
SWEETEN: Automated Network Management
Provisioning for 5G Microservices-Based

Virtual Network Functions
Rafael de Jesus Martins, Ariel Galante Dalla-Costa,

Juliano Araujo Wickboldt, Lisandro Zambenedetti Granville

Institute of Informatics - Department of Applied Computing
Federal University of Rio Grande do Sul (UFRGS) - Porto Alegre, Brazil

{rjmartins, agdcosta, jwickboldt, granville}@inf.ufrgs.br

Abstract—Forthcoming 5G systems promise a myriad of
new and improved applications, relying on Network Functions
Virtualization (NFV) to realize some of 5G’s stringent
requirements. To guarantee that these requirements are met,
network monitoring and management must be deployed and
fine-tuned according each application’s specificity. As Virtual
Network Functions (VNFs) adhere to the microservice paradigm,
picking and configuring the right tools is not a trivial task
for users. In this paper, we present SWEETEN, a system that
assists user to operate a 5G network with the appropriate
management tools for the job, in a transparent manner to
the user. By enriching their function stack with high-level
annotation of the management features they desire, users can
easily deploy an augmented stack with both network and
management functions. A prototype is presented and evaluated
in a dynamic Cloud Radio Access Network (C-RAN) split case
study. The evaluation confirms that SWEETEN can assist users
in effortlessly deploying complex management solutions, while
incurring in acceptable deployment time overhead and negligible
computational overhead for throughout the functions life-cycle.

I. INTRODUCTION

Network Functions Virtualization (NFV) has quickly
become a staple paradigm in the networking field. By
virtualizing network functions – previously only offered
by hardware-specific middleboxes –, NFV can offer the
dynamism and scalability required by modern applications [1].
As networks service provisioned by such functions are vital
for networks’ health, properly managing and monitoring
Virtualized Network Functions (VNFs) become a mandatory
concern in assuring its proper operation.

In another field, i.e., cloud computing, the microservices
paradigm advocates towards breaking down applications and
end-services in small self-contained functional modules [2].
Management tools, such as Prometheus [3] and Dynatrace1,
have emerged in this context, offering monitoring solutions
to the cloud environment and applications following the
microservices paradigm. These tools allow monitoring of
cloud systems in varying scales, from a single module
to an inter-cloud distributed application. Particularly large

1https://www.dynatrace.com/

applications can leverage service mesh solutions to manage
connectivity (and the management concerns that comes with
it) among the microservices it comprises [4].

NFV, as defined by ETSI in the Management and
Orchestration (MANO) specification [5], can potentially
benefit from the adoption of the microservices paradigm.
Modularizing the VNFs forming a Service Function Chain
(SFC) can offer similar benefits to those enjoyed by higher-
level distributed cloud applications [6]. Moreover, ETSI’s NFV
specifications also define that sub-sets of VNF’s functionality
are implemented by atomic VNF components (VNFC), which
themselves can also be designed following the same principles,
further benefiting the compound VNFs. However, monitoring
and management solutions tailored for cloud applications
may not be directly applied to NFV scenarios due to their
specificities.

Forthcoming 5G communication systems exemplify some
of the specific scenarios that would require tailoring of the
aforementioned monitoring and management solutions. Unlike
previous mobile generations, 5G promises not only to improve
the data transmission rates but also to enable the coexistence
of a myriad of applications with distinct requirements. To
achieve that, network slicing of the underlying infrastructure
should allow several tenants to seamlessly share resources
and achieve distinct (potentially conflicting) objectives. The
overall system’s health relies on the harmonic coexistence
of tenants sharing the same infrastructure [7]. NFV can
assist in the provisioning of slices for tenants, but each slice
must be individually managed and monitored to guarantee
that the tenant’s application requirements are being met.
Previously cited cloud-based monitoring tools often require
extensive privileges on the underlying infrastructure to work,
which is not wanted or even feasible from the viewpoint
the infrastructure provider. Moreover, infrastructure owners
and tenants may require not only monitoring, but also other
network management features (e.g., security and configuration)
transparently.

In this paper, we propose SWEETEN (aSsistant for
netWork managEmEnT of microsErvices-based VNFs),
a system designed to assist 5G service providers and978-3-903176-31-7 © 2020 IFIP



tenants with configuration and deployment of network
management tools along a network slice. By adding high-
level management features annotations to their original
services stack, SWEETEN can map the necessary tools and
configuration to realize the desired features with no hassle
for the operator. Because the system is targeted towards VNF
management, it is designed to incur in the least overhead
possible regarding network and computational resources.
Available features include monitoring, managing, and securing
one or multiple microservices. When deemed necessary,
operators can specify as many configuration parameters as
needed and the system will process them to deliver a solution
as aligned as possible with the informed options.

