
Assessing the Limits of Privacy and Data Usage for
Web Browsing Analytics

Daniel Perdices, Jorge E. López de Vergara, Iván González
Dept. Electronics and Communication Technologies, Escuela Politécnica Superior,

Universidad Autónoma de Madrid, Madrid, Spain
{daniel.perdices, jorge.lopez vergara, ivan.gonzalez}@uam.es

Abstract—Web browsing analytics provides insights on the
websites that users access, which affects their privacy. Although
this analysis might be seen as an easy task, different problems,
such as encryption, the tangled web, with several domains visited
at the same time in a single web page, or IP addresses of a cloud
provider shared by several sites, make it a though job. However,
despite these issues, users’ privacy is still unaccomplished, as
we show in this work. We provide a novel approach that only
takes into account the IP addresses that the user has connected
to without performing any reverse DNS lookup. We use this
sequence of addresses as an input of a neural network, which is
able to identify accurately which was the website actually visited
among Alexa’s World Top 500 most visited domains. Moreover,
we have also studied other factors, such as the dependence on the
DNS server used to resolve the visited IP addresses, the accuracy
for the top domains (e.g., Google, YouTube, Facebook, etc.), data
augmentation to improve our results, or the impact on packet
sampling. In this last case, we conclude that, using only a 10% of
the packets, we can identify the visited website with an accuracy
of 93%, whereas it can be over 97% if there is no packet sampling
and we use data augmentation.

Index Terms—web browsing analytics, neural network, pri-
vacy.

I. INTRODUCTION

In the last years, data has become one of the most valuable
assets in the world. It can provide deep customer insights
to business makers, which are really interested in knowing
the interests of their customers or if they are visiting the
competitors web pages. Nowadays, most of the top tech
companies exploit such data or even sell it to others, making
this a really profitable business. Thus, end users and even
academics [1] have been paying attention to this matter since
they are the ones who produce data, and they have no real
knowledge of how their data is being employed.

Consequently, privacy and data usage have become main
concerns of the Internet users. Answering questions such as
which data is used by the companies, who they share it with,
and how valuable it is; are major issues nowadays. Therefore,
users try to protect themselves as much as possible, in partic-
ular, they limit the amount of data they share. However, this
does not sometimes avoid the data being captured and used

This work has been partially supported by the Spanish State Research
Agency under the project AgileMon (AEI PID2019-104451RB-C21) and
by the Spanish Ministry of Science, Innovation and Universities under the
program for the training of university lecturers (Grant number: FPU19/05678).

by many agents. Solutions such as encryption, both at HTTP
level and at DNS level, have become default standards that will
cover the majority of the traffic in the next years. Nevertheless,
they can only encrypt end-to-end conversations, meaning that
IP and TCP or UDP information is still available.

Another popular method used to protect the privacy and
avoid unapproved data usage is using Virtual Private Networks
(VPNs). Although VPNs have become increasingly popular
and most of them may encrypt and tunnel IP traffic, it can
still be monitored at the termination point of the VPN. Then,
it is just a matter of who you are giving your data to. This
means that actors between the VPN server network and the
website server can see and use the data. The VPN provider
can even go beyond that, since it knows client’s identity.

Other alternatives, such as Tor, Brave browser or using
chains of proxies suffer from a similar issue, where your
identity might not be clear, but your navigation data can be
used by the last server in the chain. For many purposes, such as
marketing and trends studies, aggregated data is still valuable,
so it does not matter whether the identity of the user is known.
In fact, we checked that popular Tor-capable browsers such as
Tor or Brave use the same endpoint within the web browsing
activity of a tab, meaning that these Tor exit nodes can still
use, give, and monetize your data. This proved to be more than
a possibility, when a significant percentage of Tor exit nodes
spied on their users’ activity [2] and even use sslstrip for
HTTP traffic to cryptocurrency exchange websites [3].

In this light, we want to answer the following: Can someone
identify where you are navigating through in these cases? As
we pointed out, this could be achieved as long as web browsing
activity can be inferred from IP traffic. This means that this
question is equivalent to: Can it be inferred what website you
are visiting with only IP layer information? This is the research
question we want to answer, since IP addresses can be easily
obtained using NAT logs, Netflow [4] or IPFIX [5] records,
or custom monitoring tools.

