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Abstract—Software-Defined Networking (SDN) has found ap-
plications in different domains, including wired- and wireless
networks. The SDN controller has a global view of the network
topology, which is vulnerable to topology poisoning attacks, e.g.,
link fabrication and host-location hijacking. The adversaries
can leverage these attacks to monitor the flows or drop them.
However, current defence systems such as TopoGuard and To-
poGuard+ can detect such attacks. In this paper, we introduce
the Link Latency Attack (LLA) that can successfully bypass the
systems’ defence mechanisms above. In LLA, the adversary can
add a fake link into the network and corrupt the controller’s
view from the network topology. This can be accomplished by
compromising the end hosts without the need to attack the
SDN-enabled switches. We develop a Machine Learning-based
Link Guard (MLLG) system to provide the required defence for
LLA. We test the performance of our system using an emulated
network on Mininet, and the obtained results show an accuracy
of 98.22% in detecting the attack. Interestingly, MLLG improves
16% the accuracy of TopoGuard+.

Index Terms—Software-defined Networking (SDN), Topology
Poisoning, Link Fabrication Attack, Link Latency, Machine
Learning.

I. INTRODUCTION

Software-Defined Networking (SDN) facilitates the man-
agement of the network devices, e.g., switches, through an
interface and utilises a logically centralised entity to control
the entire network. SDN brings flexibility to program the
forwarding behaviour of the network devices [1] and reduces
the configuration complexities of the network. The Open-
Flow [2] is one of the widely employed realisations of SDN
in commercial networking devices.

The centralised entity of an SDN-based network is a tar-
get for many security attacks, such as topology poisoning
attack [3]. This attack targets corrupting the view of the
SDN controller on the connected devices, e.g., switches or
hosts, to the network. Link Fabrication Attack (LFA) [4]
is an example of a topology poisoning attack in which the
adversary intends to add a fake link between two switches. The
adversary uses the security vulnerabilities of the OpenFlow
Discovery Protocol (OFDP) [5] to attack the network since the
SDN controller leverages this protocol to obtain the topology
information.

In OFDP, the controller sends periodic Link Layer Dis-
covery Protocol (LLDP) [6] messages to the switches. The
controller issues the LLDP packets and send them to all
switches. By receiving LLDP packets via a Packet-Out

message, each switch distributes it to all interfaces. When the
destination switch receives the LLDP, the switch encapsulates
it as a Packet-In message and sends it to the controller.
Upon receiving LLDP, the controller realises a link between
two switches.

The above procedure lacks authenticity. The lack of authen-
tication mechanism in OFDP makes the network vulnerable to
the topology poisoning attack since an adversary can insert
a fake LLDP message to disturb the global view of the
controller [7]. Furthermore, with the adoption of SDN, a large
number of enterprises will benefit from its advantages, and
according to the report in [8], the SDN market value will
grow to 32+ billion USD by 2025. Therefore, the security
of the SDN networks becomes crucial for many businesses
since the attack can impact many of them. Consequently, the
LFA and other types of topology poisoning attacks should be
seriously analysed because the cost of an attack can be very
high. According to the report in [9], the average cost of a
cyber attack is 3.86 million USD per incident.

A. Motivations

Several defences have been proposed in the literature to
mitigate LFA risks [4], [10], [11]. For example, TopoGuard [4]
and SPHINX [11] monitor the packets of flows targeted
to the controller to detect topology tampering attacks. To-
poGuard+ [10] shows the defence systems of TopoGuard and
SPHINX can be bypassed by introducing Port Amnesia and
Port Probing attack. The adversary uses Port Amnesia attack
to reset the port type of the device used by TopoGuard to
detect the link advertisements and relay the LLDP toward
the controller. Port Amnesia in TopoGuard+ can bypass the
port-labelling technique of TopoGuard by disconnecting and
reconnecting the host. Following this way, the label of a port in
a switch resets to ANY, i.e., one label type in TopoGuard [10].
The defence mechanism of TopoGuard+ can detect and pre-
vent this attack. Nevertheless, TopoGuard+ is vulnerable to
other topology attacks. Motivated by this, we introduce a Link
Latency Attack (LLA) that can bypass the defence system
of TopoGuard+. The adversary can use this attack to add a
fake link into the network and corrupt the controller’s view
from the network topology. We analysed the passive and active
monitoring techniques used in TopoGuard and TopoGuard+ to
detect the LFA and report that such systems’ defence systems
cannot prevent this attack.
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B. Contributions

