
ChaosTwin: A Chaos Engineering and Digital Twin
Approach for the Design of Resilient IT Services

Filippo Poltronieri∗, Mauro Tortonesi∗, Cesare Stefanelli∗,
∗ Distributed Systems Research Group, University of Ferrara, Ferrara, Italy

{filippo.poltronieri,mauro.tortonesi,cesare.stefanelli}@unife.it

Abstract—Chaos Engineering represents an interesting soft-
ware engineering methodology to improve the resilience of a
complex IT system operating in a live production environment
by injecting simulated faults, observing the system reaction, and
devising mitigating solutions. However, Chaos Engineering is an
expensive practice with a high setup and operation overhead
and it often focuses on the evaluation of the system behavior
from a relatively narrow technical perspective instead of a more
comprehensive business level one. To enlarge the audience of
Chaos Engineering there is the need for novel solutions that
can give service providers the tools to deal with the deployment
and testing of complex IT services. To fill this gap, this paper
presents ChaosTwin, a novel solution exploring an innovative
approach to apply Chaos Engineering to a digital-twin, i.e.,
a virtual representation of a physical object or a system. By
creating realistic digital twin of an IT service, injecting faults
on the digital twin and evaluating how different service config-
uration and fault management strategies would perform from a
business level perspective, ChaosTwin provides useful guidance to
service providers in finding cost-effective service configurations
that can minimize the negative effects of unpredictable events.
Experimental results, collected from the evaluation of a realistic
case study, demonstrate how ChaosTwin is capable of minimizing
both the associated costs and the effects of injected Chaos faults.

Index Terms—Chaos Engineering, Digital Twin, Business
Driven IT Management (BDIM), Cloud Computing, Optimiza-
tion.

I. INTRODUCTION

Software and hardware faults can provoke severe harm
to the availability of complex IT services, which rely
on the orchestration of multiple independent microservices
on large-scale scenarios on top of virtualized resources
(VMs/containers, storage, NVFs, etc.) instantiated on a set of
data centers around the globe. As a result, both academia and
industry have dedicated a significant effort to investigate how
to properly manage and minimize (or mitigate) their impact.

Chaos Engineering is a relatively new technique that was
proposed to test the resiliency to faults of software in pro-
duction (real-world deployment). Chaos Engineering was first
formalized and proposed by Netflix Inc. with Symian Army
project [1], a is a suite of tools developed with the goal of
improving the reliability of the company cloud services. The
main idea behind Chaos Engineering is to identify a steady-
state, i.e. the expected behavior, of a running system and
then trying to inject faults to stress the system and verify the
results. Example of injected fault can be increased latency,
VM breakdown, and data-centers outages. This is to increase

the testing methodologies for software developers / cloud/
infrastructure managers, thus testing real-world event on a
running system. The main objective of Chaos Engineering is
to identify if a system is resilient to adverse events and to plan
modification to make it more reliable to this sort of faults.

The software engineering approach followed by Chaos
Engineering presents the undeniable advantage of evaluating
software systems in their entirety - including hardware break-
downs and software bugs - and in their intended deployment
environment. In fact, given the high promises of this technique,
Cloud providers such as Amazon and Microsoft have started
to offer chaos injection simulators to verify the reliability
of distributed and complex software tools. However, Chaos
Engineering also suffers from several drawbacks. Namely, the
injection of faults on live production systems is an expensive
practice, which requires a relatively high amount of resources
and time to be properly set up. In addition, Chaos Engineering
practices typically focus on IT level evaluation and only re-
cently have started realizing that fault mitigation is essentially
a business level concept, and as such it requires to consider
business value as a fundamental metric in fault mitigation
policy adoption [2].

It would be interesting to extend the software engineering
approach pursued by the Chaos Engineering discipline by also
considering an alternative approach at the design level. More
specifically, we argue that a digital twin approach, based
on the accurate reenactment of the IT system and on the
evaluation of the impact and mitigation strategies of faults
injected on that model, could bring many of the advantages of
the Chaos Engineering approach with a much smaller price
tag and enabling much faster feedback cycles at the design
level.

This represents a relatively unexplored research avenue,
which requires new tools capable of exploring alternative IT
service architectures by applying the principles of Chaos En-
gineering and to evaluate their performance through a compre-
hensive analysis at the business level, with the purpose of iden-
tifying a trade-off between convenience and fault resiliency.
Incorporating Chaos Engineering practices into “configuration
exploration” would enable to address risk management and to
forge more resilient IT service deployments that can minimize
the effects of faults / outages events.