Although this task is supposedly simple, there are many
complications that arise. The main issue is what other authors
have defined as the tangled web [6]. When connecting to a
website, the web browser has to open a cascade of connections
to other websites due to ads, banners, JavaScript libraries,
social media links, and many more. It is not only content
from third-parties that developers include in their websites, but
also mechanisms of the web browser such as prefetching, ad

2021 17th International Conference on Network and Service Management (CNSM)

978-3-903176-36-2 ©2021 IFIP 173

blockers, or caching that may cause trouble. This entails that
discerning the web browsing behavior from these connections
can be problematic and unstable, since some connections to
Facebook or Google servers might appear in other different
websites that have nothing to do with them. It is even possible
that some connections are opened to prefetch other websites
or, on the other hand, they are not opened due to the cache
or an ad blocker. Moreover, the websites deployed on content
delivery networks and cloud providers make this worse, as a
single IP address can be shared by several domains [7], which
causes DNS reverse queries to be useless. Furthermore, in our
datasets, we observed that, for each pair of web browsing
activities, an average of 25% of the IP addresses receiving
HTTP/HTTPS connections were present in both traces. Addi-
tionally, the mean of the percentage of IP addresses of one
domain that overlap with the IP addresses of other domains is
around 80%.

In this paper, we present a neural-network-based model
that predicts the domain visited using just information of
the observed IP addresses. For the sake of the evaluation,
we have built a dataset of more than 340 GB of network
traffic of automatic web browsing activities through the top
500 domains of Alexa [8]. This model achieves an accuracy
higher than 97% on this dataset and proves that the answer
to the previous question is affirmative. This allows us to see
how many actors can really know about your web browsing
behavior and, thus, use your data for any purpose.

The rest of the document follows this outline: section II
provides a summary of the current state of the art, focusing of
the novelty of this work. Next, section III explains the architec-
ture of our proposal. Section IV benchmarks the performance
of the model with several facts in mind, such as the DNS
servers, the accuracy for the most visited domains, and the
impact of packet sampling. After this, section V comments
on the findings and outcomes of this work and section VI
concludes the document summarizing the main results of this
work.

II. STATE OF THE ART

Traffic identification [9] has become a popular issue in the
last few years. The reasons to do so, however, are quite varied.
For instance, authors in [10] focused on monetization, in
particular, they used DNS data to generate website fingerprints
that can be later used for traffic identification or even traffic
generation. Similarly, authors in [11] used a method called
Bag of Domains, akin to Bag of Words for text processing.
Although the objectives of these papers are quite similar, the
data inputs are rather different. It is clear that DNS data
is more reliable, since names might be the same over time
or among different locations, whereas IP addresses usually
change. Furthermore, both authors in [7], [10] tackled the issue
of the tangled web that we have explained before, where it is
hard to tell when some connections are caused by a particular
website. On the other hand, DNS encryption through DNS-
over-HTTPS (DoH) [12] is becoming increasingly popular,
meaning that the only one that can monetize the data would

be the DNS server that receives the encrypted requests. In this
case, relying on the IP addresses solves this issue and makes
our proposal more future-proof. Similarly, authors in [13]
propose a system to determine the traffic generated by a site,
but not with classification purposes in mind.

Flow features have also been used to identify web browsing
activities. For instance, the work in [14] proposed to use the
density estimation of the flow size and binary Bayes belief
networks to distinguish between the top 50 most popular
websites using anonymized NetFlow logs. This approach,
although it is limited to 50 websites, can only detect correctly
a 48% of the cases. Furthermore, authors of [15] designed
a model to identify domain names using flow-level features
such as the size of the second packet, the inter-delay between
packets, or the number of packet retransmission. Although
this approach may detect servers even if IP addresses have
changed, the output of the model is much weaker than our
proposal. While we predict the website the users are navigating
through, they just predict the domain name of each individual
connection.

Machine learning and deep learning have also helped the
community to build better proposals. In [16], authors propose
a deep learning approach based on Convolutional Neural
Networks (CNN) to identify the users web connection. Despite
the novelty, the approach is quite focused on the Tor network
case, where security and privacy are a priority but data usage
do not play a significant role. Also, the adversary that wants
that information is in between the user and the input node
of the Tor network. This is quite focused on security issues
such as preventing users to access illegal sites, whereas we
are focused on the other side—i.e. being near the exit node to
use the produced data.