This paper first introduces the LLA. Then, it develops and
implements a machine learning-based (ML) system on top
of TopoGuard+ to detect and prevent the LFA. We employ
ML-based classifiers to train our system using a dataset to
detect the LFA. Our main motive is to take advantage of
ML in implementing outlier detection techniques to identify
a dynamic threshold for attack classification. We test our
system in a network topology built using Mininet [12] and
Floodlight [13] controller. The obtained results show that our
system can report the attack with an accuracy of 98.22%.

The rest of the paper is as follows. In Section II, we present
LLA and the weakness of TopoGuard+ in attack detection.
Our proposed MLLG interaction is described in Section III
and evaluated in Section IV. A discussion on LLA and MLLG
limitations are described in Sections V. We present the related
work and conclusion in Sections VI and VII, respectively.

II. LLA: LINK LATENCY ATTACK

This section introduces a new attack to corrupt the network
topology view of the SDN controller. First, we define the
threat model used in the paper (see Section II-A). Then, we
explain two phases, namely overload phases and relay phase,
in sections II-B and II-C, respectively.

A. Threat Model

In this paper, we assume that an adversary can compromise
one or more hosts or virtual machines in the SDN through
viruses, trojans and malware infections or even in a worse case,
the adversary could be an insider. Moreover, the adversary
provides an out-of-band communication channel, e.g., cable
or wireless connection, between two hosts to relay the LLDP
packets. If it is not feasible, a multi-homed single host could
be used alternatively [14].

We call this attack Link Latency Attack (LLA). The ad-
versary aims to add a fake link between switches through
the out-of-band channel using malicious hosts in the network.
To do so, the adversary leverages the end-hosts to inject
unwanted traffic, e.g., ARP, to the network to increase the
packet processing time of the switches. Consequently, the
switches’ response time to the controller packets increases
since modern proposed defences by the SDN controllers such
as TopoGuard+ rely on probe packets to keep the updated
view of the network topology. The adversary uses this long
response time to relay LLDP packets to the network to add
the corresponding fake link among the switches.

The LLA impacts the performance of the network by
misleading the traffic that can have several consequences such
as poor Quality of Service (QoS) or Quality of Experience
(QoE), to state a few [15], [16].

We now explain how TopoGuard+ detects LFA. To-
poGuard+ includes a Link Latency Inspector (LLI) module to
track latency values of links between switches. The LLI could
detect fake links by checking the latency of links imposed
by an out-of-band channel when propagating LLDP packets.
It periodically issues probe packets to measure the round

trip time (RTT) between the controller and switches. Upon
receiving the packet, each switch provides a suitable response
to that packet. Assume that we have two switches, namely, s1
and s2, that are connected to a controller. Also, suppose that
Tp1

and Tp2
are the corresponding link latency of the probe

packets sent to s1 and s2. The LLI computes the inter-switch
link latency Tl using eq. (1).

Tl = TLLDP − Tp1 − Tp2 , (1)

where TLLDP indicates the propagation delay of the LLDP
packet. To calculate the TLLDP , the controller adds a times-
tamp to the issued LLDP packet toward the switches and
takes the difference when receiving it. Moreover, LLI stores
the values of inter-switch latency Tl for previous LLDPs, and
measures a latency threshold Th as shown in eq. (2).

Th = q3 + 3 ∗ (q3 − q1), (2)

where q1 and q3 indicate the lower and upper quartiles
of latencies, respectively. LLI verifies the link’s validity by
comparing latency Tl and threshold Th and raises a security
alarm in case of suspicious delay, i.e., Tl > Th.
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Fig. 1: An example of the weakness of TopoGuard+ in
detecting LLA.

