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Abstract—Bloom Filter is a probabilistic data structure for
the membership query, and it has been intensely experimented
in various fields to reduce memory consumption and enhance
a system’s performance. Bloom Filter is classified into two
key categories: counting Bloom Filter (CBF), and non-counting
Bloom Filter. CBF has a higher false positive probability than
standard Bloom Filter (SBF), i.e., CBF uses a higher memory
footprint than SBF. But CBF can address the issue of the false
negative probability. Notably, SBF is also false negative free, but
it cannot support delete operations like CBF. To address these
issues, we present a novel counting Bloom Filter based on SBF
and 2D Bloom Filter, called countBF. countBF uses a modified
murmur hash function to enhance its various requirements,
which is experimentally evaluated. Our experimental results
show that countBF uses 1.96× and 7.85× less memory than
SBF and CBF respectively, while preserving lower false positive
probability and execution time than both SBF and CBF. The
overall accuracy of countBF is 99.999921, and it proves the
superiority of countBF over SBF and CBF. Also, we compare
with other state-of-the-art counting Bloom Filters.

Index Terms—Bloom Filter, Counting Bloom Filter, Member-
ship Filter, Frequency Count, Count-Min Sketch, Data Struc-
tures.

I. INTRODUCTION

Bloom Filter [1] is an extensively experimented data
structure. It is categorized into two key categories, namely,
counting and non-counting Bloom Filter. Non-counting Bloom
Filter (conventional) is faster than counting Bloom Filter.
However, the non-counting Bloom Filter does not support
delete operation due to a false negative issue. Delete operation
introduces a false positive issue. On the contrary, counting
Bloom Filter supports delete operation and can solve false
negative issue [2]. However, the false positive probability
counting Bloom Filter is higher than the conventional Bloom
Filter [3], [4]. Alternatively, Bloom Filter occupies more
memory to achieve the desired false positive probability
than conventional Bloom Filter. Delete operation is crucial
for Bloom Filter. Suppose a database management system
integrates Bloom Filter to avoid unnecessary disk accesses and
enhance its performance significantly with a tiny amount of
memory [5]. Thus, the database management system requires
to insert, query, and delete operation for which conventional
Bloom Filter is not suitable. Therefore, counting Bloom Filter
is used in such kind of requirements.

As we know that counting Bloom Filter has a high false
positive probability for which it requires a higher memory
footprint than conventional Bloom Filter. CBF can eradicate
the false negative issues, but it has a high false positive
probability, and high memory footprint. To lower the false
positive probability, counting Bloom Filter sacrifices memory
footprint. Therefore, we propose a novel counting Bloom
Filter to address the above-raised issues, called countBF. The
countBF can reduce the false positive probability significantly
while preserving a low memory footprint. Our experimental
results show that countBF outperforms standard Bloom Filter
(SBF) [3] and counting Bloom Filter [2] in every aspect.
Key objectives of our proposed system is to reduce memory
footprint, to lower false positive probability and to increase
its accuracy without compromising the insertion/query perfor-
mance. Our proposed counting Bloom Filter is similar to the
conventional Bloom Filters. countBF has counters, while SBF
does not have counters. Also, countBF is implemented in the
platform of a 2D Bloom Filter (2DBF) [6]. 2DBF uses a 2D
integer array instead of relying on the bitmap array. This 2D
integer array is used as a bitmap where each integer represents
a block of bits. countBF enhances its performance by tuning
the murmur hash function [7]. Murmur hash function is the
best non-cryptographic string hash functions [8]. There are
also cryptographic string hash functions, however, it does not
enhances the performance and the false positive probability
[9]. Therefore, we compare countBF with SBF and CBF to
evaluate the characteristics using various test cases. In our
experimental work, we have compared countBF with SBF
because counting Bloom Filter is unable outperform SBF, and
thus, it is justified to compare with SBF and CBF. Also, we
compare with the other filters with countBF.