Coarse-grained traffic identification and classification is
also useful to profile the users or clients of the network
or to provide appropriate Quality of Service depending on
the type of service—e.g. P2P, video streaming. In [17], a
non-supervised algorithm is proposed to classify traffic into
different categories. However, they use URLs for this sake,
which entails limitations with the increasing presence of
encrypted connections. Also, in [18], a collection of supervised
algorithms is applied with a similar purpose, with raw captured
traffic as input. In this case, the classes—for instance, WWW,
telnet, or ftp—are very coarse for many purposes, such as web
visit identification for monetization and website banning and
filtering systems. Authors in [19] provided simple probabilistic
signatures, obtained with first n bits of a flow, that can identify
network applications, paying special attention to the amount of
data they need for that purpose. Furthermore, the limitation of
packet traces as input is a huge limit for many situations, where
capturing a large amount of traffic can be overwhelming.

A similar topic that is growing in the community is mobile
traffic identification, this is, identify if the traffic was produced
by a mobile app and which app produced the traffic. In [20]–
[25], different authors followed a similar approach using
neural networks, CNN in particular, to identify the traffic.
Authors in [26] provided a detailed overview of this kind

2021 17th International Conference on Network and Service Management (CNSM)

174

of approaches that use deep learning with encrypted data for
mobile traffic identification. In contrast to our approach, they
mainly focus on encryption and using raw data captures, which
limits the final applicability and scalability to scenarios where
full capture is feasible. It is worth noting that our proposal
can also be applied to this case of mobile data, but it would
require to re-train the model with an appropriate dataset. As
it was pointed out in [20], most of the traffic they observed is
HTTP or HTTPS and many mobile applications are just web
views with native API connectors.

III. ARCHITECTURE OF OUR PROPOSAL

In order to precisely define the model, we must specify
the inputs and outputs. The input will be a sequence of IP
addresses observed by a monitoring system in connections of
a particular client, i.e., A = [a1, . . . , aM], where M is the
length of the sequence and each ai is an IP address. It is clear
that, in real conditions, M might depend on several factors.
However, we will fix M as a global parameter that trims or
pads the sequences to the desired length. The output is the
vector of probabilities, this is,

P = [P (D = d|A = [a1, . . . , aM])]d∈D (1)

where D is the set of all domains we want to identify. From
the point of view of parameters, there are two parameters that
may impact the model: |D|, the size of D, and M , the length of
the sequence. In both cases, the longer number of parameters,
the more accurate the model is and, unfortunately, training is
also going to take longer.

A. IP embeddings

One of the most important steps to build a neural network
model that is fed with IP addresses is to convert the addresses
to real-valued numbers or vectors. In fact, either an IPv4 or
an IPv6 address are just integers that take values over a huge
domain, the upper limits are U = 232 for IPv4 and U = 2128

for IPv6. For that sake, we will be using the hashing trick [27]
with a linear operator, as we explain below.

First, we need a hash function h that projects the large space
{0, . . . , U} to a much smaller space {0, . . . , v}, where U is
the aforementioned upper limit and v is usually called the
vocabulary size, i.e., the number of different elements given
by the hash. Additionally, we expect this function to have the
usual properties of a hash, such as distributing the original data
in the project space with little collisions. Given that v � U ,
collisions are unavoidable, however, this is a price we must
pay in order to build a model that fits in memory and that can
be trained without major issues.

The next step is just as simple as mapping each index to
a vector, this is, we train wi, a vector in Rd, for each i ∈
{0, . . . , v}. This is a categorical embedding

L : {0, . . . , v} → Rd

i→ L(i) = wi (2)

where wi are weights that must be trained. To sum up, both
of these functions achieve the objective of projecting an IP
address to a continuous domain. In particular,

π : {0, . . . , U} → Rd

a→ π(a) = (L ◦ h)(a) = L(h(a)) (3)

is a trainable neural network layer with v · d parameters. This
means that the number of parameters increases linearly with
the vocabulary size, forcing us to find a balance between using
a v large enough to achieve the desired accuracy and not
excessively large to cope with the constraints in training time
and memory usage.

B. Completing the model

Once we have built a layer to project IP addresses to
dense vectors, we have a sequence of real-valued vectors.
This sequence should be processed by the model to obtain the
prediction. In this matter, two approaches can be taken: first,
one can use a Long Short-Term Memory (LSTM) layer, which
captures the interaction between multiple elements and their
order; or, second, one can just ignore the order and combine
all the elements of the sequence using a global pooling layer,
typically the global average pooling layer.

Choosing one option over the other is just a matter of
deciding whether the order of the elements should be part
of the model or not. Since packet disorder is quite common
and this may result in unreliable results, in this case, LSTM
suffers from this issue and thus, we chose to keep the model
simple and ignore the order of the elements of the sequence,
i.e., using a global average pooling layer. This is, we project
the sequence A using the previous layer and take the mean

Π(A) =
1

M

M∑
i=1

π(ai) (4)

and we have now that Π(A) is a vector of Rd that can be used
in simple models such as a Multi-Layer Perceptron (MLP),
denoted hereinafter with f , to predict the output P using a
soft max activation function. Once the network has produced
a prediction P̂ (d|A), the predicted domain, d̂, can be computed
just by taking the arg max, d̂ = arg maxd P̂ (d|A).

