [21]. Therefore,
integrating BCs with AI can produce a robust approach to re-
solve those issues. Transparency can be achieved by gathering
AI decisions in a BC to provide a precise, immutable track
ordered in time.

Therefore, the simultaneous application of BC, IoT, and
AI, shows a successful synergy transforming data acquisi-
tion, analysis, and storage [5], [14], [20]. One may expect
many proposals and architectures combining BC, IoT, and
AI, however, there exist a few use-cases, wherein those three
technologies complement each other. Therefore, the main goal
of this paper is the design and development of a use-case,
i.e., an access management approach, using a BC-enabled IoT
Architecture coupled with AI.

The remainder of this paper is organized as follows. Sec-
tion II introduces the related work. While Section III provides
new use-cases and specifies the architecture of the system,
Section IV details its implementation and evaluates the perfor-
mance of the system developed. Finally, Section V summarizes
this work.

II. RELATED WORK

This overview addresses most recent projects and research
on the integration of AI, BC, and IoT.

A. Internet-of-Things

IoT transforms the interaction with everyday things [4].
Smart objects (i.e., devices equipped with micro-controllers,
sensors, and actuators) are often connected to the Internet
allowing for information harvesting, sophisticated information
processing at the fog, edge, or cloud level, and actuation in
a given environment. Most micro-controllers [1], [9] provide
minimal processing power and, in return, require low energy
consumption, thus, allowing for a longer lifetime of an object
on the single battery charge.

B. Internet-of-Things and Artificial Intelligence

Due to low processing power of IoT devices, there is a
need for lightweight approaches in AI. This gives rise to
new concepts, such as Tiny Machine Learning [10] or Tiny
Deep Learning [13], which are able to operate on constrained
devices. As an example, MCUNet [2] brings deep learning to
low capacity devices for image, audio, or video recognition.
Another study [23] worked on image processing and cloud
offloading. Two approaches with deep learning were tested,
i.e., (i) cloud offloading and (ii) deep learning on IoT devices,
from the real-time and energy efficiency point of view. Ex-
ecuting machine learning on an IoT device consumed more
energy compared to cloud offloading. However, it comes with
drawbacks such as latency starting with 2 seconds and going
up to 5 seconds, which is higher compared to AI on IoT
devices. Furthermore, it infers variability in response times,
making it unreliable in real-time applications.

Esp Eye [9], equipped with Tensilica LX6 dual-core proces-
sor, is to our knowledge the first micro-controller that performs
real-time face recognition. Esp Eye supports Esp Who [22],
which performs both: face detection and face recognition.
Esp Who implements MTMN for face detection, which refers
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to both MT-CNN (Multi-Task Cascaded Convolutional Net-
works) [24] and MobileNets (MN) [11] as well as Face
Recognition model based on Convolutional Neural Network
(FRMN) [19].

C. Internet-of-Things and Blockchains

Several research attempts close the gaps of IoT systems
by removing (i) the centralized control as well as tackle (ii)
the problem of provenance, non-repudiation, authenticity, and
immutability in IoT data streams with the help of BC [6],
[16]–[18].

D. Artificial Intelligence and Blockchains

There is a high research interest focused on BC and AI
analyzed in various domains and applications. Like IoT, the
AI domain also suffers from various problems such as security,
privacy, transparency, explainability, and trustworthiness. A
BC complementing an AI system promises to close those
shortcomings [7]. However, most of research items in this
domain do not develop use-cases or provide actual implemen-
tations.

E. Artificial Intelligence, Blockchains, and Internet-of-Things

Several attempts shed the light on the benefits of the IoT,
BC, and AI convergence through reviews or explorations
but lack a concrete implementation in use-cases [5], [14].
However, BlockIoTIntelligence [21] proposes an architecture
that utilizes BCs and AI in IoT. BlockIoTIntelligence aims
to achieve decentralized big data analysis considering security
and centralization issues of IoT applications in various do-
mains such as smart city, healthcare, and intelligent transporta-
tion. BlockIoTIntelligence claims high accuracy, reasonable
latency, and improved security.

F. Approaches Similar to This Work

[15] designs and implements a camera-based sensor for
room capacity monitoring. That work aims to count the
number of people in a room with the help of a Raspberry
PI (RPI) [1] equipped with a camera and Machine Learning
(ML).

G. The Newly Proposed Approach

This approach differs from related work implementations
by providing a solid use-case in access management. Further-
more, this approach combines all three techniques at the same
time, i.e., AI for image processing, BC for immutable tamper-
resistant storage (e.g., for auditing reasons), and IoT for data
harvesting (i.e., providing the video stream). Furthermore, this
approach follows the novel TinyML paradigm, in which face
detection and recognition run directly on an IoT device.