II. COUNTBF: THE PROPOSED SYSTEM

We present a novel counting Bloom Filter, called countBF,
by deploying 2-Dimensional Bloom Filter [6]. countBF uses
a few arithmetic operations to increase its performance. Let,
Bx,y be the two-dimensional integer array to implement
counting Bloom Filter where x and y are the dimensions of
the filter. The x 6= y and these are prime numbers. A cell
of the Bx,y is constituted by η counters, as shown in Figure
1. We have demonstrated 8 bits counters for an example in
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Fig. 1. Architecture of countBF with 8 bit counters

Figure 1. Each counter contains α bits, which is defined by
the user, and it can be 1 to 64 bits depending on the user’s
requirement. The data type of a cell is unsigned long int or
unsigned int. Each cell of Bx,y occupies β bits. Therefore, the
total number of counters is calculated as η = β

α . Particularly,
η = 8 counters, if each cell occupies β = 64 bits and
each counter contains α = 8 bits. Our key objective is to
reduce memory footprint, lower the false positive probability,
increase the accuracy and enhance the query performance of
the counting Bloom Filter. countBF uses two masks, namely,
extract mask and reset mask. An extract mask is used to extract
the bit information of a counter from a cell. Similarly, a reset
mask is used to reset the bit information of a counter in a cell.
These two masks are used because of countBF relies on the
integer array instead of the bitmap array.

The extract mask are dependent on the number of
counters η. Therefore, there are η extract masks which
are stored in an array. Extract mask is defined as
Me = {Me

1,Me
2,Me

3, . . . ,Me
η}. For instance, Me

2 =
. . . 000001111111100000000 for 8 bits counters. The third
extract mask is 0x00000000001FC000 and it is the correct
representation of the extract mask in 64 bits measures for
7 bits counter. Extract masks are used to extract certain
counter’s value using bit operations. For instance, unsigned
long int occupies 64 bits and there are 8 counters with 8
bits each. To extract lth counter information, we perform
Cl = (Bi,j ∧ Me

l ). To remove the trailing zeros, we perform
Cl = (Cl >> (η ∗ l)). This Cl gives the counter information.

Similar to extract mask, there are also η masks for
reset a counter to zero. Reset mask is defined as
Mr = {Mr

1,Mr
2,Mr

3, . . . ,Mr
η}. For instance, Mr

2 =
. . . 111110000000011111111 for a 8 bit counter. The third
reset mask is 0xFFFFFFFFFFE03FFF and it is the
correct representation of the reset mask in 64 bits measures
for 7 bits counter. Extract masks are used to extract certain
counter’s value. Reset masks are used to reset the counter’s

value to zero. To reset lth counter’s value to zero, we need to
perform Bi,j = (Bi,j ∧ Mr

l ).
The counting Bloom Filter is comprised of a set of counters

to counts the input items. Conventional Bloom Filter uses
bitmap array to manipulate the bits to store information of
input items. However, countBF does not use bitmap arrays.
Instead, it uses a 2D integer array where each cell occupies
some memory depending on the data type. For instance,
unsigned long int occupies 64 bits in modern computers,
and therefore, each cell occupies 64 bits memory, and it is
initialized by zero. Let η be the total number of counters, α
be the bits per counters, and µ be the bits per cell in a 2D
array. Therefore, the total number of counters in each cell of
countBF is η = µ

α , and the remainder is not used. Thus, the
total number of masks varies depending on the bits used per
counter α.

Algorithm 1 Insertion of an item K into countBF using k
hash functions.

1: procedure INSERTION(Bx,y, K)
2: for i = 1 to k do
3: h = Hi(K, Seedi)
4: INCREMENT(Bx,y, h)
5: end for
6: end procedure

Algorithm 2 Increment a single counter while inserting an
item K into countBF using a single hash function.

1: procedure INCREMENT(Bx,y, h)
2: i = h% x, j = h% y, l = h% η
3: Cl = Bi,j ∧ Me

l

4: Cl = Cl >> (α ∗ l)
5: Cl = Cl + 1
6: if Cl =MAX then
7: Counter Overflow.
8: return
9: end if

10: Cl = Cl << (α ∗ l)
11: Bi,j = Bi,j ∧ Mr

l

12: Bi,j = Bi,j ∨ Cl
13: end procedure

countBF is a counting Bloom Filter that comprises many
counters. The counters are incremented upon insertion of an
item. Let, Bi,j be a 2D Bloom Filter (2DBF) and Cl be the lth

counter in a cell of a 2DBF. Let, H() be a hash function. We
use the murmur hash function. Difference seed values create a
different hash value for the same key. For insertion of a single
item, countBF calls k hash functions, and the item is inserted
into the k counters. Algorithm 1 demonstrates insertion of
an item K using k hash functions. It requires increment the
counters’ value. Algorithm 2 shows the incrementing process
of a counter.