Code for this model implemented using TensorFlow 2 [28],
[29] has been made publicly available for reproducibility of
the results1.

Once the model is already defined, we need a particular set
of values of the hyperparameters to build an instance of the
model. Some of these parameters come from the data, such as
the number of domains, |D|, the length of sequences, M , or U .
However, other parameters depend on the data but cannot be
directly estimated. For them, we performed a grid search with
different reasonable values and Table I shows the chosen ones
for our dataset, described in the next section. Also, Figure 1
summarizes the whole model in a visual representation.

1https://github.com/hpcn-uam/ip-web-analytics/tree/main/code

2021 17th International Conference on Network and Service Management (CNSM)

175

TABLE I
PARAMETERS OF THE MODEL FOR OUR DATA

Name Description Value
M Length of the sequence 250
U Total number of IP addresses 232

h Hash type MD5
v Hash output dimension 60 000
d Embedding dimension 20
f Layers of MLP [75, 150, 250, 350, 400]

Activation functions ReLu [30]
Train Optimizer Adam [31]

Loss function Cat. cross entropy

πa1

πa2

πam−1

πam

... +...
... ...

... P̂ (d|A)

Multi-Layer PerceptronInput IP sequence embedding Output

A = [ai]i [π(ai)]i Π(A) f(Π(A)) softmax(f(Π(A)))

Fig. 1. Visual and mathematical description of the architecture of our model.

IV. EVALUATION

To assess the performance of the model, we have built a
dataset consisting of a total of more than 100 000 samples
of web browsing of sites in Alexa’s World Top 500 most
visited domains, performed with five different DNS servers.
Although DNS server might seem not important, it is quite
relevant since observed IP addresses can highly depend on
the DNS resolutions of the domains.

These samples were collected using an automatic system
previously developed by authors of [10] that was modified to
save capture files. Dataset naming conventions and information
about DNS servers are shown in Table II. Also, these datasets
are publicly available in aggregated format2.

We decided to evaluate the data in three different ways:
first, we will assess averaged metrics for all the datasets with
different DNS servers. Second, we will see the accuracy of
our model for the most popular websites and, thirdly, we will
cover how packet sampling impacts performance of the model.

A. Effect of name resolution

As we said before, DNS resolution can impact directly the
observed IP addresses during the web browsing. Thus, we
compare briefly the performance of the model as a function
of the data the model has been trained with and the data the
model has been tested with.

For this sake, we split each dataset into three pieces: train
(65%), validation (15%) and test (20%). We used the train
dataset to train all the models, the validation dataset to select
the size of the model and control early stopping policies to
avoid overfitting, and the test dataset to compute the next
results. Figure 2 shows this comparison for the accuracy, i.e.,
the percentage of correctly predicted domains.

2https://github.com/hpcn-uam/ip-web-analytics/tree/main/dataset

TABLE II
DESCRIPTION OF THE DATASETS

Name Desc. DNS server # samples
DNS1 Campus DNS 150.244.X.Y 25 000
DNS2 Google 8.8.8.8 25 000
DNS3 Cloudfare 1.1.1.1 25 000
DNS4 Quad9 9.9.9.9 25 000
DNS5 OpenDNS 208.67.222.222 25 000
DNSall All datasets together All 125 000

DNS1 DNS2 DNS3 DNS4 DNS5 DNSall
Tested with

D
N
S 1

D
N
S 2

D
N
S 3

D
N
S 4

D
N
S 5

D
N
S a

ll

Tr
ai

ne
d

wi
th

89.24% 36.02% 33.42% 25.95% 36.57% 44.24%

41.87% 87.50% 48.81% 38.84% 76.02% 58.61%

41.41% 58.21% 88.43% 60.97% 56.18% 61.04%

26.52% 38.72% 48.66% 88.28% 37.17% 47.87%

36.13% 77.50% 39.21% 30.73% 89.24% 54.56%

94.30% 94.72% 94.30% 93.89% 94.91% 94.42%

Fig. 2. Accuracy obtained training and testing with each of the different
datasets

Looking at the results, we observed that datasets from
DNS1 to DNS5 have a similar behavior: they score really well
when they are tested with samples from the same dataset, but
performance drops significantly with other datasets. The only
pair that seems to resist this is (DNS2,DNS5), i.e., Google
DNS server and OpenDNS server.