III. USE-CASE AND ARCHITECTURE

Driven by the specific use-case the description of the
architecture follows as a generalized approach.

A. Use-case

The system employs real-time face detection and recogni-
tion of authorized individuals to grant access to an institution.
The access is granted or denied by the system automatically.
When access is granted, the door to an institution may open
automatically without any intervention. However, when access
is denied, the door will remain closed, preventing the user
from accessing a given resource. When an individual needs
access, their picture is taken, processed, and stored in the
immutable BC, preventing future tampering with data and
enabling immutable storage that provides a solid foundation
for auditing purposes.

B. Architecture

Based on hardware components available, the software ar-
chitecture was designed and reasons for these design decisions
taken to materialize the idea of IoT-based AI surveillance with
BC are provided. Furthermore, different approaches, technolo-
gies, and communication protocols, considered throughout the
design decisions, are described.

1) Hardware Components: The system is composed of
an IoT device, an IoT Gateway (GW), and infrastructure
supporting a BC. The image capturing and face recognition
are handled by Esp Eye [9] IoT device, which is based
on a double-core architecture supporting the 240 MHz CPU
frequency, equipped with a 2-Megapixels OV2640 camera and
an IEEE 802.11 network adapter. The IoT GW, equipped
with an IEEE 802.11 network adapter as well, serves as the
middle man, which waits for data (i.e., images and meta-
data) coming from Esp Eye devices to be inserted into the
BC. The communication between Esp Eye devices and the
IoT GW is achieved through the IEEE 802.11 network. To
provide integrated experimental facilities, a BC runs locally
on the IoT GW. However, the BC can be spanned among
multiple machines organized as a BC network on the Internet.
Since HyperLedger Fabric (HLF) [3] was selected as the BC
platform, and its official build is provided for Intel-based
CPUs, the IoT GW is an Intel-based machine. It is, however,
expected that HLF might run on low-capacity devices, such as
ARM-based RPI devices. To this end, the HLF developer (i.e.,
IBM) shall provide an appropriate compilation environment to
support ARM-based devices as well.

2) Software Architecture: Fig. 1 depicts a high-level
overview of the system architecture. It is essential to men-
tion that the software design shall be compatible with many
underlying hardware architectures. However, the Esp Eye is
required for the success of this project.

Esp Eye uses the OV2640 camera to capture images. Images
are sent to the face detection and face recognition mod-
ules. Face detection (i.e., MTMN) and face recognition (i.e.,
FRMN) run directly on the Esp Eye device. The outcome, i.e.,
an images accompanied with meta-data, is provided toward
the video streaming service, which connects with the Esp
Server running on the IoT GW. The Esp Server provides the
image toward the ESP Plugin (cf. the IoT GW), which submits
the Transaction (TX) to the immutable ledger with the help
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Fig. 1: System Architecture

of the HLF Software Development Kit (SDK). HLF stores
images coming from Esp Eye devices in immutable storage.
HLF runs typical services required to run a BC, ieidentity
management, access control, and a consensus mechanism.
Finally, HLF maintains a smart contract, which is responsible
for handling data received from its clients (i.e., Esp Plugin
residing on the IoT GW). HLF matches very well the use-
case (cf. Section III-A), because a private permissioned BC
is better suited for video surveillance due to privacy and BC
block size reasons.

3) Communication Protocols: Hypertext Transfer Protocol
(HTTP) is employed between Esp Eye and the IoT GW to
communicate in the client-server architecture. The Represen-
tational State Transfer (REST) architectural style is used for
inter-machine communication because REST is considered a
lightweight communication paradigm. The JavaScript Object
Notation (JSON) data interchange format is employed to carry
the actual information in the system.

C. Implementation

The implementation determines the data flow between
Esp Eye, IoT GW, and HLF as shown in Fig. 2, where data
circulates from the left (i.e., the Esp Eye device) to the right
(i.e., HLF) [8]. Several Application Programming Interfaces
(API) and data structures are used to materialize the system.

1) Esp Eye Transmission Overview: Esp Eye analyses each
frame with the MTMN face detection and if a face is detected,
the image is provided towards the FRMN face recognition
algorithm. Hence, if a face is detected, but not necessarily
recognized, the HTTP client is activated, while Esp Eye
devices act as clients communicating with the remote HTTP
server on the IoT GW.

The video service takes the image equipped with meta-
data, i.e., device Identifier (ID), detected face ID, timestamp,
and forwards it to the IoT GW. This is achieved with the
help of a REST API call using the HTTP POST request.
The node.js-based server located in the IoT GW receives the

request (e.g., an image with the details of a person detected
provided as meta-data). Furthermore, the role of the node.js
server is to properly acknowledge the successful reception of
the transmission coming from Esp Eye devices.