We also present a prototype implementation of SWEETEN,
which is evaluated in a dynamic cloud Radio Access Network
(C-RAN) case study. In this case study, LTE radio functions
are split in five containers, as described by Wubben et al. [8].
The prototype is used to manage each function and monitor
them assuring the radio requirements are being met. Since
the stack for the virtualized radio functions does not need
to be altered prior to being fed to the system, continuous
development and integration of the virtualized functions is
not an impediment for our system, as the updated functions
and their respective network management tools are updated
transparently. We evaluate our system through the prototype,
which indicates that acceptable overhead is added to the
deployment time of the complete solution, and negligible
computational and network overhead is added throughout the
remainder of the lifecycle.

The remainder of the paper is organized as follows. In
Section II, we present some background information on
microservices and container-based virtualization and discuss
related work. In Section III, we introduce SWEETEN’s
architecture discussing its main features and detailing our
prototype implementation. Then, in Section IV, we present
a case study of a 5G application scenario featuring a
microservice-oriented software radio design split into five
containers. We discuss the experiments performed and
obtained results when evaluating our system prototype in
Section V. Finally, in Section VI, we present concluding
remarks and perspectives of future work.

II. BACKGROUND & RELATED WORK

The microservice paradigm has emerged in the context
of cloud computing as a solution to the problems faced
by monolithic software [9]. While monolithic software
is developed and deployed as a single atomic service,
microservice-based solutions provide the same high-level
service through the cooperation of multiple independent
modules. In this case, each module should provide a specific
function and runs in a virtual host, and the communication
between modules is used to combine the necessary functions
and deliver the service correctly. Some possible benefits
enjoyed by applications designed with the microservice
paradigm includes fine-grained scaling of a service, since
only the overloaded modules need to be scaled up or out,

and continuous development and integration, since only the
updated modules must be upgraded.

A microservice needs a virtual host to run on, which is
typically realized through container virtualization. Containers
offer a lighter alternative to Virtual Machines (VMs), since
they can run directly on the host system without requiring
virtualization layers for an Operating System (OS) that
introduces overhead in the process [10]. In this case, the host
system’s kernel offers resource isolation features that restrain
each container to their own environment. In Linux, these
features are mostly achieved through cgroups and namespaces
features. Containers orchestrators can be used to deploy and
manage complex applications (e.g., composed of multiple
containers, deployed over multiple hosts). Docker is an
example of a platform for lightweight container virtualization,
while Kubernetes currently stands out as one of the most
widely used container orchestration platforms [11].

Ciuffoletti [12] investigates the specification and automation
of monitoring infrastructures in a container-based distributed
system. The author employs an architecture for monitoring
that is comprised of two entities: a sensor, that produces
and delivers measurements, and a collector, that specializes
the management of those measurements. A simple model
that interfaces the user and the container management system
is defined, and a prototype implementation that showcases
the applicability of the proposal is provided. The work thus
focuses solely on the monitoring aspect, while our proposal
also covers other management disciplines (e.g., security).
Additionally, Ciuffoletti’s work considers that the user
application and the sensor for the monitoring system run in
the same container, which violates the microservices paradigm
and can hinder the module development and deployment.
Our solution, instead, always considers the application and
management microservices as separated containers, even
when context sharing is needed, and thus does not breach
microservices standards unnecessarily.

The work of Jaramillo et al. [13] discusses how Docker
can effectively leverage the microservices paradigm through
a case study based on a real working model. The authors
pose a list with six challenges faced when building a
microservice architecture and that contrasts with the multiple
advantages offered by microservices design. Specifically, the
work highlights the necessity of improvements regarding
scalability, automation, and observability. SWEETEN is
designed with these challenges in mind, providing automated
observability (i.e., a way to visualize health status of
microservices to quickly locate and respond to occurring
problems) and scalability (e.g., dynamic configuration for
multiple microservices), features meeting operators needs.

Li et al. [4] reviewed the state-of-the-art and the challenges
for service meshes. Service meshes are emerging solutions
that create a dedicated infrastructure layer for handling
communication between microservices. Service meshes can
offer multiple features such as service discovery, load
balancing, and access control. Implementations for service
meshes typically rely on deploying an array of network proxies



alongside primary containers, intercepting all its connections
to provide the features. As pointed out by the authors,
edge computing environments and 5G scenarios (e.g., multi-
tenancy) incur in specificities that service meshes are not
designed to cope with. SWEETEN is designed to work with
VNFs with different requirements (e.g., minimal overhead for
edge deployments), and management applications (and thus,
overhead) are chosen and configured according to high-level
user requests and other deployment specifics.