On the other hand, the DNSall dataset is clearly more
consistent, meaning that we must have a wide variety of data
to achieve our objective. In order to be compared in fair
conditions, all models were trained with the same number of
samples, no matter DNSall is five times larger than the rest
of the datasets. This means that DNSall was down sampled to
have 25 000 samples just for this experiment.

Apart from DNS resolution, other factors such as the
web browser—e.g. Google Chrome or Mozilla Firefox—or
the device—e.g. mobile phone, tablet or computer—play a
significant role. Authors of [10] had already discussed some
of these matters with DNS queries in the past, which entails
that the same applies to IP addresses.

Given the results, hereinafter we will consider just the model
trained with DNSall and we will use 65% of it for training,
15% for validation and model selection and 20% for test.

B. Detailed view of the most important domains

Next, we want to cover the performance of the model for
the most popular domains. In real-world datasets, it is very
frequent that the most frequent domains are responsible for
90% of the network traffic, the so-called Pareto rule, whereas
the 10% remaining is the rest of the web browsing activities.
This means that, for many purposes, as long as we are accurate
with the top domains, our model will identify successfully a
huge amount of the network traffic volume.

2021 17th International Conference on Network and Service Management (CNSM)

176

Other

google.com

youtube.com
tmall.co

m

baidu.com
qq.com

sohu.com

facebook.com

taobao.com
360.cn

jd.com

amazon.com

yahoo.com

wikipedia.org

weibo.com

sina.com.cn
zoom.us

Predicted domain

Other

google.com

youtube.com

tmall.com

baidu.com

qq.com

sohu.com

facebook.com

taobao.com

360.cn

jd.com

amazon.com

yahoo.com

wikipedia.org

weibo.com

sina.com.cn

zoom.us

Tr
ue

 d
om

ai
n

99.96% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.02% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

2.04% 0.00% 0.00% 97.96% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

4.08% 0.00% 0.00% 0.00% 0.00% 95.92% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

2.04% 0.00% 0.00% 0.00% 0.00% 0.00% 97.96% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

10.20% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 89.80% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00%

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00%

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 0.00%

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00%

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00%

Fig. 3. Confusion matrix for most visited domains in Alexa’s World Top 500.

0 20 40 60 80 100 120
Number of different IP addresses

0

2000

4000

6000

8000

10000

12000

14000

16000

Fr
eq

ue
nc

y

Histogram of number of IP addresses

(a) IP addresses.

100 101 102 103 104 105 106

Number of packets

100

101

102

103

104

Fr
eq

ue
nc

y

Histogram of number of packets

(b) Packets.

Fig. 4. Histograms of the number of IP addresses and packets observed per web browsing sample

For this sake, Figure 3 shows the confusion matrix for the
top domains according to Alexa. A class called “Others” has
also been added to represent the rest of the domains. Overall,
the performance is outstanding and even perfect for some of
the most important domains such as Google, YouTube, or
Baidu. It is worth noting that Google and YouTube share some
servers, which complicates our task since similar if not the
same IP addresses may appear on sequences of both domains.

On the other hand, some domains predictions are less
accurate. For instance, Facebook only scores a precision
(percentage of correct predictions) of about 90%, meaning
that there is a 10% of the times that a user is navigating
Facebook, but the model predicts otherwise. This could be
to several reasons: similar advertisement presence in other
pages, embedded Facebook pages in other domains, or sign-in
with Facebook plugins. Similar reasons may apply to Chinese

websites, where content or advertising could be shared among
different websites. However, precision is over 95%, making
the model both accurate and precise.

C. Impact of packet sampling

This last part of the results section covers the impact of
packet sampling. First, we want to assess the distributions
in our dataset. This provides valuable insights of the dataset
that can help us to assess the limits of packet sampling per
user, i.e., the minimum number of packets that are required to
predict accurately the domain the user is visiting.

Figure 4 displays both the histogram of the number of
observed IP addresses and the total number of packets. The
right-hand side of the figure depicts the distribution of the
number of IP addresses in each sample, i.e., the distribution
of the length of the sequence A. In fact, most of the samples

2021 17th International Conference on Network and Service Management (CNSM)

177

1.00.90.80.70.60.50.40.30.20.10.0
Sampling rate

0.0

0.2

0.4

0.6

0.8

1.0
Ac

cu
ra

cy

0.00 0.02 0.04 0.06 0.08 0.10
0.0

0.2

0.4

0.6

0.8

1.0

Model trained with DNSall
Model trained with augmented DNSall

Fig. 5. Accuracy of the model with and without data augmentation against
packet sampling rate per user. Zoomed-in version between 0 and 0.1 is
included.

have a length around 15, but a significant percentage of the
sample are composed of more than 50 different IP addresses.