This paper introduces ChaosTwin, a novel tool based on the
experience built upon the BDMaaS+ research project [3], [4]
which pursues an innovative approach that integrates Chaos

2021 17th International Conference on Network and Service Management (CNSM)

978-3-903176-36-2 ©2021 IFIP 234



Engineering techniques into the configuration of modern IT
services operating in the hybrid Cloud. More specifically, this
paper embraces Chaos Engineering principles not for testing
software resiliency itself, i.e bug fixing, but as optimization
approach for maximizing the whole system reliability. The
main objective of this paper is to propose a valuable tool for
assisting service providers that need to distribute an IT service
on a global scale. The presented methodology represents a
novel idea that takes into consideration both a cost and a
resiliency perspective to find suitable and minimal costs IT
service configurations.

II. RELATED WORK

The principles of Chaos Engineering were published in
[5] as a manifesto for the developers that want to embrace
this technique. One of the key tool developed by Netflix
Inc. is Chaos Monkey [6]. Chaos Monkey was developed to
randomly terminates virtual machine and containers running
in a production environment. Netflix claims that exposing
services to failures can incentivize software engineers to
improve their resiliency. Guided by this interest in Chaos
Engineering other software solutions have emerged. Among
these efforts, Amazon Inc. has started to provide a Chaos
Engineering service called AWS Fault Injection Simulator.

If Chaos Engineering is becoming a well accepted practice
in software production, it is not yet well explored in scientific
literature. Basiri et al. summarize the practices of Chaos
Engineering in [7]. More specifically, the authors start by
analyzing the Netflix’s experience and then formalize a system
model for Chaos Engineering. In [8] the authors provide a
simplified illustration of Chaos Engineering in a simulated
testbed within the NS-3 simulator. The testbed consists of a
small-case simulated Netflix environment on which is possible
to inject faults and verify the outcomes. Differently in [9],
Torkura et al. analyze Chaos Engineering from a security per-
spective, focusing on the effects caused by malicious events,
i.e. cyber attacks, and misconfiguration. Then, the authors
extend their vision in [10], in which they propose an auditing
and monitoring tool for Cloud infrastructures.

On the other hand, some works focus on fault injection
as valuable technique to stress the capabilities of a software
infrastructure. In [11], the authors propose GRINDER, an
open source toolkit to ease the burden of the adoption of
fault injection techniques in software testing. In [12], the
authors introduce the interesting concept of survivability for
service function chaining in case of critical service disruption.
Cotroneo et al. present a dependability benchmark for NFV
that integrates fault injection techniques in [13], which also
compares the performances of hypervisor-based and container-
based virtualization paradigms. Then, Simonsson et. all an-
alyze the problem of system call errors in containerized
applications by presenting a novel fault injection framework
called ChaosOrca in [14].

This paper adopts an higher level perspective and embraces
the principle of Chaos Engineering for the development of
a management framework that enables service providers to

explore the best configurations for IT services that minimize
the effect of adverse faults. This work is different from both the
works that apply chaos engineering to test software resiliency
[7]–[10] and also from the works that analyze system and
platform level resiliency [11], [13], [14]. Differently from
these works, we integrate Chaos Engineering and Digital Twin
to evaluate the resiliency of IT service configuration from a
higher and business-level perspective.

III. CHAOSTWIN

ChaosTwin is an extension of the BDMaaS+ research
project, a simulation-based optimization framework provid-
ing a comprehensive Business-Driven (BD) evaluator for IT
service configurations of software components operating in
the hybrid Cloud [4]. ChaosTwin leverages the BDMaaS+
capabilities to create a digital twin version of a Cloud-based IT
system, evaluate its business-level performance, and find the
optimal configuration for that system, extending those capa-
bilities to explicitly consider fault injection and management
strategies.

The overall architecture of ChaosTwin is illustrated in Fig.
1, which shows the main components and their interactions.
Among them, the ChaosTwin Engine represents the central
component of the tool, containing several subcomponents that
implement its functions: reenacting the digital twin version of
the IT system in configuration G (Digital Twin Reenactment),
implementing fault mitigation strategies for configuration G

(Fault Manager), evaluating the business impact of the digital
twin in configuration G (Business Impact Analysis), finding
the configuration with the best business-level performance
(Optimization), and deciding whether the performance gains
are worth to switch from the current configuration G0 (Decision
Making).