Running example. The adversary can bypass the TopoGuard+
by launching LLA. Fig. 1 presents an example of the weakness
of TopoGuard+ in detecting LLA. In this figure, the red line
indicates the calculated threshold by LLI based on eq. 2.
TopoGuard+ marks a link latency value located above the
threshold as a fake link (red triangles in Fig. 1). In addition,
a latency value situated between the red and black lines is
categorised as a valid link (blue diamonds in Fig. 1). However,
TopoGuard+ fails to detect a negative link latency value
located in the yellow area (purple squares in Fig. 1), which
is a vulnerability area of the TopoGuard+. LLA exploits this
vulnerability to impose a fake link into the network.

The proposed LLA consists of two phases, namely, overload
phase and relay phase. In the former phase, the adversary
injects a huge amount of ARP traffic into the network, while in
the latter phase, it relays the received LLDP packets from the
switches via the out-of-band channel. The adversary leverages
at least two compromised hosts for this purpose and frequently
switches between two phases based on the LLDP propagation
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Fig. 2: The considered schematic of LLA. Fig. 2a includes
compromised hosts send huge ARP traffic toward s1 and s2
to increase the RTT of probing packets. Fig. 2b explains
compromised hosts relays the LLDP packet through out-of-
band channel.

interval. To measure the LLDP packets interval, the adversary
keeps the time difference between two consecutive packets.

The compromised hosts take two different roles during the
attack; flooder and listener. In the overload phase, they play
the role of flooder and send ARP floods to the switches. In the
relay phase, as a listener role, they both listen to LLDP packets
and relay them toward each other and the peer switches. Fig. 2
shows how the attack takes place in our scenario.

B. Overload Phase

During this phase, flooder hosts send ARP flooding traffic
to switches s1 and s2 (see Fig. 2a). This traffic significantly
increases the number of table-miss entries on the switches
and directs a huge number of Packet In messages toward
the controller. Handing such an amount of packets results
in increasing resource usage of the Open vSwitch (OVS)
daemon from the switches. Consequently, the daemon pushes
the incoming packets into the queues to be processed later.
This results either in growing the probing packet’s RTT or even
dropping the packets due to the congestion on the ingress port
of the switch. The increment in the RTT of the probe packets
is enough for the adversary to launch the relay phase.

C. Relay Phase

In this phase, both hosts, i.e., h1 and h2, stop flooding ARP
packets and change their role to listener for the incoming
LLDP packets. When the controller issues LLDP packets, the
adversary changes the attack phase from the overload phase
to relay phase. Fig. 2b shows that upon receiving the LLDP
packet in the relay phase by host h1, it forwards this packet
to host h2 through a dedicated link. Host h2 does the same
task and forwards the LLDP packet to switch s2. At this point,
in the view of switch s2, this is a new LLDP packet from a
switch, and it has to forward this packet to the controller.

The controller receives the LLDP response packet, finds a
change in the network topology, and updates it. To do so, it
performs a check on the threshold and received LLDP packet
latency using eq. 1 and eq. 2. Here, the values of Tp1 and Tp2

are high compared to the normal LLDP packets since they
experience high latency in the overload phase. However, by
applying eq. (1), the latency of the extra link between switches
s1 and s2, i.e., Tl, stays in the valid range from the controller
point of view, i.e, Tl ≤ Th. Even in some cases, the calculation
shows a negative value for Tl. Hence, the LLI module in
TopoGuard+ fails to detect the LLA, and finally, the controller
updates its view of the network topology by adding an extra
link between switches s1 and s2.

By deeper investigation through the TopoGuard+ source
code, we realised that the implementation strategy used in
this framework for measuring the control link latency leads
our proposed LLA more cost-efficient for the adversary. By
initiating the first overload phase, control link latency, i.e., Tp1

and Tp2
, increases to a high value. However, the abnormal

observation is that TopoGuard+ freezes on this value and
never decreases it even after stopping the overload phase. It
means that the adversary does not need to sustain or repeat
the overload phase to keep the latency values high. This
vulnerability in TopoGuard+ implementation is because the
controller does not initiate a new probing packet toward the
switch without receiving the answer for the previous one.
Example Scenario. LLA can be applied in real-world attack
scenarios such as SDN-based vehicular network [17]. In such
scenarios, OpenFlow switches take the role of roadside units
(RSUs). Hosts could connect to the RSUs and can be surveil-
lance computers, roadside control platforms and edge servers.
These hosts communicate with each other through wired or
wireless channels. LLA creates a fake link that misleads the
shortest path decision between two RSUs. It detours the traffic
to a different path for the vehicles.