Franco et al. [14] introduced a support tool for cybersecurity
that focuses on the recommendation of protection services.
The authors argue that although a vast number of protections
services are offered to network operators and users, the choice
for one or more is not trivial for neither. Like SWEETEN,
the proposed system can operate with different demands from
the user, and recommends protection tools (in their case) for
different scenarios. Notably, the proposal is limited in scope
to the security discipline, while SWEETEN is designed to
consider other network management disciplines.

III. SYSTEM DESIGN AND IMPLEMENTATION

In this section, we discuss the system architecture and our
design choices. SWEETEN’s architecture is an evolution of
the one previously proposed [2], but in this case specifically
shifting the system target towards different users and use
cases, namely from cloud applications to containerized VNFs
and their operators, incurring in important system choices as
described in the following.

Because NFV is critical for upcoming networks, and since
the paradigm shift from monolithic VNFs to microservices-
based ones is imminent [6], the burden has increased for
network operators. The applications that run on top of a VNF
or an SFC can pose stringent requirements for the functions,
and the underlying infrastructure can also determine how
functions should be managed. The proposed system should
reflect the specificities of each scenario in order to properly
select and configure the necessary management tools. The
system architecture targets minimizing the operator effort in
specifying the tools and configurations necessary, while still
allowing them to be manually specified when needed.

User

1. User Input Features
Acquirer

Tool
Mapper

Tools
Catalogue

Template
Mapper

Template
Catalogue

2. 
Fe

atu
re

s I
np

ut

3. Tools Mapping

Container 
Image 

Catalogue
Deployer

4.
 D

ep
loy

m
en

t 

Te
m

pla
te

5. Deployable 

Solution

Container
Orchestrator

6. User Dashboard

Fig. 1. SWEETEN architecture.

SWEETEN architecture is presented in Figure 1. The
user is a VNF operator that augments his/her initial
deployment definition (i.e., the containers that compose
the VNFs) with specification for the management features
expected to attain. Management features are specified in three
categories: monitoring, security, and administration. Each
category provides a list of features that users can specify
in their requirements. A non-exhaustive list of features and
respective tool selection is presented in Table I.

The existence of multiple tools when mapping a single
feature is resolved by the system based on additional user input
and deployment information. A single tool can also realize
multiple features (e.g., SNMP, for monitoring as well as for
administration), which SWEETEN takes into account when
selecting the appropriate tools for a deployment. Currently
supported features are latency and flows, for monitoring;
traffic, for security; and device, for administration. Support for
new features (and through different tools) can be added to the
system by an expert. The user can adopt varying specification
levels when requiring the management features for each
service (e.g., choosing to only monitor TCP connections on
certain ports, or determining what tool should be used).
The system interprets the requested features and maps the
appropriate tools and configurations to fulfil all requests.

TABLE I
NETWORK FEATURES AND RESPECTIVE TOOLS LISTINGS.

Monitoring Security Administration

Flows sFlow, NetFlow,
Prometheus

Snort (for IDS),
OSSEC -

Traffic Prometheus,
iPerf, SNMP

iptables,
nftables Linux tc

Latency
SmokePing,

OWAMP,
TWAMP

- Linux tc

Device Kubelet
(Kubernetes native)

syslog,
antivirus utilities

NETCONF,
SNMP

First, the Features Acquirer parses the input specification,
determining what management features are required by
each service. The features definition is passed on to the
Tool Mapper, which determines what tools are required
so that the required features can be materialized. As
aforementioned, operators can employ varying abstraction
levels when requesting management features, specifying tools,
and even configuration parameters when necessary. In this
case, the Tool Mapper fixes the selections accordingly.

Determining the non-specified tools and configurations is
achieved by querying the Tools Catalogue, which provides the
options of management tools sets that are able to realize the
features specification. Each tool may also provide additional
information with respect to its operation (e.g., overhead,
scalability). From these tools options, the Tool Mapper selects
the appropriate set of tools considering the remaining of
the user specification and other deployment specificities. For
example, edge deployments may require minimal overhead,
and thus the tool selection must reflect that; conversely,
complex cloud deployments may prioritize more sophisticated



tools that can provide higher-level utilities, incurring in a
different tool selection.