ChaosTwin was designed to maximize the accuracy of the
digital twin. To this end, it leverages sophisticated functions
that build models of the digital twin at the workload, network,
and service level. To facilitate the definition of the model,
ChaosTwin can automatically build a model of a real system
by interfacing with a Monitoring Agent that feeds it infor-
mation about the real system behavior as illustrated in Fig. 1.
ChaosTwin can also integrate smoothlessly with a real system,
operating as a (sophisticated) controller. More specifically, the
output of the Decision Making component can be fed to an
Actuation Agent that interacts with an Orchestrator component
to reify the best performing configuration identified by the tool
on a real system. Finally, all the functions of ChaosTwin can
be accessed from a dedicated Console component.

A. Business-Level Evaluation

From a mathematical formulation perspective, ChaosTwin
attempts to solve the following optimization problem:

arg min
G ∈ S

�� (G) (1)

where G represents the IT service configuration, including de-
ployment configuration and fault mitigation strategies, �� (G)

2021 17th International Conference on Network and Service Management (CNSM)

235



Fig. 1. Architecture of the ChaosTwin tool.

the Business Impact for configuration G, and S is the space
of all possible configurations. In fact, ChaosTwin allows
users to seamlessly add what-if scenarios in the evaluation
in accordance with chaos engineering techniques by enlarging
the perimeter of S.

ChaosTwin implements �� (G) as an extension of the BD-
MaaS+ BD evaluation of a given configuration G by also
considering, for a given configuration G, fault mitigation costs
in addition to the 3 previously considered components: IT
spending cost evaluation, SLA violation penalties estimation,
and business (mis)alignment penalties [3]. Formally, it is:

�� (G) := �� (G) + (!$ (G) + ��%(G) + \ × �� (G). (2)

where �� (G) calculates the operational costs caused by run-
ning the system with configuration G, (!$ (G) that calculates
the costs caused by SLO violation penalties, ��%(G) considers
all costs caused by the adoption of a service configuration
which is not aligned to the business objectives, and �� (G)
the number of failed requests for configuration G.

As the main indicator to measure the effects of an injected
fault, we select the number of failed requests �� (G). In
fact, this metric was specifically developed as part of the
BDMaaS+ extension to support Chaos Engineering practices.
By leveraging on the failed request metric, the optimizer
can find a different configuration for software components to
allocate both in terms of the number of VMs to allocate and
in terms of the geographical location of VMs. For example, in
the case of an adverse event causing an outage in a data center,
a possibility is to redirect part of the requests to the closest
data center or to select another data center that is running
the particular software component. These mechanisms should
be supported and implemented at the platform level, which
should also estimate the redirection costs, such as the increased
latency due to the redirection. In fact, �� (G) is the number
of failed requests when the system is in configuration G and
\ is a weight factor for balancing the optimization of both
components of (2).

IV. FAULT MANAGEMENT IN THE DIGITAL TWIN

To fully apply Chaos Engineering techniques and evalu-
ate the resilience of IT service configurations, ChaosTwin
simulates chaos engineering events on a digital twin that
reproduces a real-life IT service operating in a federated
Cloud. ChaosTwin aims to include fault-resiliency into the
optimization process to minimize both associated IT costs and
adverse effects of outage events. By doing this, ChaosTwin
can drive the optimization process to service configurations
that can better tolerate: i) partial or full outages in data
centers ii) VMs malfunctioning, iii) increased inter-data center
communication latency.

Towards this goal, we designed different events for simulat-
ing chaos practices on the Digital Twin: VM Outage (VMO),
DC Outage (DCO), and Latency Variation (LV). These are
representative Chaos-like faults that we implemented within
ChaosTwin to enable their reproducibility on the digital twin.
VMO events are to simulate errors/faults in VMs installed in
Cloud data centers that make them unavailable for a config-
urable period of time E<D(C). ChaosTwin leverages random
variables with configurable distributions for modeling the rate
of VMO events during the simulation. When a VMO event
occurs, ChaosTwin marks the VM as not running and then
reboots the VM. It is worth noting that while the VM is
unavailable it would not serve requests, which will be served
by another VM (if available).