III. COUNTERMEASURE

In this section, we explain the detail of our contribution in
protecting the network topology from LLA. We first state the
architecture of the proposed system. Then, we describe how
we collect our dataset and use ML techniques to classify the
information of the dataset. Finally, we explain the detail of
our implementation.

𝑇𝑝1
𝑇𝑝2

ML classifier

AdminDataset

Topology DB

LLDP

LLDP

Fig. 3: The architecture of MLLG system to protect LLA.

TopoGuard+ uses a time interval threshold to detect the
anomalies in the incoming LLDP packets to the controller.
The adversary can bypass the threshold by launching LLA.
We now describe the architecture of our proposed defence
system to avoid bypassing this threshold value.
Architecture. We use ML techniques to detect the LFA and
call our system MLLG. Fig. 3 presents an architecture of
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the MLLG system. In this figure, the MLLG has an offline
ML classification model to train the system using a dataset
containing various types of LFAs. Upon receiving the LLDP
packet, the controller forwards it to the MLLG to verify its
validity with the associated link. The controller either drops
the LLDP packet or updates the topology database using the
outcome of the MLLG.
Dataset. We modify the source code of TopoGuard+ to extract
three following features in nanosecond time scale. First, on
receipt of a Packet-in message, LLDP propagation time
(TLLDP ) is captured by taking difference between sendTime
and receiveTime parameters of LLDP packet. Second, we
capture the round trip time between the controller and switches
to measure the control link latency for ingress (Tp1 ) and egress
(Tp2 ) switches. We run TopoGuard+ for nearly three days
and collect all mentioned features to prepare our dataset. We
develop a script to initiate three types of LFAs, namely, link
fabrication attack [4], gradual link fabrication attack [18], and
LLA. Our script collects 123,053 LLDP packets including
15,638 (12.8%) for the fake links and 107,415 (87.3%) for
the normal inter-switch links.
Packet Classifier. We classify the packets in our dataset
using seven ML classification techniques, namely, Logistic
Regression (LR), Support Vector Machine (SVM), K-Nearest
Neighbors (K-NN), Naive Bayes (NB), Random Forest (RF),
and Multi-Layer Perceptron (MLP). The rationale for choosing
these classifiers is that they have data-driven algorithms to
identify a dynamic threshold in volatile network conditions.
Additionally, the ML classifiers use the complex outlier de-
tection algorithms, e.g., the distance-based algorithm in KNN
and the Kernel-based approach in SVM, to improve the
classification performance [19]. For example, when the data
are not linearly separable, SVM applies a kernel function
to detect the outliers. We train the classifiers using 80% of
packets in the dataset and use the remaining 20% of traffic
to test the learned model. Our ML classifiers show the best
results for the following parameters; the max depth of 4
for RF and the neighbour number of 10 for KNN. In
addition, we run SVM using linear classification.
Implementation. We now explain the implementation of
MLLG. Algorithm 1 presents the pseudo-code of our system
that is implemented on top of TopoGuard+ in the Floodlight
controller. To run our detection, the controller needs the LLDP
packet data, the egress switch DPID of the switch forwarding
the LLDP packet to the controller, and the arrival time of
the LLDP packet as the input. Upon receiving the LLDP
packets, the controller extracts all required information from
the received LLDP packet and calculates the TLLDP . Then,
it has to measure the control link latency of the switches
connected to the controller. At this point, the controller has
all the needed parameters to verify the link’s validity using
our pre-trained model. It passes the values of the parameters
to the Defence module and waits for the verification results.
If the model detects the fake link, it first drops the LLDP,
then informs the network administrator by raising a major
security alarm and returns FakeLink as the status of the link.

Algorithm 1: ML-based Link Guard (MLLG)
Data: Incoming LLDP, LLDP received time (tr), Egress switch

DPID (sE ).
Result: LinkState.

