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Abstract—The Internet Transport Protocol (ITP) is introduced
to support reliable end-to-end transport services in the IP
Internet without the need for end-to-end connections, changes
to the Internet routing infrastructure, or modifications to name-
resolution services. Results from simulation experiments show
that ITP outperforms the Transmission Control Protocol (TCP)
and the Named Data Networking (NDN) architecture, which
requires replacing the Internet Protocol (IP). In addition, ITP
allows transparent content caching while enforcing privacy.

Index Terms—IP, TCP, NDN, transport protocols, connections

I. INTRODUCTION

A transport protocol bridges the gap between the services
available from a network infrastructure (e.g., the Internet)
and the facilities desired by application processes using the
network infrastructure. As such, the design of any transport
protocol is about interprocess communication [24], [63], [67].
The Transmission Control Protocol (TCP) provides reliable
transport services in the Internet today, and its design of TCP
dates back to the ground-braking work by Cerf and Kahn
on the Transmission Control Program [18]. Like most of the
early work on reliable transport protocols [15], [63], [73], the
design of the Transmission Control Program [19]–[21] evolved
assuming the use of end-to-end connections [64] to implement
reliable in-order delivery of data between remote processes.
Since then, even after the original design by Cerf and Kahn
[18] was divided into the Internet Protocol (IP) [50], [52]
and TCP [51], the conventional wisdom has been that end-to-
end connections between remote processes are necessary to
provide reliable and efficient communication between remote
processes [63] without involving the underlying communica-
tion infrastructure for anything other than best-effort delivery
of datagrams.

Interestingly, Walden [68], one of the designers of the
host-to-host protocols of the ARPANET, proposed a message-
switching alternative to the connection-oriented ARPANET
host-host protocol [15] based on his earlier work on a system
for interprocess communication [67]. Walden’s proposal was
discussed by Cerf and Kahn [18], but connections became the
norm for reliable communication between remote processes
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in the Internet, and message-oriented protocols like Walden’s
proposal have been viewed as inherently unreliable [64].

Many variants of TCP have been proposed over the years,
and several transport protocols have been proposed to improve
on its performance [26], [27], [35], [61]. However, all trans-
port protocols designed to provide reliable communication
have been based on end-to-end connections. To some extent,
this prompted the recent development of several information-
centric networking (ICN) architectures [3], [9], [71], which
attempt to make Internet content delivery more efficient by
eliminating connections but require major modifications to
the network infrastructure. Section II provides a critique of
important prior work related to reliable communication be-
tween remote processes over computer networks. What is most
notable is that no prior connection-free transport protocol has
been proposed that provides reliable communication over a
datagram-based communication infrastructure.

This paper presents the Internet Transport Protocol (ITP)
as an example of how connection-free reliable and efficient
transport services can be provided over the IP Internet.

Section III describes the basic design of ITP, which inte-
grates Walden’s proposal on a message-switching host-host
protocol [68], the receiver-initiated approach to reliable data
transfer first described by Jacobson et al. [30], the use of
manifests [40] advocated in several ICN architectures, and the
inclusion of pointers to such manifests in each request for data
and response.

Section IV summarizes the way ITP uses sockets and
interacts with applications.

Section V describes how ITP enables transparent caching
with privacy by encoding pieces of content in a way that only
a process that obtains a manifest for a content or service is
able to consume it.

Different approaches can be used for retransmission and
flow control in ITP. However, Section VI summarizes retrans-
mission and congestion control mechanisms for ITP that are
very similar to those currently used in TCP (TCP Reno) to
illustrate the inherent benefits of eliminating connections and
using manifest pointers.

Section VII compares the performance of ITP, TCP, and
Named-Data Networking (NDN) [43] using the ns3 [66] and
ndnSIM [44] simulators. The results of the simulation experi-
ments indicate that ITP is inherently more efficient than TCP
and provides the same benefits of NDN without requiring any
changes to IP, the Internet routing infrastructure, or the domain978-3-903176-31-7 ©2020 IFIP



name system (DNS). Section VIII provides our conclusions
and discusses promising avenues for future research.

II. RELATED WORK

Considerable work has been reported over the years on
transport protocols that provide reliable end-to-end commu-
nication [45], [49], as well as transport control strategies in
ICN architectures [16].

Limited work has been reported on transport protocols that
augment UDP with additional functionality (e.g., DCCP [34])
but do not guarantee reliable data delivery.