On the other hand, DCO intends to simulate the outage
of an entire data center that would become unavailable for a
configurable period of time 32D(C). When a DCO is injected
into the simulation, ChaosTwin marks the data center as
“unavailable” for the time being and thus making it impossible
to process requests on that data center. Let us specify that
DCO is to simulate severe adverse events that are less likely to
happen in real-life deployment. However, the recent case of the
fire in a Belgium data center that destroyed several machines
caused several applications to stop working for several days
[15].

Then, leveraging LV, ChaosTwin can inject increased la-
tency on a communication endpoint, which is identified by
two locations, e.g two data centers. For example, ChaosTwin
users can choose to simulate an increased latency between two
data centers located in the same or different regions to verify
the negative effects on the IT service configuration, the need
to replicate software components, and so on.

Finally, along with the modeling of specific chaos engineer-
ing events, it is crucial to define new metrics for measuring the
response of the service. To this end, ChaosTwin implements
the ‘failed requests“ metric for estimating the negative effects
of an injected chaos fault. Within the ChaosTwin framework, a
failed request indicates that a request was not served because,
at a given time, there was no active VM capable of serving
the given request. We believe that minimizing the number of
failed requests will in turn improve the resiliency of an IT
service configuration in dealing with adverse and unexpected
events.

2021 17th International Conference on Network and Service Management (CNSM)

236



TABLE I
THE SERVICE TIMES FOR EXECUTING THE SOFTWARE COMPONENTS ON

DIFFERENT VM TYPES

Component medium VM large VM xlarge VM xxlarge VM
VS 45ms 30ms 15ms 10ms
AS 25ms 20ms 15ms 10ms
SS 20ms 15ms 12ms 8ms

V. USE-CASE SCENARIO

To illustrate the proposed approach, we devised a realistic
case study built upon the experience of previous works [4],
[16]. To follow the example of Netflix, which first proposed
the adoption of Chaos Engineering, we decided to model
a use case study that represents a video streaming service
operating on a global scale. We believe this to be an interesting
case study for testing Chaos Engineering practices as it maps
the scenario of a service provider offering an IT Service to
multiple locations around the globe.

A. Service Description

We envision a realistic use case that simulates the delivery of
multimedia contents to a global scale audience. More specifi-
cally, the use case represents a digital twin of a canonical video
streaming service, which requires at the client-side the users
to download both a video and a audio track, and optionally a
subtitle file for the video. This scenario consists of 3 software
components, which we indicate with VS, AS, SS. VS is a
Web Server that distributes video contents, e.g. video files that
do not contain audio tracks or subtitles. Then, AS is a Web
Server that distributes the audio tracks for the video files. A
video file can be associated with multiple audio tracks, one for
each language as users can select their preferences. Finally,
SS is a Web Server that distributes subtitle files for the video
tracks. For each software component we modeled an according
response time that depends on the type of VM on which it is
running as illustrated in Table I.

Along with the software components, we defined two ser-
vice workflows: WF-01 and WF-02). WF-01 represents the
workflow to retrieve a particular video content, thus resulting
in a three components workflow (VS, AS, SS). To reduce the
number of workflows we consider that for each video request
there must be a subtitle track request, even if the user does not
request it. Instead, WF-02 is to simulate a request for changing
the audio track and/or the subtitle track for a particular video
that he is watching. This workflow involves the AS and the SS
services from which the user requests the proper audio and/or
subtitle tracks.

As for the data-centers, we consider a federation of 8 differ-
ent Cloud facility locations. More specifically, we consider 6
public Cloud data centers, namely Amazon EC2’s us-west-
1, us-east-1, eu-west-1, ap-southeast-2, sa-east-1, and ap-
southeast-1 data centers, and 2 private Cloud data centers,
respectively located in northwestern USA and in Japan.

Then, we modeled users’ requests according to a uniform
distribution with probability 0.8 for WF-01 and 0.2 for WF-02.
In addition, these users are distributed in the following loca-
tions: East Coast USA, West Coast USA, South America, Asia,

TABLE II
THE SLAS FOR THE VIDEO STREAMING SERVICE

Workflow Locations SLA
VS East and West Coast USA, Europe 400-650 ms
VS South-America, Japan 500-750 ms
AS East and West Coast USA, Europe 200-300 5ms
AS South-America, Japan 250-350 ms

and Europe. The divisions are of varying sizes and account for
a different share of requests: 11.1%, 16.6%, 27.8%, 33.3%
and 11.1% respectively. Furthermore, the aggregated flow of
requests has a constant intensity - and whose interarrival
times can be modeled with a Pareto distribution with location
1.2E-4 and shape 5, corresponding to 6,666.66 requests per
second. The requests emanating from each division will be
automatically forwarded to the closest Cloud data center, as a
common practice for the Route 53 system.