1 ts ← Extract timestamp of initiated LLDP packet;
2 sI ← Extract ingress switch DPID from LLDP packet;
3 TLLDP ← tr − ts;
4 Tp1 ← link latency between controller and switch sI ;
5 Tp2 ← link latency between controller and switch sE ;
6 Defence← Load pre-trained ML model;
7 IsAttack ← Defence.predict(TLLDP , Tp1 , Tp2 );
8 if IsAttack == 1 then
9 Drop LLDP ;

10 Set LinkState← ”FakeLink”;
11 Raise ”Fake Link” major security alarm;
12 else
13 LinkState← ”V alidLink”;
14 Update topology database;
15 end
16 Retrun LinkState;

Otherwise, it updates the topology database of the network and
returns ValidLink as the status of the link.

Topology update. The MLLG system can detect the topol-
ogy updates if the change in the topology, e.g., adding a link
with its properties such as delay, is in the same delay range
as the current dataset. However, for the changes that impose
higher link latency, the update of the dataset is necessary.
Specifically, we can categorise the topology updates into two
sub-categories; a) low-impact changes and b) high-impact
changes. In the former case, the MLLG can detect the topology
changes without the need to update the dataset since the
updated links’ delays are within the same range as the current
links’ delays.In the latter case, the MLLG needs an updated
dataset because the updated topology has some links with
higher link latencies than the current dataset.

We implement the ML classification part of the MLLG in
Python using the Scikit-learn library [20].

IV. PERFORMANCE EVALUATION

In this section, we present the network setup to run MLLG
and report the performance of our system.

A. System Setup

We do our experiments on a virtual machine equipped with
an Intel Core i5-6500 3.2GHz with 2 CPU cores and 8GB
RAM running Ubuntu 14.04 LTS-64bit. We use Mininet for
the simulation and build the network topology of Fig. 4. All the
links connecting the hosts to the switches have 5 milliseconds
(ms) of delay, including the inter-switch links. There are two
compromised hosts connected to switches s1 and s3. They play
the role of the flooder and listener in the overload and relay
phases of the LLA. The two compromised hosts communicate
via a dedicated out-of-band channel with 10ms of link delay.
We run the Floodlight controller which includes TopoGurad+
defence on the same VM to protect the network.

B. Running the Tests

To launch the overload phase of the LLA, we use arping
to send a considerable number of ARP requests toward the
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Fig. 4: Test environment topology and configuration.

switches (1,000,000 ARP request messages with 1-us interval).
For relay phase, we use scapy [21] library in Python to relay
the received LLDP packets via the out-of-band channel toward
s1 and s3.

Overload phase

Relay phase

(a)

(b)

(c)

(d)

(e)

Fig. 5: Floodlight system logs before and after launching
LLA. (a) Normal inter-switch link latency and threshold. (b)
TopoGuard+ detects LFA (c) Normal control link latency
value. (d) The adversary initiates overload phase resulted a
sharp growth in control link latency. (e) TopoGuard+ fails to
detect LLA and adds the fake link to the network topology.

1) LLA Security Performance: We activate the system log
of the Floodlight controller to check the behaviour of To-
poGuard+ against LLA. Fig. 5 shows a snapshot of the system
logs before and after launching LLA. We separate Fig. 5 with
the different coloured boxes to report the impact of the attack
on various parts of the log. During normal execution of the
system, we observe that all the inter-switch link latency values
are less than the predefined threshold value, i.e., ≈ 57 ms (see
Fig. 5 section (a)). Then, we conduct the LFA and observe that
TopoGuard+ detects the attack (see Fig. 5 section (b)) since
the latency of received LLDP, e.g., 82,644us, is greater than the
threshold, i.e., 57,861us. At this point, the control link latency
value is ≈ 1ms in a normal situation (see Fig. 5 section (c)).

We now launch the LLA by applying the overload phase. By
checking the log of the system, we observe a sharp growth in
control link latency value to ≈ 130ms (see Fig. 5 section (d)).

(a) Before Link Latency Attack (b) After Link Latency Attack

Fig. 6: An example of LLA using a simple topology on the
floodlight controller. 6a before and 6b after launching LLA.