From its inception, TCP based its buffer management for
retransmission and congestion-control using a byte stream
as the abstraction [18]–[21], [51]. However, other transport
protocols, like the CYCLADES end-to-end protocol [73], have
used packets rather than bytes for the same purpose.

A plethora of proposals have been made to improve the
performance or functionality of TCP [49]. The proposed
improvements include more efficient flow control and retrans-
mission strategies, the use of multiple connections, enabling
multihoming of the remote processes exchanging data reliably
[26], [27], [35], [61], and even the use of machine learning in
TCP congestion control [2], [32], [70]. However, all this prior
work assumes that reliable communication between remote
processes requires end-to-end connections.

The correctness of algorithms for connection establishment
and termination has been the subject of considerable work.
Several results have been published [1], [37], [60], [69]
showing that there is no connection-based protocol for reliable
communication operating with a finite sequence-number space
that works correctly under different conditions related to
messages being deleted, duplicated, or reordered. In addition,
it has been shown that no correct connection-based protocol
exists that provides reliable communication in the presence
of nodes failing and losing their state [37], [60]. Given these
inherent limitations, the connection-based protocols used in
practice today, including TCP, are based on a relaxed definition
of correctness.

Existing connection-based protocols are based on connec-
tion initialization procedures similar to the Five Packet Hand-
shake (FPH) [10]. FPH renders connection-based protocols
that work in practice, provided that all messages are assigned
unique identifiers. This implies that, even in the presence of
node crashes, either no message identifier is ever generated
more than once, or no message identifier is reused before every
prior message using the same identifier has been eliminated
from the system. In practice, FPH and similar connection-
initialization approaches are implemented using a finite num-
ber of unique message identifiers assuming known bounds on
message-delivery times, local processing times, and rate of
new message creation.

Another important aspect regarding the evolution of trans-
port protocols is their deployment [45]. Many novel solutions
have not seen widespread deployment due to middleboxes
(e.g., firewalls and NAT boxes) modifying or blocking any

unfamiliar traffic [42], [55]. As a result, recent reliable trans-
port protocols (e.g., QUIC [35]) adopt UDP for the naming of
processes and framing of messages. Moreover, recent studies
[17], [65] even suggest encapsulating TCP traffic inside UDP
datagrams as it passes better through these middleboxes.

Transparent content caching is highly desirable to expedite
content delivery on the Internet or ICN’s [23]. However,
current transparent-caching solutions exclude traffic carried
over a secure closed connection, which is a problem because
more than 50% of web traffic is served over HTTPS [25]. To
overcome this issue, some proposals [36], [47] split a TLS
session into two separate TLS sessions, one session between
the consumer and the cache, on one side, and the cache and
the producer on the other side. However, this requires caches
to be trusted using a certification authority and introduces the
problem that consumers cannot choose the level of security
between the cache and the server. Other solutions [41], [59],
suggest altering the TLS layer to support trusted proxies
operations on traffic flows. Although these solutions support
features such as intrusion-detection or content-filtering, they
do not provide support for transparent caching.

NDN [43] eliminates end-to-end connections through mod-
ifications in the network infrastructure. However, NDN does
not avoid the use of virtual connections altogether, because
routers must maintain per-Interest state in their Pending In-
terest Tables (PIT) to forward data packets in response to
Interests. The per-Interest state maintained by the routers
between two communicating processes (a content consumer
and a content provider) constitute a per-Interest virtual circuit,
and the interplay between in-network caching and the added
per-Interest state is still being studied [22]. Interestingly, the
congestion-control schemes proposed for NDN and other ICN
architectures to date are very similar to those used in TCP [3],
[7], [12]–[14], [16].

To the best of our knowledge, Named-Data Transport (NDT)
[5] is the the only prior approach that provides efficient
and reliably content distribution without using end-to-end
connections or changes to the Internet routing infrastructure.
However, NDT requires modifications to the DNS.

III. ITP DESIGN

The design of ITP uses the simple idea that the manifest of
a named data object being exchanged between communicating
processes can be used to provide the needed context for
the exchange. The manifest of a data object is itself a data
object and specifies: (a) The unique immutable name of the
data object, (b) the structure of the data object consisting of
object chunks (OC) that can be sent in messages, and (c) the
procedure that should be used to decode the data object from
a set of OC’s. Additional metadata can be made part of the
manifest of a data object, such as the names and size of object
chunks and a list of IP addresses to contact to request them.