Finally, to allow a user to correctly reproduce a multimedia
content all three software components must provide a response
within the time window defined by SLAs. We summarized
the SLAs for the three software components at the respective
service delivery locations in Table II. Let us specify that, if
one of the workflow component fails, the whole workflow is
invalidated.

VI. EXPERIMENTAL EVALUATION

To experiment with the Chaos Engineering tools of our
framework, we devise a Chaos Engineering experiment upon
the Video Streaming Service described in Section V. The
main objective of this experiment is to verify the output of
injected Chaos tools into a simulated IT service and verify if
allocation policies can minimize the outcomes of these faults.
Furthermore, with this preliminary experiment, we want to
formalize a Chaos engineering scenario that we will use as a
baseline for future works.

To implement this experiment, we describe a severe fault
profile that would affect the video streaming application
illustrated in the previous section. More specifically, this
experiment schedules VMOs for VMs running within the
Amazon EC2 data center ir using a random variable with
exponential distribution with a rate of _ = 0.8. To increase
the randomness of the simulation we chose to terminate VM
randomly without specifying the software component type.
When a VMO occurs, the VM is marked as unavailable for
2 seconds, which is the time we configured to reenact a VM
reboot. Along with VMOs, we simulate the complete blackout
of two data centers for 15 seconds. The first one is a private
data center, while the second one is the Amazon EC2 data
center located in California, USA.

We configured ChaosTwin to run this experiment for 30
iterations of the memetic optimization algorithm to analyze
the resulting IT service configurations. More specifically, the
memetic algorithm combines a tailored version of Quantum
Particle Swarm Optimization (QPSO) and a local search
procedure (interested readers can refer to [4]) to find an IT
service configuration that minimizes the value of (2). Let us
specify that the optimization policy (2) aims at decreasing

2021 17th International Conference on Network and Service Management (CNSM)

237



Fig. 2. The distribution of the percentage of failed requests during the
optimization process for the severe outage experiment.

operation costs (VMs renting prices), SLO violation penalties,
and faults associated with a VMs placement. Therefore, at the
beginning of the optimization process configuration solutions
would present a larger number of instantiated VMs, which will
be minimized during the iterations of the memetic algorithm.
It is needless to say that configurations with a large number
of VMs instances would likely be more resilient to injected
faults, i.e., replicas mitigate per se the side effects of sporadic
VMOs within the same data center and DCOs at the cost
of increased serving latency (requests must be routed to a
different data center). Consequently, it is important to verify
if ChaosTwin can minimize the side effects of injected faults
when the number of instantiated VMs start to decrease.

To this end, Fig. 2 shows the distribution of the percentage
of failed requests during the 30 iterations of the optimization
algorithm. Let us note how after the 15-th iteration, the distri-
bution of failed requests starts to decrease, thus indicating the
optimization policy can find service configurations presenting
increased reliability to the injected chaos faults. These results
prove that ChaosTwin implements a valuable approach in
minimizing the number of failed requests, which are almost
distributed around 0.05% in the final stages of the optimization
process. Furthermore, the ChaosTwin optimization policy also
minimizes the associated operational costs, which in the very
first iterations are distributed around 550,000 USD/day to
reach about 30,000 USD/day in the final iterations. This also
demonstrates that operational costs minimization policy can
be associated with fault mitigation strategies with promising
results. Finally, even if these results represent a preliminary
stage of our research effort, their soundness calls for further
investigation and an in-depth validation of ChaosTwin.

VII. CONCLUSIONS AND FUTURE WORKS

Chaos Engineering was first introduced by Netflix Inc. in
2010 as a novel technique to test the reliability of software
running in a Cloud-based production environment. Later, this
practice started to attract the interest of a wider community
of scholars, software developers, and Cloud providers such
as Amazon Inc. and Microsoft Inc. that are now beginning
to provide chaos engineering services for their customers.
However, the majority of these services were designed to find

software vulnerability and not for exploring the adverse effects
of faults on Cloud-based IT systems.