There are four significant parameters to be stored in the
BC reflected in the JSON document provided by Esp Eye
devices. First, as multiple Esp Eye devices may be employed
in access management, the device ID is essential, since the
framework needs to distinguish particular devices from which
the information is coming. Second, a face ID is needed,
allowing for personal identification without processing the
captured frame again. The successfully identified person on
the sensor implies that access was granted to given resources
protected by this access management system. Additionally,
the timestamp identifies the time moment when the person
is detected. Finally, the image frame is provided. All four
parameters are sent as a JSON document. After receiving the
document, the node.js server located on the IoT GW responds
with a status code.

Esp Eye is programmed in C++ with the help of the Arduino
Integrated Development Environment (IDE), which has to be
equipped with the ESP32 board support. The device issues
HTTP requests using the POST method towards the HTTP
API exposed by the the IoT GW using the application/json
method. JSON is handful for sending plain text or any other
data types. Since HLF also uses a JSON format to store assets,
this work converts the image into a data type supported by
JSON as well. Hence, the best option is to store the image as
a string. To this end, the image is converted to BASE64.

Fig. 2: Sequence Diagram Showing TX Execution

2) HLF Transaction Submission: The node.js HTTP server
is responsible for receiving the data and forwarding it to the
HLF. In order to interact with HLF, the node.js-based server
uses the HLF SDK providing an API to submit TX to the
ledger. The process of submission takes place right after the
image has arrived from an Esp Eye device. The HLF TX data,
also referred to as an asset, is a collection of JSON key-value
pairs. Since the JSON format for the image transfer is used
from the start, node.js may forward a similar JSON file to the
BC.
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This work implements a chaincode (i.e., smart-contract)
running on HLF. To run a smart-smart contract, (i) HLF has
to be configured and running, (ii) the HLF channel is estab-
lished, (iii) the chaincode implemented in this work and its
endorsement policy is deployed within the channel. Each Esp
Eye is assigned with a public/private key pair, which is used
to sign the HLF TX. Furthermore, every Esp Eye possesses a
valid X.509 certificate, i.e., public key of the node signed with
the HLF Certificate Authority (CA), appropriately recognized
by the HLF Membership Service Providers (MSP). For more
information, please consult the HLF documentation [3].

The IoT GW acts as an HLF client. Therefore, the IoT GW
initiates the HLF TX with a JSON document received from
Esp Eye (cf. Sect. III-C1), which becomes the TX payload.
In this work, however, the IoT GW retrieves the key pair of
a given Esp Eye device and signs the TX on behalf of the
device using the HLF SDK. Although TX signing is possible
locally on the Esp Eye device, this was not implemented here,
since the HLF client SDK is not ported for Esp Eye devices
yet.

This work configures two HLF endorsers (i.e., EP1 and EP2,
cf. Fig. 2). They receive the TX proposal, which includes a
client ID, the chaincode ID, the TX payload, a timestamp,
and the client signature. The endorsement policy in this work
requires both endorsement peers to endorse the received HLF
TX before the TX might be submitted toward the ordering
service. First, EP1 and EP2 check the format of the TX.
Second, every TX has to posses a valid signature of a client ap-
propriately registered within the MSP. Third, the client has an
authorized member of the HLF channel. When all conditions
have been verified, the endorsers invoke the chaincode using
the JSON document received. Eventually, the TX is executed,
however, it does not yet update the ledger. Now, the endorsers
sign the proposed TX and send it back to the HLF client
on the IoT GW. The intent of the HLF client is to submit
the TX to the ordering service and update the ledger. Before
the HLF submits the final version of the TX, HLF clients
send the TX endorsed toward the ordering service. Now, the
TX is equipped with signatures of endorsing peers. While
the ordering service may receive TXs from other clients or
ESP devices, the ordering service orders TXs according to a
sequence number and packages them into blocks. When the
maximum number of TXs allowed in a block is reached or the
maximum block-time has passed blocks are sent to committing
peers to be included in the ledger for an immutable storage.
Upon receiving a broadcast message with the created block
from the orderers, committing peers verify the signatures of
ordering nodes within a given block. If the committing peers
fail to verify the signature of ordering peers, the ledger will
not include and rejects the newly created block.