The selected tools along with the remainder of the
specification input are passed on to the Template Mapper,
which maps the tools to instantiable templates from a
Template Catalogue. This step is necessary to provide a
deployment template based on a tool’s architecture, and that
later can be deployed on top of the user’s application. In the
sFlow example, its architecture determines that agents must
be deployed with monitored entities, and a collector must be
deployed to aggregate agents’ metrics. Each agent therefore
strongly depends on the entity it must monitor, including the
need of sharing network context with the monitored entity. The
collector, however, does not have such requirement, and thus
its deployment is much more flexible. A deployment template
is thus generated with an specification on how to deploy the
selected tools along with the user’s application, and passed on
to the Deployer.

The Deployer is responsible for piercing together
the deployment specification based on the determined
management templates and the user application. While the
previous components extract the management information
from the initial input and provide a template for deploying
the necessary tools, the Deployer composes a deployable
specification with all the containers for application and
network management. A central management container
running a customized dashboard for the user is also deployed
for the user’s convenience. Images for the required containers
are fetched from the Container Image Catalogue, and the
complete solution is then fed to a Container Orchestrator,
such as Kubernetes, and the resulting deployment (in the form
of a customized user dashboard) is returned to the user.

A. Prototype’s software choices

Microservices typically run inside lightweight containers.
Docker containers orchestrated by Kubernetes have for the
past few years emerged as the most prominent combination
for running such complex applications [15], even more so with
the discontinued support for alternatives like Docker Swarm 2,
and therefore constitute the main container platforms for our
system. The rich ecosystem and widely adoption from industry
and academia alike, on the one hand, favours the system’s
development, and on the other hand, favours its adoption by
the wide public.

In the Kubernetes architecture, containerized microservices
run in entities known as pods. Pods serve as a logical host for
containers, having them shared storage and network, and being
scheduled and deployed together. Pods primary motivation is
to support helper programs (e.g., loggers, managers) for the
primary container, thus offering a compromise between the
microservice paradigm (e.g., decoupled dependencies for each
container) and the monolithic benefits (e.g., shared context for
monitoring). When mapping our architecture templates into

2https://www.mirantis.com/blog/mirantis-acquires-docker-enterprise-
platform-business/

Kubernetes, management containers are deployed in the same
pods as the managed containers whenever network context
sharing is mandatory for the management tool to perform
appropriately.

In Kubernetes, the deployment specification is typically
realized by one or more YAML configuration files [16] that
specify how the service is composed. For each microservice
defined, operators add tags for the management features they
expect to attain. As previously discussed, operators can employ
different abstraction levels when requesting for management
features. In that way, an experienced user can go into lower-
level configuration specification for how the features should
be realized, while a novice user can be less specific and
still obtain a proper management solution. An example for
the latter is presented in Listing 1, where the deployment
specification simply determines that TCP flow monitoring
must be included for that deployment. The system interprets
the requested feature and maps the appropriate tools and
configurations to fulfil the request. In this example, the
request would be mapped to a template using sFlow [17],
even if Prometheus and other equivalent monitoring tools
could also fulfil the same feature request, depending on
the deployment requirements. The deployment produced by
SWEETEN returns a simplified user dashboard, as exemplified
in Figure 2.

a p i V e r s i o n : apps / v1
k ind : Deployment
m e t a d a t a :

management :
m o n i t o r i n g :
− f l o w s : TCP

. . .
Listing 1. Summarized example of feature request through annotations
by a novice user.

Fig. 2. User dashboard generated from the novice user’s specification.

An example for a more deterministic specification that an
experienced user could request is presented in Listing 2.
Similarly to the previous example (for the novice user),
monitoring features are requested. However, unlike the
previous example, the user is much more specific in the
requests. In this example, the monitoring tool has been
specified (i.e., Prometheus), including the need for a specific



version. The scrape interval is specified to be set at five
seconds. Finally, rather than using the default expression
browser for visualization, the user uses nesting specification
that Grafana should be used for visualization and that its
dashboard must listen in the 3030 port (instead of the default
3000). SWEETEN processes the entire user request and adjusts
the tools and templates mappings accordingly, resulting in a
more fine-tuned user dashboard, as exemplified by Figure 3.

a p i V e r s i o n : apps / v1
k ind : Deployment
m e t a d a t a :

management :
m o n i t o r i n g :
− f l o w s : TCP

t o o l : P rometheus
v e r s i o n : 2 . 1 8 . 0
s c r a p e i n t e r v a l : 5 s
d a s h b o a r d :
− t o o l : Gra fana

h t t p p o r t : 3030
. . .