We denote by nexus the establishment of the context needed
for an association between processes by means of manifests.
Fig. 1 illustrates how a producer transmits a data object D
to a consumer in ITP based on a nexus. ITP messages use



UDP headers stating the address and port of the consumer
and producer; this is indicated in the figure with “UDP.” The
manifest of a data object D is denoted by M(D).

The application running at the consumer site asks ITP to
send a data packet, which requests a data object. The producer
specifies a number of parameters through a specific system
call in response to that request. The ITP process constructs
a manifest and sends it to the client as a data packet called
Manifest Message in Fig. 1, and creates a Manifest Control
Block (MCB) that specifies M(D), points to the memory
location for D, and includes a Producer Buffer if additional
memory space must be allocated for efficiency. The OC’s of
D are stored in a Content Store (CS) at the producer, and can
be copied to the producer buffer to reduce latencies.

Fig. 1. The nexus in ITP replaces the end-to-end connection needed in TCP

The nexus for D at the producer starts when it creates
the MCB for D and ends after a nexus timeout that must be
long enough to allow consumer(s) to obtain the OC’s in D,
without having to reallocate memory for the Producer Buffer.
The nexus timeout is restarted each time the producer sends a
data packet with an OC of D.

The nexus for D at the consumer starts after it receives the
manifest M(D) and then creates an Interest Control Block
(ICB) for D and allocates memory for a Consumer Buffer
(CB) to store OCs of D. The ICB includes M(D) and the ICB
status indicating the OCs that have been received and those
that are missing. The nexus at the consumer ends when it has
all the OCs needed for D, at which point the ICB for D can be
deleted. Once the consumer has a nexus for D, it obtains the
data in D by sending requests that we call Interests for D. An
Interest for D , denoted by I(D) in Fig. 1, states: the names of
the consumer and producer; the name of the data object; and
a manifest pointer (MP (D)) that references M(D) and states
implicitly or explicitly the OCs that the consumer is missing
and those that it has obtained. The producer responds to an
Interest I(D) with one or multiple data packets. Each data
packet contains the manifest pointer MP (D) of the Interest
that prompted it and OC’s that are part of D. The use of
manifest pointers stated in Interests free the producer from

having to maintain per-consumer state, and its nexus is simply
with the data object D and its structure.

IV. SOFTWARE ARCHITECTURE AND API

All entities in ITP have the same structure, making it a bi-
directional messaging protocol. These entities can be viewed
as a producer and a consumer.

An ITP producer is responsible for sending a data object,
and an ITP consumer is responsible for consuming the object.
When the server application sends out its reply, it is the ITP
producer’s responsibility to construct the Manifest for this data
and send it to the ITP consumer at the other end. It is also
its responsibility to send data packets in response to received
Interests. The ITP consumer is responsible for retrieving the
data using Interests based on the information provided by the
manifest. The same occurs when the client application sends
out a request (e.g., an HTTP GET). However, applications
that consume data are naturally different from applications that
produce data. Therefore, we specified different system calls
to send the data over ITP that fits the application need. For
example, when the client sends an HTTP GET request, it is
done through a different system call than the one used by
the server application to send an HTTP response. This system
call triggers the ITP producer at the client side to deliver the
Data packet encapsulating the HTTP GET request instead of
constructing a Manifest and send it to the ITP consumer at
the server end.

An ITP producer uses the MCB to remember the manifest
itself, the manifest timeout, and consumers authorized to
retrieve the data object. The MCP is similar to the transmission
control block (TCB) used in TCP to maintain data about
a connection. However, the MCB is only used to maintain
consumer-independent state, because the ITP consumers are
tasked with remembering nexus variables specific to them and
state their values in the manifest pointers included in their
Interests.

An ITP consumer maintains the Interest Control Block or
ICB. A consumer creates an ICB for each new manifest it
receives. The ICB includes variables such as manifest name,
list of ITP producers to contact, Interest timeout and so forth.
Once all the OC’s of a data object are satisfied, the ICB tigers
the ITP consumer to deliver the data object from the Content
Store to the application.

An ITP producer can use OC’s in the Content Store (CS) to
satisfy Interests from different consumers, depending on the
application need. A data object being retrieved is buffered in
the CS until all its OC’s are received and then it is delivered
to the application by the ITP consumer. The decision of when
to deliver the data to the application is issued by its ICB as
mentioned before.