Note that the Floodlight controller applies a simple throttling
strategy to prevent itself from being overloaded. The controller
cannot detect the floods of ARP packets issued during the
overload phase since we issue them for a short period. At
this point, we apply the relay phase (see Fig. 5 section (e))
and observe that TopoGuard+ fails in detecting the attack.
Consequently, it adds a bidirectional fake link between s1 and
s3 as a valid link to the network topology.
Running example. We now show a running example of
LLA using a simple topology on the Floodlight controller.
We take a snapshot from our network topology from the
WebUI of the Floodlight controller in Fig. 6 before and after
launching the LLA. Fig. 6a presents the controller view of
the current links in which there is no link between switch
s1 with DPID [00:00:00:00:00:00:00:01] and switch s2 with
DPID [00:00:00:00:00:00:00:03]. However, after launching the
attack, the controller misleads into believing a direct link
between these two switches (see Fig. 6b).

2) MLLG Defence Results: We evaluate the performance
of our proposed MLLG defence by measuring five widely
used metrics, namely, Accuracy (A), False Alarm (FA) or
False Positive Rate (FPR), Recall (R) or True Positive Rate
(TPR), Precision (P), and F1-score (FS). Then, we compare the
obtained results with those of running TopoGuard+ to show
the effectiveness of MLLG system.

TABLE I: The detection performance comparison (%). A:=
Accuracy; P:= Precision; FS:= F1-Score.

Defence Classifier A FPR TPR P FS

MLLG

KNN 98.22 0.97 92.74 93.24 92.99
MLP 96.80 0.98 81.58 92.36 86.64
RF 96.02 0.92 75.06 92.22 82.76
LR 88.05 2.03 19.98 58.79 29.82
SVM 87.42 0.40 3.77 57.84 7.08
NB 87.28 2.65 18.22 49.95 26.70

TopoGuard+ LLI 84.28 5.48 14.03 27.14 18.50

Table I shows the performance of the different classifiers of
our systems against TopoGuard+. We find that the accuracy
of the KNN, MLP, and RF algorithms is at least 96%, and
the KNN algorithm has the highest accuracy. The reason is
that the feature labels are known, and their values are mostly
near each other. Moreover, LLDP traffic has no noise data and
has been prepossessed. While the other classifiers, including
the one of TopoGuard+, have the accuracy of less than 89%.
Specifically, the accuracy of TopoGuard+ is 84.28%. The
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KNN algorithm has the highest values for TPR, P, and FS with
92.74%, 93.24%, and 92.99%, while the corresponding pa-
rameter values for those of TopoGuard+ are 14.03%, 27.14%,
and 18.50%, respectively. Finally, the SVM classifier reports
0.40% of the packets as FPR, while TopoGuard+ makes a
false alarm for 5.48% of the packets in our dataset.
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Fig. 7: ROC curves and AUC comparison for different classi-
fiers.

We now report the ability of the classifiers in detecting the
LLA using the Receiver Operating Curve (ROC). The ROC
illustrates TPR versus FPR in which the Area Under the Curve
(AUC) is calculated to determine which classifier best predicts
the fake or valid links. Fig. 7 indicates that the MLP classifier
achieves the highest AUC of 0.994 among all other classifiers.

The rationale to leverage the ML classification technique in
link verification is that it makes MLLG different from previous
solutions such as TopoGuard+. We summarise the differences
as follows. First, MLLG improves the detection and accuracy
rate compared to the current best solution TopoGuard+. Sec-
ond, MLLG empowers the controller to verify the links based
on a massive LLDP traffic and collected latencies dataset over
the desired period.

V. DISCUSSION

In this section, we discuss the limitations of our attack
scenario in more detail. Our proposed LLA attack and MLLG
defence are currently implemented in Floodlight with To-
poGuard+ defence which could be extended to other con-
trollers [4]. We need at least two compromised hosts with
an out-of-band channel or one dual-homed host to launch an
LLA. In case of having several adversaries in a large network,
MLLG still could detect the attack. To do this, we require to
store all probe packets and LLDP traffic of all switches in the
dataset.