On the other hand, the left-hand side shows the histogram
of number of packets per sample in logarithmic scale for both
axes. As we see, most of the samples are around 103, i.e.,
they are composed of hundreds to thousands of packets, while
a few of them are composed of more than tens of thousands
of packets, even reaching millions in a couple cases.

Since we want to know how the model behaves when we
start losing information, we simulated packet sampling and
look for solutions to mitigate it. In particular, data augmenta-
tion can be applied. It consists of extending the training dataset
with additional samples which are just the original ones with
small modifications or extra noise. In computer vision, it is
quite useful to train the model to ignore scale or orientation.

Let P = [P1, . . . , PM] be the vector of frequencies associ-
ated to each IP address, this is, a1 has been observed in P1

packets. It is simple to convert P into a vector of probabilities
P = P∑M

i=1 Pi
, which will be used for the packet sampling.

Then, we can just sample from A using this distribution. If
we call the frequencies of the sample P ′ = [P ′1, . . . , P

′
M],

it is direct how to compute the augmented sample by just
taking the elements of A whose element in P ′ is greater
than zero—i.e., the elements that appeared in the sample:
A′ = [ai ∀ai ∈ A : P ′i > 0].

Once we have A′, we can add it to our extended dataset
and train the model. Figure 5 shows the results for both the
DNSall dataset and the augmented version of DNSall against
the sampling rate of the test subset. For each sample of the
dataset, we have added five extra samples for training. Each
sample contains only 20% of the original information, i.e., we
have used a sampling rate r = 0.2.

For the simple case, there is a slight decay of the non-
augmented model with sampling rates from 0.2 to 1, followed
by a more noticeable reduction between 0.2 and 0.1, ending in
a complete drop at around 0.05. For the case of the augmented
model, we see that it even improves with no sampling rate
(r = 1) and the performance is always better than for the non-
augmented model. Besides, zoomed-in subfigure shows the

accuracy decay between 0 and 0.1. It becomes apparent that
for sampling rates up to 5%, augmented model performance
is around 80%. Since we have observed that the mode of
the number of packets per sample is around 3 000 packets, it
means that we need around 150 packets to have representatives
samples that our model predicts with an accuracy of 80%.
Besides, if we had 300 packets, accuracy would improve to
more than 93%.

V. DISCUSSION

During this whole work, we have observed several contribu-
tions and remarkable ideas of paramount importance for web
browsing privacy:

1) Web browsing can be inferred from IP addresses: this
was the main objective of this work and the model achieved
it with accuracy higher than 90%. It is worth mentioning that
data plays a key role, so updated and varied data are required;
as we observed with DNS servers. As long as the training
data is representative of the users’ behavior, web browsing
activities can be easily inferred. This proves that, as long as
an actor has data about where you are connecting to, web
traffic identification can be easily achieved.

2) Pay attention to the most popular websites: because
dataset imbalance can be problematic for training, it is useful
to use a balanced dataset. However, top domains must be taken
into consideration separately, since they are responsible for
the majority of the traffic. It does not matter if the model
is accurate at 99% if it does not work for these domains
that represent, in most cases, 90% of the traffic. Providing
a detailed analysis is advisable to know better how the model
works and which popular domains can be confused.

3) Data augmentation and sampling improve the model:
as we mentioned before, data augmentation is a powerful way
of extending training datasets and teaching the model not to
pay attention to some facts. In this case, we simulate traffic
sampling so that we generate new samples to be incorporated
into the training set. It makes the model more resilient to
sampling and accurate in all cases, since it allows the learning
to be focused on features that are more likely to happen, even
under packet sampling. We also did study how many packets
the model would need to provide an accurate prediction, which
specifies when the model result is trustworthy.

However, there are few drawbacks about this approach.
Mainly, the necessity of re-training periodically—due to the
presence of dynamic addresses that may change over time—
and the necessity of varied datasets—for instance, different
DNS servers, or user agents.

VI. CONCLUSION

Along this work, we have presented a model that effectively
identifies web browsing activities just using IP addresses. As
we motivated, this means that there are potentially many actors
that are able to use your data without your consent. In fact,
even some of the best alternatives presumably to protect your
data and your privacy cannot totally bypass this, which means
that we must be aware of this possibility. The results proved

2021 17th International Conference on Network and Service Management (CNSM)

178

indeed that performance was promising enough to be deployed
and to use it to gather web browsing data from users.