The interaction between transport protocols and applications
can differ from one protocol to another. For example, the
TCP API calls bind(), listen() and accept() are
specific for server sockets and connect() is specific for
client socket, while send() and recv() are common for
both types.



Fig. 2 illustrates an example of a client/server relationship
using the primary socket API functions and methods in ITP.
The naming of these system calls is inspired by the early
work by Walden on host-host protocols [67]. These calls are
somewhat similar to the TCP/UDP socket API, but they differ
significantly. The current TCP/IP socket API dates back to the
1980’s with the release of what is called Berkeley sockets.
Most of these socket calls prevent the programmers from
understanding what goes on at the transport layer; instead,
these calls just produce numeric error codes that usually have
a generic meaning. Therefore, a future goal in the design of
ITP API is to provide a platform that simplifies the program-
ming of today’s applications while hiding the complexity of
the communication calls allowing application developers to
customize their content distribution and have full control over
deployment decisions.

Fig. 2. Client and server communicating using ITP sockets

Given that no connection is established from the client to
the server, the client just sends messages to the server using
the FORCE_SEND() call. This system call forces the ITP
producer at the client-side to send the message directly to the
server without constructing a Manifest. Also, the server in
ITP does not need to accept a connection, and instead, it just
waits for messages to arrive. When a message arrives at the
server, it contains the address (IP, Port) of the sender, which
then the server can use to reply back to the client through
the system call SEND(). As highlighted in Fig. 2, it is up
to the application dialog to handle this. Because sockets by
themselves are fully duplexed, an application can simply send
back to the port of origin, as we mentioned before. An ITP
server application can close its socket after the dialog ends;
however, because there is no notion of a connection between
the two ends, a server can simply close its socket.

V. TRANSPARENT CACHING WITH PRIVACY

ITP allows arbitrary application traffic running over ITP to
be cached at the transport layer, without the caching logic

leaking to the application layer and without making any
changes to IP. Network administrators can simply install a
single ITP proxy cache in their network and configure a layer-
four switch to redirect ITP traffic to ITP caches. Content
carried over ITP can be made private and secure by adopting
an approach like the one recently introduced for NDT [5].

Each data object in ITP carries a name, including the man-
ifest. The name of the manifest is mapped to a specification
of messages to be sent. A simple approach to name OC’s
in ITP is by using sequencing with the content name from
the manifest. Using this method an ITP consumer appends a
chunk number to the content name of the outgoing Interest
and keeps incrementing it as needed, until it receives all the
data packets with the OC’s of the data object. The following
sequence of ITP-Proxy steps for transparent caching of web
traffic corresponds to the numbers shown in Figure 3.

ITP Consumer ITP Proxy ITP Producer

Manifest

Data packet = ( GET example.com )

Interest = ( 121.7.106.83/80/digest/1 )
                   

Interest = ( 121.7.106.83/80/digest/1 )

Data packet = ( example.com/index.html )

Data packet = ( example.com/index.html )

1

2

4

3

Interest = ( 121.7.106.83/80/digest/1 )
                   

Data packet = ( example.com/index.html )
8

5

6
7

Fig. 3. Transparent caching of ITP traffic

(1) A client sends an HTTP GET request for example.com
to the web server. This request is sent over the system call
FORCE_SEND(), which causes it to be sent as a data packet
without the need for a manifest. The middle ITP Proxy on the
way is configured to intercept Interests destined to a list of
ITP producers and data packets from these ITP producers. It
is up to the administrator to have cache data packets sent by
the client applications to these web servers.
(2) After the ITP producer at the web server processes the
incoming data packet it delivers it to the web server application
along with the client IP address and port number. Once the
application processes the message, it triggers a reply back to
the client with the proper HTTP response using the system call
SEND(). This causes the ITP producer to construct a manifest
and send it to the ITP consumer at the client side.
(3) A layer-four switch intercepts the packet from the web
server and redirects it to the ITP Proxy, which forwards it to
the client.
(4) After processing the manifest, the ITP consumer sends an
Interest to the ITP producer at the other end.
(5) The ITP Proxy on the way intercepts the Interest, then



checks whether it has the requested data packet in its content
store (CS). Given that it does not, it forwards it to the ITP
producer using the name in the Interest.
(6) After processing the Interest, the ITP producer responds
with the requested data packet.
(7) The ITP Proxy intercepts the data packet and caches it in
its CS if it does not exist to satisfy incoming future Interests.
It then forwards it to the ITP consumer, which after processing
it, will deliver it to the application layer.
(8) Finally, the Interests from a new ITP consumer (who has
the same manifest) is satisfied at the ITP Proxy instead of
going all the way to the ITP producer.