Listing 2. Summarized example of feature request through annotations by an
experienced user.

Fig. 3. User dashboard generated from the experienced user’s specification.

Other solutions such as service meshes typically work
by appending a sidecar proxy to all containers of interest,
i.e., a separate container in the same pod that proxies
all connections to and from the primary container, adding
management functionalities as needed [4]. Contrarily to that,
our system only adds containers to the same pod (and
intercepts connections) when the desired management features
require so (for example, security functionalities that must
filter the incoming/outgoing packets), and as indicated by the
Management Template Catalogue. When this requirement is
not present, appended management functions can reside in the
same pod but not proxying the main container connections,
or even reside in a separate pod altogether. An example of
the former would be for some passive monitoring functions,
with the benefit of lessening the communication overhead from

keeping the hop count as low as possible. An example of the
latter would be for some active monitoring functions, such as
determining the latency between containers located in separate
nodes in a cluster, and that thus can be monitored by having
the management pods be placed on the same nodes while
keeping their context completely independent from the primary
container.

Our prototype was implemented using Python v2.7.17 for
the main components in the architecture. Each component
(i.e., Features Acquirer, Tool Mapper, Template Mapper,
Deployer) was developed as an independent module, and
Kubernetes v1.18.5 was used without modifications as the
Container Orchestrator. Some minor functions (e.g., getting
nodes information for a Kubernetes cluster) were implemented
through shell scripts. Python library PyYAML v5.3.1 3 was
used to read the user input specification, which is then
parsed by the Features Acquirer module, and to later write
the solution specification that is deployed with Kubernetes.
The Tools Catalogue and the Template Catalogue are both
materialized through YAML configuration files. That is so
because, on the one hand, the format’s readability facilitates
the inclusion of new items by experts, and on the other hand,
it simplifies the generation of a deployable specification from
the templates, since the language is used by the deployment
specification itself. Publicly available dockerhub repository 4

was used as the Container Image Catalogue, and Grafana
v7.1 5 is used to produce the customized users dashboard for
monitoring functions.

IV. CASE STUDY: 5G RADIO SPLIT

Traditionally, network mobile services have been provided
by a mobile network operator (MNO). Recently, mobile virtual
network operators (MVNOs) have emerged as an alternative
for customers. The new providers do not own the physical
wireless infrastructure, and must thus lease it from traditional
MNOs. Mobile services in turn can be delivered through
cloud computing. The various strategies adopted by MNOs
can benefit customers and the provider alike [18].

In this case study, an MVNO must allocate a number
of virtualized Base Stations (BSs) over a region. Being a
dynamic C-RAN adopter, the provider makes use of Remote
Radio Heads (RRHs) that have their signals processed by
Base-Band Units (BBUs). Each BBU is comprised of five
forwarding elements: I/Q, Subframe, RX Data, Soft-bit,
and MAC [8]. These elements have stringent requirements
regarding bandwidth between the elements and end-to-end
latency, as shown in Figure 4. In particular, delay requirements
limit the maximum distance between an RRH and its BBU, in
a relationship that depends on the channel condition and the
processing power available [19]. To assert its compliance to the
service terms, the provider must properly monitor each BBU
closely in order to avoid any violation, with the monitoring
overhead itself being kept at minimal levels.

3https://pyyaml.org/
4https://hub.docker.com/
5https://grafana.com/



UE

RRH

I/Q

Subframe

RX Data

Soft-bit

MAC

Signal

ACK/NACK

720
Mbps

72
Mbps

36
Mbps

11
Mbps

RTT Delay (3ms maximum)

Fig. 4. Communication flow and bandwidth requirements for radio functions.

The provider must instantiate 15 BSs for a region. To
do so, the BBU functions must be allocated along with a
central cloud, a regional cloud, and a fog. To maximize
the computational resources used both in clouds and in the
fog, and to minimize the front-haul data rate, the placement
algorithm prioritizes running all BBUs’ I/Q and Subframe
functions as near to the fog as possible, since both functions
are responsible for the majority of the front-haul data rate.
The remainder of the BBU functions should be placed on the
regional and the central clouds, prioritizing the latter due to
its increased computational capacity, whenever latency permits
it. Additional functions (such as management entities) should
run on the central cloud whenever possible, as to not overload
the fog and the regional cloud unnecessarily. The resulting
placement for the elements of the 15 BSs is shown in Table II.