In order to overcome this problem and avoid traffic identi-
fication, we foresee several solutions: If the user navigates
through Tor or a proxy chain, the browser should use a
different exit node for each connection. In this way, it becomes
tougher to guess which website the user is visiting. On the
server side, servers should change IP addresses every short
period of time so that it becomes nearly impossible to train
the model before the IP address changes again. Finally, users
could also take advantage of noise, this is, generate fake web
browsing activities so that data is less valuable because actors
have to distinguish between real and fake.

Yet, there are still some open future lines of work. First,
we plan to study the lifespan—validity over time—of the
datasets. One of the issues that potentially may face these
approaches is to determine when the training data is very old to
be representative of the real-world data. For DNS domains web
fingerprints, some authors [10] have determined that lifespan
of web fingerprints is around a week, meaning that we expect
this lifespan to be at most a week. Besides, we intend to
analyze all the possible data sources, especially, we would
like to see how SDN can enrich this model. In particular, we
would like to see how network equipment can be programmed
to send us the first packet of each connection, so that data
reduction is optimal, and it is horizontally scalable. Finally,
we also plan to apply this methodology to mobile apps, in
order to identify which applications are used in a network
based on their interactions at the IP level.

REFERENCES

[1] I. Castell-Uroz, T. Poissonnier, P. Manneback, and P. Barlet-Ros, “URL-
based Web Tracking Detection Using Deep Learning,” in 2020 16th
International Conference on Network and Service Management (CNSM).
IEEE, 11 2020.

[2] The Hacker News, “Over 25% Of Tor Exit Relays Spied On Users’ Dark
Web Activities,” https://thehackernews.com/2021/05/over-25-of-tor-exit-
relays-are-spying.html, accessed: 2021-05-19.

[3] The Tor Project, “Tor security advisory: exit relays running sslstrip
in May and June 2020,” https://blog.torproject.org/bad-exit-relays-may-
june-2020, accessed: 2021-05-19.

[4] B. Claise, “Cisco Systems NetFlow Services Export Version 9,” RFC
3954, 2004.

[5] P. Aitken, B. Claise, and B. Trammell, “Specification of the IP Flow
Information Export (IPFIX) Protocol for the Exchange of Flow Infor-
mation,” RFC 7011, Sep. 2013.

[6] X. Hu and N. Sastry, “What a Tangled Web We Weave: Understanding
the Interconnectedness of the Third Party Cookie Ecosystem,” in WebSci
2020 - Proceedings of the 12th ACM Conference on Web Science.
Association for Computing Machinery, Inc, 7 2020, pp. 76–85.

[7] I. N. Bermudez, M. Mellia, M. M. Munafò, R. Keralapura, and A. Nucci,
“DNS to the Rescue: Discerning Content and Services in a Tangled
Web,” in Proceedings of the 2012 ACM conference on Internet mea-
surement conference - IMC ’12. New York, New York, USA: ACM
Press, 2012.

[8] Amazon Web Services, “Alexa - Top sites,” 2020.
[9] A. Callado, C. Kamienski, G. Szabó, B. P. Gero, J. Kelner, S. Fernandes,

and D. Sadok, “A survey on internet traffic identification,” IEEE
Communications Surveys and Tutorials, vol. 11, no. 3, pp. 37–52, 2009.

[10] J. L. Garcı́a-Dorado, J. Ramos, M. Rodrı́guez, and J. Aracil, “DNS
weighted footprints for web browsing analytics,” Journal of Network
and Computer Applications, vol. 111, pp. 35–48, Jun. 2018.

[11] M. Trevisan, I. Drago, M. Mellia, and M. M. Munafo, “Towards web
service classification using addresses and DNS,” in 2016 International
Wireless Communications and Mobile Computing Conference, IWCMC
2016. IEEE, Sep. 2016, pp. 38–43.

[12] P. E. Hoffman and P. McManus, “DNS Queries over HTTPS (DoH),”
RFC 8484, Oct. 2018.

[13] M. Trevisan, I. Drago, M. Mellia, H. H. Song, and M. Baldi, “WHAT:
A big data approach for accounting of modern web services,” in
Proceedings of the 2016 IEEE International Conference on Big Data,
IEEE Big Data 2016. IEEE, 2016, pp. 2740–2745.