As the example shows, ITP caches do not keep track of
pending Interests as it is done in NDN. As a result, forwarding
Interests does not require any changes to the IP Internet routing
infrastructure.

VI. RETRANSMISSION AND CONGESTION CONTROL

We summarize retransmission and congestion control strate-
gies in ITP that are very similar to those in TCP to illustrate
the inherent benefits of ITP compared to TCP. Our design
takes into account three key differences between ITP and
TCP. ITP is receiver-driven, because the use of a Manifest
to describe a content object allows the ITP consumer to be in
charge of controlling retransmissions and managing congestion
by adjusting how it makes requests to the producer. ITP is
connection-free by means of nexuses whose management is
done with a message-switching approach. Lastly, data carried
over ITP can be cached transparently at the transport layer.

ITP uses a consumer-driven selective repeat retransmission
strategy in which the ITP consumer is in charge of the
data flow from the ITP producer, which simply responds to
Interests with data packets. The manifest pointer included in
each Interest from the ITP consumer tells the ITP producer
what portions of the content have been received and which
ones are missing, which serves as a selective acknowledgment
(ACK). The ITP consumer controls the flow of data traffic by
controlling the sending rate of its Interests, and allows for a
window of data packets to flow to the receiver in response
to its Interests. The window size is adjusted based on the
AIMD (Additive Increase Multiplicative Decrease) mechanism
commonly used in TCP for the congestion window.

ITP uses simple Interest-based approach for congestion
control in which one Interest from the consumer elicits one
data packet from the producer. The ITP consumer maintains a
congestion window (cwnd) that defines the maximum number
of outstanding Interests allowed to send without receiving their
data packets. Similar to TCP New Reno, the consumer in
ITP increases its cwnd based on slow start [29], starting with
transmitting one Interest and increasing the cwnd by one for
each new received data packet. The slow start continues until
a packet loss is detected, in that case the ITP consumer limits
the Interest rate by reducing its cwnd accordingly.

The policy used in ITP to retransmit Interests resembles the
one used for retransmissions in TCP Santa Cruz [46]. Each
Interest carries a retransmission count that uniquely identifies

the specific transmission of the Interest and hence each RTT
measurement is accurate, just as in TCP Santa Cruz.

An ITP consumer retransmits a lost Interest once an out
of order data packet is received based on the order in the
transmitted list and after a time constraint is met. A lost
Interest y initially transmitted at time ti is retransmitted once
the following constraint is met: As soon as a data packet
arrives for any Interest transmitted at tx where (tx > ti),
and (tcurrent − ti) > RTT, where tcurrent is the current
time and RTT is the the time it takes to send an Interest and
receive the data packet for it. Once the ITP consumer detects a
packet loss using fast retransmit, the ITP consumer reduces its
congestion window by one half and set the the threshold to the
new window size causing the consumer to go into congestion
avoidance [29].

Given the control of Interest transmissions by the ITP
consumer and the one-to-one correspondence between an
Interest and a data packet, ITP does not need to rely on such
mechanisms as Fast Recovery in TCP New Reno to detect
multiple packet losses within a single window.

VII. PERFORMANCE COMPARISON

We evaluated the performance of ITP, TCP (New Reno),
and NDN using the ns3 [66] and ndnSIM [44] simulators, and
considered the efficacy of congestion control methods and the
efficiency of transparent caching.

A. Efficacy of Congestion Control

We compare the congestion control algorithm and retrans-
mission policies of ITP, TCP and NDN using a scenario
consisting of a simple network consisting of a single source
and a single sink. We assume that NDN uses an end-to-end
protocol that behaves in the same way as TCP to provide a
fair comparison. Accordingly, consumers in NDN can only
infer congestion via a retransmission timeout and use AIMD
window control to avoid congestion, such a mechanism is used
by most end-to-end protocols in ICN. The topology of the
network is a single path of four nodes with a single sink at
one end and a server at the other end. Both ends share a
common bottleneck of 1.5 Mbps. For a fair comparison, no
in-network caching for ITP takes place in this scenario. The
size of the object chunks in ITP and NDN are equal to the
segment size in TCP, and fixed at 1500 Byte. Both ITP and
TCP share the same fixed header size, and we use a short
content name in NDN to avoid additional overhead in NDN
due to large names.