To fill the gap from a system-wide perspective, this paper
presented a first attempt for including Chaos Engineering
techniques into VMs placement / service configuration tech-
niques for IT services running in the hybrid Cloud. The novel
idea we presented in this paper is to provide a management
framework capable of exploring the cost-efficient deployment
of global-scale IT service with an a-priori resilience to fault
events. We proposed ChaosTwin a comprehensive framework
to help service providers in selecting resilient and fault-prone
configurations for their IT services. Finally, future research
directions will entail a more comprehensive validations of our
model and the adoption of different optimization policies.

REFERENCES

[1] “The netflix simian army,” https://netflixtechblog.com/the-netflix-
simian-army-16e57fbab116, accessed: 2021-04-26.

[2] M. Korolov, “Chaos Engineering Moves Beyond ‘Breaking Stuff’
to Highlight Business Value,” https://thenewstack.io/chaos-engineering-
business-value/, accessed: 2021-06-11.

[3] M. Tortonesi and L. Foschini, “Business-driven service placement for
highly dynamic and distributed cloud systems,” IEEE Transactions on
Cloud Computing, vol. 6, no. 4, pp. 977–990, 2018.

[4] W. Cerroni, L. Foschini, G. Y. Grabarnik, F. Poltronieri, L. Shwartz,
C. Stefanelli, and M. Tortonesi, “BDMaaS+: Business-driven and
Simulation-based Optimization of IT Services in the Hybrid Cloud,”
IEEE Transactions on Network and Service Management, p. to appear,
2021.

[5] “Principles of chaos engineering,” https://principlesofchaos.org/, ac-
cessed: 2021-04-26.

[6] “Netflix, chaos monkey tool,” https://github.com/netflix/chaosmonkey,
accessed: 2021-04-26.

[7] A. Basiri, N. Behnam, R. de Rooij, L. Hochstein, L. Kosewski,
J. Reynolds, and C. Rosenthal, “Chaos engineering,” IEEE Software,
vol. 33, no. 3, pp. 35–41, 2016.

[8] T. Luong and A. Zubayer, “Simulation of chaos engineering for Internet-
scale software with ns-3,” 2018.

[9] K. A. Torkura, M. I. H. Sukmana, F. Cheng, and C. Meinel, “Cloudstrike:
Chaos engineering for security and resiliency in cloud infrastructure,”
IEEE Access, vol. 8, pp. 123 044–123 060, 2020.

[10] K. Torkura, M. Sukmana, F. Cheng, and C. Meinel, “Continuous
auditing and threat detection in multi-cloud infrastructure,” Computers
and Security, vol. 102, 2021.

[11] S. Winter, T. Piper, O. Schwahn, R. Natella, N. Suri, and D. Cotroneo,
“Grinder: On reusability of fault injection tools,” in Proceedings of the
10th International Workshop on Automation of Software Test, ser. AST
’15. IEEE Press, 2015, p. 75–79.

[12] G. Kibalya, J. Serrat, J.-L. Gorricho, J. Serugunda, and P. Zhang, “A
multi-stage graph based algorithm for survivable service function chain
orchestration with backup resource sharing,” Computer Communica-
tions, vol. 174, pp. 42–60, 2021.

[13] D. Cotroneo, L. De Simone, and R. Natella, “Nfv-bench: A depend-
ability benchmark for network function virtualization systems,” IEEE
Transactions on Network and Service Management, vol. 14, no. 4, pp.
934–948, Dec 2017.

[14] J. Simonsson, L. Zhang, B. Morin, B. Baudry, and M. Monperrus,
“Observability and chaos engineering on system calls for containerized
applications in docker,” Future Generation Computer Systems, vol. 122,
pp. 117–129, 2021.

[15] “OVH Strasbourg data centre destroyed by fire, customers told to
activate DR,” https://cloudcomputing-news.net/news/2021/mar/10/ovh-
strasbourg-data-centre-destroyed-by-fire-customers-told-to-activate-dr-
updates/, accessed: 2021-04-26.

[16] W. Cerroni, L. Foschini, G. Y. Grabarnik, L. Shwartz, and M. Tortonesi,
“Service Placement for Hybrid Clouds Environments based on Realistic
Network Measurements,” in 2018 International Conference on Network
and Service Management (CNSM 2018) - miniconference track, Novem-
ber 2018.

2021 17th International Conference on Network and Service Management (CNSM)

238