Lookup or query operation is similar to insertion operation
except the increment steps. Querying an item K requires k
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Algorithm 3 Lookup an item K in countBF using k hash
functions.

1: procedure LOOKUP(Bx,y, K)
2: for i = 1 to k do
3: h = Hi(K, Seedi)
4: flag ← flag ∧ TEST(Bx,y, h)
5: end for
6: return flag
7: end procedure

Algorithm 4 Lookup in a single counter while query an item
K in countBF using a single hash function.

1: procedure TEST(Bx,y, Hashvalue h)
2: i = h% x, j = h% y, l = h% η
3: Cl = Bi,j ∧ Me

l

4: Cl = Cl >> (α ∗ l)
5: if Cl ≥ 1 then
6: return true
7: else
8: return false
9: end if

10: end procedure

hash functions with k seed values. The seed values and hash
functions of lookup procedure cannot be different from the
seed values and hash functions of insertion and delete oper-
ations. Algorithm 3 calls murmur hash function k times and
TEST() function k times. The TEST() function is demonstrated
in Algorithm 4 that returns either true or false. The variable
flag holds the final result of all test functions and returns the
variable flag. The flag is a Boolean variable that can hold
either true or false. All TEST() function results are ANDed
which produce Boolean value of true or false and assigned
to flag.

Algorithm 5 Delete an item K in countBF using k hash
functions.

1: procedure DELETE(Bx,y,Keys K)
2: for i = 1 to k do
3: h = Hi(K, Seedi)
4: DECREMENT(Bx,y, h)
5: end for
6: end procedure

Conventional Bloom Filter does not support delete op-
eration due to false negatives. The counting Bloom Filter
was introduced to address the issue of false negatives [2].
The delete operation creates the issue of false negatives in
conventional Bloom Filter. Therefore, counting Bloom Filter
is used in many domains. Similar to conventional counting
Bloom Filter, countBF also supports a delete operation without
any false negative issue. To delete an item K, countBF requires
k hash functions call and k DECREMENT() functions calls as
demonstrated in Algorithm 5. The insertion and delete opera-

Algorithm 6 Decrement a single counter while deleting an
item K from countBF using a single hash function.

1: procedure DECREMENT(Bx,y, Hashvalue h)
2: i = h% x, j = h% y, l = h% η
3: Cl = Bi,j ∧ Me

l

4: Cl = Cl >> (α ∗ l)
5: Cl = Cl − 1
6: if Cl < 1 then
7: No deletion.
8: return
9: end if

10: Cl = Cl << (α ∗ l)
11: Bi,j = Bi,j ∧ Mr

l

12: Bi,j = Bi,j ∨ Cl
13: end procedure

tions are required the same steps except for the decrement of
the counters in delete operation, as shown in Algorithm 6.

III. EXPERIMENTAL RESULTS

Our proposed algorithm is evaluated in 8GB RAM, Intel®
Core™ i7-7700 CPU @ 3.60GHz × 8, Ubuntu 18.04.5 LTS
and GCC version 7.5.0. We created four different datasets,
namely, Same Set, Mixed Set, Disjoint Set, and Random Set.
Let, S = {x1, x2, x3, . . . , xn} be an inserted set into the
Bloom Filter,Q be the query set. The Same Set defines S = Q
whereas Disjoint Set is defined as S ∩Q = φ. The definition
of the Mixed Set follows any one condition, either q1 ∈ S
and q2 6∈ S or q1 6∈ S and q2 ∈ S where q1 ⊂ Q and
q2 ⊂ Q. However, the Random Set is randomly generated
dataset. These test cases are able to unearth the strengths and
weaknesses of a Bloom Filter. We have assessed our proposed
countBF for various counter’s sizes for the fair judgement.
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Fig. 2. Comparison of insertion time of countBF using 3 bits, 4 bits, 5 bits,
6 bits, 7 bits, and 8 bits counters with SBF and CBF. Lower is better.