Table I shows the results for average throughput, packet
loss, total download time, and jitter for a file of 3.7MB
being downloaded. The overall completion time for NDN
is worse compared to TCP and ITP because a consumer
in NDN cannot detect the data source, which prevents the
use of out-of-order delivery methods to detect packet losses.
Accordingly, consumers must rely on methods that depend on
retransmission timeouts [7], [13].

ITP detects and recovers from a packet loss faster than
TCP because of its retransmission policy. As Table I shows,



the completion time for TCP is higher than in ITP. This is
mainly due to the fact that ITP does not use connections and
applies a fast retransmission strategy enabled by Manifests. It
takes TCP a minimum of 1 RTT to start sending data while
it takes, ITP only half the RTT. In addition, when TCP closes
a connection, both ends must terminate the connection even
if only one of the ends was transmitting data. However, for
ITP, only the consumer requires to signal the producer that
the complete data was received. In addition, multiple packets
lost within a single-window can affect TCP performance even
with the SACK option enabled. Because ITP is receiver driven,
the consumer has a complete picture of which data packets
were received correctly and which one was lost, and does
not rely on partial ACK’s like TCP does. Accordingly, it
immediately goes into congestion avoidance state, instead
of fast recovery. As a result, ITP continues increasing its
congestion window normally. This gives ITP the advantage of
utilizing the bottleneck’s buffer compared to TCP, especially
under shallow-buffer scenarios [6].

TABLE I
SINGLE-FLOW RESULTS

ITP TCP NDN
Total time (sec) 33.2694 35.5447 35.9408
Avg. throughput (Mbps) 1.41298 1.34652 1.2736
Packet loss 39 59 56
Jitter sum (sec) 3.3151 4.2827 4.9951

Fig. 4. Total transfer time vs. number of sinks

B. Efficiency of Transparent Caching

We compared the total time taken to retrieve multiple copies
of a large data file using ITP, TCP, and NDN. This scenario
highlights the ability of ITP to take advantage of transparent
caching without requiring any changes to the communication
infrastructure. The experiment assumes a network consisting
of a source node connected over a 10 Mbps shared link to a
cluster of 10 sink nodes, all interconnected via 100 Mbps links,
where a middle node in this scenario is acting as a caching
proxy for ITP traffic. The same topology was used for NDN
as well. For a fair comparison between NDN and the other
protocols, we used the same transport protocol highlighted
in the previous scenario. We ran ten scenarios; with each

scenario, we increased the number of sinks in the network,
bringing the total to 10 sinks. Each sink starts pulling a 6MB
data file from the source at random start time based on a
Poisson distribution with an average arrival of 5 minutes. We
ran each scenario ten times, each one with a different random
arrival time. The total elapsed time for all the sinks to complete
the task was recorded and displayed in Fig. 6.

TCP, ITP, and NDN perform much the same when only one
sink is involved, given that most requests in ITP and NDN are
retrieved from the source, and the three approaches use very
similar algorithms for congestion control. As the number of
sinks increases, the completion time in ITP and NDN remain
fairly constant while the completion time in TCP increases
linearly because all data have to be retrieved from the source.
NDN outperforms ITP when two or more downloads start
before data are available at the nearby cache. In ITP this results
in those Interests being sent to the producer while in NDN only
the first Interest is sent.

VIII. CONCLUSIONS AND FUTURE WORK

We introduced ITP, the first connection-free reliable trans-
port protocol. Its design consists of the integration of a
message-switching approach first discussed by Walden [67],
[68] with the use of manifests [40] and receiver-driven requests
[30]. ITP eliminates the need for servers to maintain per-
client state and allows for all application data to be cached
transparently on the way to consumers using ITP Caching
Proxies. To prevent such middle boxes from accessing cached
content, ITP can rely on encoding of data objects in ways
that can only be understood by those consumers who have the
manifests needed to decode the data objects.

Much has been written about the inability of the current IP
Internet architecture to support the emerging Internet content-
oriented applications. Our description and analysis of ITP
demonstrates that the IP Internet can provide efficient support
of such applications by means of connection-free reliable
transport services. We hope that our work inspires the reader to
propose new ways to provide a content-centric solution based
on an IP Internet that is free of connections.
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