TABLE II
RESULTING DISTRIBUTION OF BSS FUNCTIONS.

I/Q Subframe RX Data Soft-bit MAC
Fog 5 5 5 0 0

Regional
Cloud 5 5 5 5 0

Central
Cloud 5 5 5 10 15

Being the owner of the BS application, the service provider
is capable of managing and monitoring each container
appropriately. However, the network monitoring is less trivial
and it depends on external factors, and due to the stringent
requirements, it needs to be properly done. The provider uses
our system by tagging the required management features (i.e.,
the latency and traffic monitoring for all containers) in the
deployment specification for the BSs, and SWEETEN deploys
the complete solution which includes the tools to realize the
required management.

V. EXPERIMENT AND DISCUSSION OF RESULTS

We assert SWEETEN qualities through the proposed use
case in two aspects: the management benefits offered and the

overhead introduced. It is noteworthy that 5G applications
can require diverse management features, and thus results for
different use cases can incur varied benefits and overhead.
For example, an e-health application can pose stringent
requirements regarding availability and mobility [20], and
therefore must be reflected on the network management
solutions selected and configured by SWEETEN.

Our first analysis regards the expressiveness gains for the
operator. Because Kubernetes does not intend to interpret
high-level feature requests, our system naturally outperforms
what would be required from the operator manually. In
this case study, it takes the operator only four lines of
high-level feature specification to trigger the deployment of
four additional management containers (plus two for each
subsequent microservice), as defined by their deployment
templates. If the operator were to do it manually, the
operator would have to input an additional 157 new lines
of specification for the first BS, plus 100 reoccurring lines
for each subsequent BS. Even if Kubernetes specification
is not designed for this purpose, it would be the available
alternative prior to our system. Being able to do more with
less is a recurrent concern for operators [21]. Most important,
the labour of including these specification lines pales in
comparison to the one of determining what should be in the
lines in the first place. Realistically, hours of work would be
spent in finding the correct tools for the job, and properly
configuring them manually for the deployment at hand.

Our second analysis regards the deployment overhead in
utilizing our solution. To do so, we evaluate the time it takes to
deploy the 15 BSs in their initial minimalist state (i.e., with no
added management features), and with the complete solution
produced by our system. In each case, experiments were run
30 times. The results are presented in Figure 5.

0

250

500

750

1 5 10 15
Number of BSs Deployed

D
e

pl
oy

m
e

nt
 T

im
e

 (
in

 s
e

co
n

ds
)

Deployment Features

Minimalist
Complete

Fig. 5. Time taken to deploy up to 15 BSs, with and without using our
system.

On average, the complete deployment took 59.6% more
(about 145 seconds) than the minimalist deployment. The



evolution of the experiment shows a similar linear pattern
for both cases in the earlier stages (i.e., less than 10 BSs).
The latter stages shows a disproportional increase in the
complete solution in comparison to the minimalist approach.
The large number of pods and containers take their toll
in the container orchestrator, highlighting the importance of
considering the deployments specificities when determining
the correct management solutions. Moreover, virtually all of
the overhead was due to the additional containers Kubernetes
had to deploy and launch, meaning users would still incur in
comparable costs if they were to produce a similar solution by
other methods. Finally, this cost is regarding the deployment
of all BSs from scratch, and therefore not a recurring cost.

Next, our third analysis focuses on the computational
overhead for the remainder of the deployment life-cycle. To
assess the CPU usage by management entities included in our
deployment, we evaluate the impact of scaling from one to
four BSs in a single VM. In this analysis, having all the
containers run in a single VM offers a fair comparison for
the overhead introduced by each management entity in the
architecture. The results presented in Figure 6 show how the
management entities consume negligible processing for the
most part. The collector consumes approximately the same
CPU as all the agents combined, but still sits at just over 3.5%
for four concurrent BSs. Moreover, since the collector has no
strict placement constraints (it only requires to be reachable by
the agents), it can be placed in the more resourceful nodes in
a deployment with little impact on deployment performance.
Between the two types of monitoring agents, it is possible
to note that traffic monitoring consumes significantly more
CPU than latency monitoring. Still, the sum of all agents
for each BS comes at approximately 1% CPU usage, thus
the overhead is largely negligible for distributed deployments
along the cluster.