We suppose that the adversary initially conducted some
experiments with various duration ranges for the overload
phase to estimate the frequency of probe packets. Using the
default configuration of TopoGuard+, the controller sends a
probe packet every 5 seconds.

Detecting ARP floods with a low false-positive rate and
for a short period is a challenge for most network Intrusion

Detection Systems (IDSs), such as Snort and Bro, due to
a considerable number of ARP requests in large-scale net-
works [4]. This weakness helps the adversary mitigate the risk
of detecting the ARP flood by a defence system in overload
phase of LLA.

VI. RELATED WORK

In this section, we briefly describe the state-of-the-art on
topology poisoning attack in SDN networks. This attack was
first introduced in [4], and it is a type of protocol-based attack
in which the adversary does not need to have the control
plane access or know the vulnerability of the controller. The
two security threats in this attack are link fabrication attack
(LFA) and host location hijacking attack (HLHA). The LFA
aims to add a virtual fake link among the switches in the
network. While HLHA aims to tamper the location of a host in
the network to mislead the traffic flows toward the adversary.
Therefore, LLA is categorised in LFA group.

TopoGuard protects the network from LFA by a port la-
belling strategy. The controller uses different labels such as
HOST, SWITCH, and ANY to classify the devices based on
the received traffic. The main drawback of TopoGuard is that
the adversary can compromise a host and pretend its label
as a switch to relay the LLDP packets. SPHINX [11] is a
framework that compares two flow graphs of the network
traffic and finds potential anomalies. Nevertheless, the defence
mechanism of SPHINX could not detect all types of topology
poisoning attacks. In contrast, MLLG detects link latency
anomalies by analysing LLDP traffic along with packet latency
values.

In [10], a new type of LFA, namely, port amnesia at-
tack, has been introduced. The authors showed that the port-
labelling technique of TopoGuard could be bypassed if the
adversary switches the port status of the compromised host
from down to up during the LLDP propagation. Then, they
developed TopoGuard+ framework, which contains a Link
Latency Inspector (LLI) module to detect the fake link. The
LLI calculates the latency of an inter-switch link and compares
it with a latency threshold. However, this threshold could not
be updated based on network traffic patterns, resulting in valid
link removal.

The work in [18] designs an LFA against TopoGuard+
which could gradually increase the latency threshold until it
becomes greater than the latency of the out-of-band-channel.
The adversary in LLA aims to increase the value of control
link latency (and not a threshold value) which takes only a
few seconds to achieve. However, launching the attack in [18]
needs hours of preparation. Moreover, they do not present
a specific defence against the attack. The work in [22] also
proposes a threshold-based defence by collecting the samples
from the latency LLDP packets and compare them with the
threshold. Nevertheless, similar to [18], the approach could
cause significant false-positive predictions. However, MLLG
achieves less than 1% false-positive prediction rate. In [23],
a worm-hole attack is proposed to relay the packet over the
fake link without using any out-of-band channel.
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Alimohammadifar et al. [24] proposed Stealthy Probing-
Based Verification (SPV) defence that sends probing packets
toward the switches to find the potential fake links. However,
the integration of SPV with the current controller decreases
its security features. However, other recent tools such as
the one in [25] can be used to get more insights on the
root of the attacks in the SDN-based networks. A security
architecture is developed in [26] to mitigate the risk of attacks
caused by malicious end hosts in SDN, such as a set of
topology poisoning attacks. The solution works based on the
enforcement of security policies in the data and control plane.
However, similar to [11], it fails to detect all type of LFAs.

VII. CONCLUSION

In this paper, we introduced the link latency attack in
SDN networks and examined it on the recent version of
TopoGuard, which is TopoGuard+. Experiments show that
TopoGuard+ cannot detect such an attack in the simulated
network topology. We designed and developed a machine
learning-based system equipped with several packet classifiers
to defend against such an attack. Our system uses a dataset to
train the ML-based classifier and leverages this information by
the controller to provide the countermeasure for the attack. We
plan to gradually update the system classification model of our
proposed defence algorithm using real-time ML techniques.
Using such techniques will allow us to continuously update
our dataset and training model. Additionally, we are going to
extend our solution with a programmable switching substrate
and include other attack classes on SDN that can benefit from
our ML approach.
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