[14] S. E. Coull, M. P. Collins, C. V. Wright, F. Monrose, and M. K. Reiter,
“On web browsing privacy in anonymized netflows.” in USENIX Security
Symposium, 2007, pp. 339–352.

[15] M. Trevisan, F. Soro, M. Mellia, I. Drago, and R. Morla, “Does
domain name encryption increase users’ privacy?” SIGCOMM Comput.
Commun. Rev., vol. 50, no. 3, p. 16–22, Jul. 2020.

[16] S. Bhat, D. Lu, A. Kwon, and S. Devadas, “Var-CNN: A Data-Efficient
Website Fingerprinting Attack Based on Deep Learning,” Proceedings
on Privacy Enhancing Technologies, no. 4, pp. 292–310, 2019.

[17] A. Morichetta and M. Mellia, “LENTA: Longitudinal exploration for
network traffic analysis from passive data,” IEEE Transactions on
Network and Service Management, vol. 16, no. 3, pp. 814–827, 2019.

[18] M. Shafiq, X. Yu, A. A. Laghari, L. Yao, N. K. Karn, and F. Abdessamia,
“Network Traffic Classification techniques and comparative analysis
using Machine Learning algorithms,” in Proceedings of the 2016 2nd
IEEE International Conference on Computer and Communications,
ICCC 2016 - Proceedings. IEEE, 5 2017, pp. 2451–2455.

[19] N. Hubballi, M. Swarnkar, and M. Conti, “BitProb: Probabilistic Bit
Signatures for Accurate Application Identification,” IEEE Tran. Network
and Service Management, vol. 17, no. 3, pp. 1730–1741, Sep. 2020.

[20] S. Rezaei, B. Kroencke, and X. Liu, “Large-Scale Mobile App Identifi-
cation Using Deep Learning,” IEEE Access, vol. 8, pp. 348–362, 2020.

[21] X. Wang, S. Chen, and J. Su, “Automatic mobile app identification from
encrypted traffic with hybrid neural networks,” IEEE Access, vol. 8, pp.
182 065–182 077, 2020.

[22] T. Shapira and Y. Shavitt, “FlowPic: Encrypted Internet Traffic Classi-
fication is as Easy as Image Recognition,” in Proceedings of the 2019
IEEE Conference on Computer Communications Workshops, INFOCOM
WKSHPS 2019. IEEE, 4 2019, pp. 680–687.

[23] M. Wang, K. Zheng, D. Luo, Y. Yang, and X. Wang, “An Encrypted
Traffic Classification Framework Based on Convolutional Neural Net-
works and Stacked Autoencoders,” in Proceedings of the 2020 IEEE
6th International Conference on Computer and Communications, ICCC
2020. IEEE, 12 2020, pp. 634–641.

[24] B. Sun, W. Yang, M. Yan, D. Wu, Y. Zhu, and Z. Bai, “An En-
crypted Traffic Classification Method Combining Graph Convolutional
Network and Autoencoder,” in Proceedings of the 2020 IEEE 39th
International Performance Computing and Communications Conference,
IPCCC 2020. IEEE, 11 2020.

[25] R. Moreira, L. F. Rodrigues, P. F. Rosa, R. L. Aguiar, and F. D. O. Silva,
“Packet Vision: A convolutional neural network approach for network
traffic classification,” in Proceedings of the 2020 33rd SIBGRAPI
Conference on Graphics, Patterns and Images, SIBGRAPI 2020. IEEE,
11 2020, pp. 256–263.

[26] G. Aceto, D. Ciuonzo, A. Montieri, and A. Pescapé, “Mobile en-
crypted traffic classification using deep learning: Experimental evalu-
ation, lessons learned, and challenges,” IEEE Transactions on Network
and Service Management, vol. 16, no. 2, pp. 445–458, Jun. 2019.

[27] C. B. Freksen, L. Kamma, and K. Green Larsen, “Fully understanding
the hashing trick,” in Advances in Neural Information Processing
Systems, vol. 31. Curran Associates, Inc., 2018.

[28] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “TensorFlow: Large-scale
machine learning on heterogeneous systems,” 2015, software available
from tensorflow.org. [Online]. Available: https://www.tensorflow.org/

[29] F. Chollet, “Keras,” 2015.
[30] V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltz-

mann machines,” in Proceedings of the 27th International Conference
on Machine Learning (ICML-10), J. Fürnkranz and T. Joachims, Eds.,
2010, pp. 807–814.

[31] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,”
in Proceedings of the 3rd International Conference on Learning Repre-
sentations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference
Track, 2015.

2021 17th International Conference on Network and Service Management (CNSM)

179