The results for memory usage and network overhead follow
closely. An average RAM usage of 1.54GB for running
the user dashboard and metrics collector, plus 7.38MB per
microservice managed (totalling 36.94MB per BS). The
dashboard and collector increased cost are justifiable because
they are a unique cost for the entire deployment, and its
independence means it can be deployed in the (resourceful)
central cloud. In turn, the computational overhead per BS
due to management agents is mostly negligible, which not
only is imperative due to the stringent requirements of the BS
functions but also highlights the scalability of the solution.
Regarding the network aspect, management agents introduce
an overhead of around 5KB/s for incoming and outgoing traffic
per BS. Around 30% of the overhead is due to the latency
monitoring probes required for the active measurements. The
remainder is mostly due to the periodic reports from agents
to the collector. An advanced user could fine-tune parameters
to their needs when requesting the features. For example,
by increasing reports’ scrape time, it is possible to further
minimize the communication overhead or decreasing it could
allow one to monitor sub-second variations closely.

Fig. 6. CPU usage (in percent) for management containers for up to four
concurrent (same VM) base stations.

Finally, our fourth analysis showcase the monitoring results
that would assist the operator in detecting network issues when
they occur. Figure 7 shows an excerpt for the customized
dashboard that the user receives after a complete deployment.
For simplicity, the monitoring for a single BS is presented.
The dashboard consolidates requested monitoring metrics in
a dynamic interface that allows the user easy access to the
relevant metrics. As explained previously, the user can be
more specific in their requests in order to obtain a solution
more fine-tuned to their needs. For presentation purposes, the
monitoring graphs for the results discussed in the following
were re-plotted for specific BSs. Figure 8 exemplifies the result
for latency monitoring, while Figure 9 does the same for the
traffic monitoring.

The latency result in Figure 8 shows the monitoring for two
BSs prior and after additional BSs are deployed. The first BS
(in green) is deployed over fog (I/Q, Subframe, and RX Data)
and regional cloud (Softbit and MAC), while the second BS
(in blue) is fully deployed in the central cloud. Prior to the
deployment of additional BSs (marked by the vertical line), no
latency violations (marked by the horizontal line) are detected
for any of the BS. After the deployment of two new BSs
(over the three clusters), instability incurs in several violations
(four in the figure) for the first BS, while none are for the
second BS. The monitoring result alerts the operator that the
new deployments are negatively impacting the first BS, and
corrective actions must be taken.

Figure 9 shows the result for the traffic monitoring for a
BS I/Q data rate in two moments, for a total period of 300
seconds. In a first moment, three other BSs are deployed, and
the monitoring results indicate that achieved data rates are
in accordance with the function’s requirements. In a second
moment (by the 160 seconds mark), eight new BSs are
deployed over the same regions as the monitored BS (vertical
dashed line in the graph). The monitoring shows how the I/Q



Fig. 7. Excerpt from user dashboard enabling the requested monitoring
features.

Fig. 8. Latency monitoring result for two BSs’ RX to Softbit communication
over a 30-second window.

throughput for the BS declines as a result. In this case, the
operator can pinpoint the BS malfunctioning to the bottleneck
created by the additional BSs deployed, and that pushed the
infrastructure beyond its limits.

VI. CONCLUSIONS AND FUTURE WORK

NFV plays a major role in new networks such as 5G,
and thus it is imperative that they are properly managed.
The diverse requirements that VNFs can present, their
redesign following microservice paradigm, and the different
scenarios that must be contemplated, makes choosing and
configuring the right management tools appropriately a

300

400

500

600

700

0 100 200
Time (in seconds)

D
a

ta
 r

at
e 

m
on

ito
ri

n
g 

fo
r 

a
 B

S
 I

/Q
 (

in
 M

b
ps

)

New BSs deployed

Fig. 9. Data rate result for monitoring a BS’s IQ prior and after new BSs
deployment.

non-trivial task to their users. We propose SWEETEN, a
system designed to assist microservices-based VNFs users in
including network management features to their deployments.
Users augment their deployment specification with high-level
annotations, which SWEETEN architecture maps into tools
and configurations that complies to deployments specificities,
producing a deployable specification that materializes the
user’s management needs.

We evaluate SWEETEN with a prototype in a dynamic
C-RAN case study. Primarily, the results show that effort
from the operator to configure and deploy management tools
appropriately is greatly reduced. Our results also indicate that
non-negligible overhead is added to the deployment time of the
complete solution, but since new deployments are infrequent
the added overhead is considered acceptable. Additionally,
negligible computational overhead is added throughout the
remainder of the services life-cycle, which is imperative due
to the stringent requirements of the functions deployed. The
management features added are shown to assist the operator
in monitoring the correct functioning of their deployments.