countBF is compared with standard Bloom Filter (SBF)
[3] and conventional counting Bloom Filter (CBF) [2]. The
countBF is evaluated by setting the counter’s bits by 3 bits, 4
bits, 5 bits, 6 bits, 7 bits, and 8 bits. A counter’s bit can be a
maximum of 64-bits. In our experimental evaluation, each cell
occupies 64 bits, and hence, each cell has different counters.
The total number of counters for 3 bits, 4 bits, 5 bits, 6 bits, 7
bits, and 8 bits counters are 21, 16, 12, 10, 9, and 8 counters
in each cell of countBF. In this configuration, we conduct
the experiments, and Figure 2 demonstrates the insertion time
taken by countBF, SBF, and CBF. On an average, countBF is
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faster than SBF and CBF in the insertion of items. countBF
with 4 bits counter is slowest among countBF with 3 bits, 5
bits, 6 bits, 7 bits, and 8 bits counters and countBF with 7 bits
counter is fastest among countBF with 3 bits, 4 bits, 5 bits,
6 bits, 7 bits, and 8 bits counters in the insertion of items.
Individually, countBF with 4 bits, 8 bits, 7 bits, 7 bits, and 7
bits counters are the fastest in the insertion of 10M, 20M, and
30M dataset, respectively. Overall, countBF with 7 bits is the
fastest counter in the insertion operation.
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Fig. 3. Comparison of 10M items lookup time by countBF using 3 bits, 4
bits, 5 bits, 6 bits, 7 bits, and 8 bits counters with SBF and CBF. Lower is
better.
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Fig. 4. Comparison of 20M items lookup time by countBF using 3 bits, 4
bits, 5 bits, 6 bits, 7 bits, and 8 bits counters with SBF and CBF. Lower is
better.
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Fig. 5. Comparison of 30M items lookup time by countBF using 3 bits, 4
bits, 5 bits, 6 bits, 7 bits, and 8 bits counters with SBF and CBF. Lower is
better.

Figures 3, 4, and 5 demonstrates the lookup operations of
10M, 20M, and 30M items respectively by countBF, SBF and
CBF. countBF is faster than SBF and CBF in all sized query
with all test cases. On an average, countBF with 3 bits, 7
bits, 7 bits, 6 bits, and 3 bits counters are the fastest in 10M,
20M, and 30M items lookup, respectively. It is observed that
countBF with 8 bits counter exhibits the worst performance
overall. For any test case, countBF with 4 bits, 8 bits, 8 bits,

7 bits, and 6 bits are the fastest in the insertion of 10M, 20M,
and 30M dataset, respectively. Overall, countBF with 7 bits
is the fastest filter. countBF outperforms SBF and CBF by
50.73% and 55.68%, 45.33% and 54.67%, and 44.84% and
53.82% in 10M, 20M, and 30M items’ lookup respectively.
Overall, our proposed system has a higher lookup performance
rate than SBF and CBF.
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Fig. 6. Comparison of FPP in 10M lookup of countBF using 3 bits, 4 bits,
5 bits, 6 bits, 7 bits, and 8 bits counters with SBF and CBF in desired FPP
of 0.001 setting. Lower is better.
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Fig. 7. Comparison of FPP in 20M lookup of countBF using 3 bits, 4 bits,
5 bits, 6 bits, 7 bits, and 8 bits counters with SBF and CBF in desired FPP
of 0.001 setting. Lower is better.
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Fig. 8. Comparison of FPP of 30M lookup in countBF using 3 bits, 4 bits,
5 bits, 6 bits, 7 bits, and 8 bits counters with SBF and CBF in desired FPP
of 0.001 setting. Lower is better.