IV. EVALUATION

The evaluation integrates two Esp Eye sensors (dual-
core Tensilica LX6 processor with a maximum frequency
of 240 MHz, 8 MB PSRAM, and 4 MB flash) and regular
macOS based computer having 2-core Intel Core i5 running at

2.7 GHz, 512 GB SDD disk, and 8 GB RAM. To begin testing,
several steps are recommended. (i) The Esp Eye sensors are
programmed and powered up using an external charger power
bank; 10 face profiles are uploaded on the device. (ii) HLF
is started with the help of docker containers. Currently, one
committing peer and two endorsing peers are configured.
The ordering service is set to solo, i.e., one node ordering
HLF TXs. The HLF channel is configured and JS-based
chaincode implemented is deployed. (iii) The IoT GW starts
the node.js-based HTTP server listening on port 8585. For the
implementation details of all components, please consult [8].

A. Image Quality

The OV2640 camera embedded in Esp Eye is also supported
by the Esp Who platform. The camera can be configured
in terms of frame size and pixel format. The FRAME-
SIZE QVGA (320 px×240 px) is selected. The sensor can
deliver 5.2 fps (i.e., 190 ms to deliver an image) of this image
quality.

B. Processing Delay of Face Detection and Recognition

The idea of performing face detection and recognition on
Esp Eye is a novel approach because typically face detection
and recognition run either on the cloud or on a local computer.

Face detection and recognition takes around 1 s on Esp Eye.
Around 120-125 ms is needed to receive the image from the
sensor. Furthermore, Esp-Eye required around 50-55 ms to
perform the face detection with MTMN, when no face is
provided in the image. If MTMN does not detect faces, FRMN
is not activated, which results in the 0 ms FRMN completion
time. Typically, when the face is detected, MTMN requires
around 150-170 ms to detect a face and FRMN requires around
650-700 ms to complete. Therefore, the total time including
face detection (i.e., MTMN) and recognition (i.e., FRMN)
results in 920-1000 ms, which includes the image acquisition,
MTMN, and FRMN. The FRMN algorithm displays around
99% percent accuracy, however, more studies are needed to
evaluate its performance on face detection in a real-system.

C. End-to-End Processing Delay

This work measures the end-to-end delay by printing the
timestamp at different individual processing steps. (i) The
image is captured, but no face detection/recognition has been
performed yet. (ii) A face has been detected/recognized and
the image is sent to IoT GW. (iii) The image has reached
the IoT GW. (iv) The image has been submitted to HLF. (v)
The image is inserted in the ledger and the ordering service
is finished.

Table I shows all processing stages starting with the Esp Eye
image capturing until the image reaches the ledger. Sending
the image from Esp Eye to the IoT GW takes almost 2 s due
to low throughput of the TCP communication on Esp Eye.
HLF consumes little more than 2 s. This is influenced by two
configurable parameters, i.e., BatchTimeout and BatchSize.
This work configures BatchTimout at 2 s. The end-to-end
delay experienced in the system is 5.3 s from the moment
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image is taken until the inclusion of the BC TX in the BC.
Therefore, almost real-time use-cases can be supported using
HLF as a communication backend.

TABLE I: End-to-End Delay Measurements

Action Point Timestamp
Image is captured by Esp Eye 2021-01-22T14:39:26Z
Image is being sent to IoT Gateway 2021-01-22T14:39:27Z
Image is received by IoT Gateway 2021-01-22T14:39:28.947Z
Image is submitted to Fabric 2021-01-22T14:39:29.111Z
Image has reached all the peers 2021-01-22T14:39:31.313Z
Total Time 5.313 s

D. Energy Efficiency of Esp Eye

The experimentation setup was used to measure the energy
consumption of Esp Eye against image quality, face detection,
and face recognition. After several tests with different image
qualities and parameters, there was no difference experienced
in Esp Eye energy consumption. Throughout the experiment,
the energy consumption remained at the constant level of
600 mW (in total, the device consumed 600 mWh within an
hour of operation), which allows for a 7-hour operation on an
alkaline battery of 4,200 mWh capacity. Furthermore, there is
no difference in energy consumption when a face is recognized
or no face is detected.

V. SUMMARY, DISCUSSION, AND FUTURE WORK

This paper provides the first access management system,
which utilizes Artificial Intelligence (AI), Blockchains (BC),
and Internet-of-Things (IoT) in an integrated use-case. Thus,
the user needs to present his/her face in front of a camera
to access a resource. The system takes the image of that
person and checks, whether this given user has the right
to access a given resource. Face detection and recognition
are performed directly on the IoT device. To detect faces,
a MT-CNN (Multi-Task Cascaded Convolutional Network)
with MobileNets (MN) was deployed. Furthermore, the Face
Recognition model is based upon a Convolutional Neural
Network (FRMN). To establish a good level of transparency,
the AI decisions on access rights as well as images taken by
the sensor are stored in the immutable, tamper-resistant storage
implemented with the help of the HyperLedger Fabric (HLF).
The performance of the system was evaluated at an excellent
level, where a 5.3 s end-to-end delay is reached.
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