Figures 6, 7, and 8 demonstrate the false positive probability
of countBF, SBF and CBF in log scale. Counting Bloom
Filters are designed to deal with the false negative issue.
Therefore, conventional counting Bloom Filter has an issue
of trade-off between false positive probability and memory
consumption. Normally, counting Bloom Filters have a higher
false positive probability than other variants of the mem-
bership filter. However, countBF outperforms in the false
positive probability in Mixed Set, Disjoint Set, and Random
Set queries. There is no false positive probability for the
Same Set query. countBF exhibits an excellent false positive
probability in Disjoint Set query, and it is zero in Disjoint
set for the lookup of 10M dataset, which is demonstrated
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in Figure 7. However, the highest false positive probability
of countBF is recorded as 0.000035. countBF with 7 bits
counter exhibits the highest false positive probability in 20M
dataset lookup. On an average, the lowest and highest false
positive probability of countBF is 0.000006 and 0.000022,
respectively. Overall, the false positive probability of countBF
is 0.000013. On an average, the false positive probability of
SBF and CBF are 0.00100453 and 0.00099913, where CBF
exhibits a lower false positive probability. It is possible due
to the higher memory footprint of CBF than SBF. Thus, our
proposed system exhibits the lowest false positive probabil-
ity, whereas SBF and CBF exhibit equivalent false positive
probability. Both SBF and CBF are configured to the desired
false positive probability as 0.001, and therefore, their false
positive probability is equivalent.

10M 20M 30M

100
200
300

M
B

countBF SBF CBF

Fig. 9. Comparison of memory consumption of countBF, SBF and CBF in
desired FPP of 0.001 setting. Lower is better.

As we know that the CBF has a higher false positive
probability than SBF. On the contrary, the experimental results
show that SBF and CBF similar false positive probability. We
have indeed configured the desired false positive probability to
0.001, and therefore, the false positive probability of SBF and
CBF are equivalent. However, the memory requirements are
different. CBF uses higher memory than SBF. It means CBF
has a higher false positive probability than SBF. We adjust
the memory allocation to achieve the desired false positive
probability. Therefore, CBF has allocated more memory to
achieve the desired false positive probability. Thus, counting
Bloom Filter occupies more memory to achieve the desired
false positive probability. Notably, counting Bloom Filter
consume more memory than other variants of Bloom Filter or
membership filter to achieve certain false positive probability.
On the contrary, SBF uses 1.96× more memory than countBF,
and CBF uses 7.85× more memory than countBF on an
average. The lower memory footprint of countBF shows the
highest accuracy and the lowest false positive probability. On
an average, countBF, SBF and CBF consume memory of 26.11
MB, 51.42 MB, and 205.67 MB for all datasets, respectively.
The memory, false positive probability, and accuracy are the
key decisive factor of the Bloom Filter. However, countBF also
faster than SBF and CBF. But there are much faster member-
ship filters available, however, countBF is more accurate than
any other counting variant of Bloom Filters.

Figure 10 demonstrates the bits per item of the countBF,
SBF and CBF. countBF uses the lowest bits per item, and
CBF uses the highest bits per item. countBF, SBF, and CBF
use 7.32 bits, 14.38 bits, and 57.51 bits per item on average,
respectively. Our proposed counting Bloom Filter uses the

10M 20M 30M

20
40
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countBF SBF CBF

Fig. 10. Comparison of bits per item of countBF, SBF and CBF. Lower is
better.

lowest bits per item and provides a lower false positive
probability.

IV. CONCLUSION

This article has demonstrated our proposed counting Bloom
Filter, called countBF, significantly improved over SBF and
CBF. countBF can insert, query, and delete an item in O(k)
time complexity while preserving high accuracy, low false
positive probability, low memory footprint, and fast execution
time. Moreover, the properties of countBF make more room
for incoming items. We have evaluated the false positive
probability using various test cases experimentally. The false
positive probability is lower than the SBF and CBF. Alter-
natively, the accuracy of countBF is higher than SBF and
CBF. Therefore, countBF is able to outperform the existing
Bloom Filter in terms of false positives, accuracy, memory
footprint, and performance. Also, we have compared with
various state-of-the-art counting Bloom Filters and it shows
that our proposed counting Bloom Filter is an ideal solution.
Moreover, we have demonstrated how to adapt countBF in
frequency count, similar to CMS. It can also be applied in
diverse domains where delete operation is a crucial part of
the system.
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