As future work, we intend to continue developing the system
with the support for new network management features and
the development of the accompanying templates. Due to the
diversity of management features and tools, and the ubiquity
of Kubernetes in different environments, covering distinct use
cases (e.g., IoT devices and edge deployments) can enrich the
system and its usefulness to a wider audience.

ACKNOWLEDGMENT

This study was partially funded by CAPES - Finance
Code 001. We also thank the funding of CNPq, Research
Productivity Scholarship grants ref. 313893/2018-7 and
312392/2017-6. This research was also partially funded
by project ref. 423275/2016-0 from CNPq entitled ”NFV-
MENTOR (NFV ManageENT & ORchestration).”



REFERENCES

[1] S. Marinova, T. Lin, H. Bannazadeh, and A. Leon-Garcia, “End-to-end
network slicing for future wireless in multi-region cloud platforms,”
Computer Networks, vol. 177, p. 107298, 2020.

[2] R. de Jesus Martins, R. B. Hecht, E. R. Machado, J. C. Nobre,
J. A. Wickboldt, and L. Z. Granville, “Micro-service Based Network
Management for Distributed Applications,” in 34th International
Conference on Advanced Information Networking and Applications
(AINA). Springer, 2020, pp. 922–933.

[3] Prometheus Authors, “Prometheus-monitoring system & time series
database,” 2017. [Online]. Available: https://prometheus.io/

[4] W. Li, Y. Lemieux, J. Gao, Z. Zhao, and Y. Han, “Service Mesh:
Challenges, State of the Art, and Future Research Opportunities,” in 13th
IEEE International Conference on Service-Oriented System Engineering
(SOSE). IEEE, 2019, pp. 122–127.

[5] ETSI, NFVISG, “GS NFV-MAN 001 v1.1.1 Network Function
Virtualisation (NFV); Management and Orchestration,” 2014. [Online].
Available: https://www.etsi.org/deliver/etsi gs/NFV-MAN/001 099/001/
01.01.01 60/gs NFV-MAN001v010101p.pdf

[6] S. R. Chowdhury, M. A. Salahuddin, N. Limam, and R. Boutaba, “Re-
Architecting NFV Ecosystem with Microservices: State of the Art and
Research Challenges,” IEEE Network, vol. 33, no. 3, pp. 168–176, 2019.

[7] N. Slamnik-Kriještorac, H. Kremo, M. Ruffini, and J. M. Marquez-
Barja, “Sharing Distributed and Heterogeneous Resources toward End-
to-End 5G networks: A Comprehensive Survey and a Taxonomy,” IEEE
Communications Surveys & Tutorials, vol. 22, no. 3, pp. 1592–1628,
2020.

[8] D. Wubben, P. Rost, J. S. Bartelt, M. Lalam, V. Savin, M. Gorgoglione,
A. Dekorsy, and G. Fettweis, “Benefits and Impact of Cloud Computing
on 5G Signal Processing: Flexible centralization through cloud-RAN,”
IEEE Signal Processing Magazine, vol. 31, no. 6, pp. 35–44, 2014.

[9] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi,
R. Mustafin, and L. Safina, “Microservices: Yesterday, Today, and
Tomorrow,” in Present and ulterior software engineering. Springer,
2017, pp. 195–216.

[20] J. Lloret, L. Parra, M. Taha, and J. Tomás, “An architecture and
protocol for smart continuous eHealth monitoring using 5G,” Computer
Networks, vol. 129, pp. 340–351, 2017.

[10] R. de Jesus Martins, C. B. Both, J. A. Wickboldt, and L. Z. Granville,
“Virtual Network Functions Migration Cost: from Identification to
Prediction,” Computer Networks, vol. 181, p. 107429, 2020.

[11] D. Bernstein, “Containers and Cloud: From LXC to Docker to
Kubernetes,” IEEE Cloud Computing, vol. 1, no. 3, pp. 81–84, 2014.

[12] A. Ciuffoletti, “Automated deployment of a microservice-based
monitoring infrastructure,” Procedia Computer Science, vol. 68, pp.
163–172, 2015.

[13] D. Jaramillo, D. V. Nguyen, and R. Smart, “Leveraging microservices
architecture by using Docker technology,” in SoutheastCon 2016. IEEE,
2016, pp. 1–5.

[14] M. F. Franco, B. Rodrigues, and B. Stiller, “MENTOR: The Design
and Evaluation of a Protection Services Recommender System,” in 15th
International Conference on Network and Service Management (CNSM).
IEEE, 2019, pp. 1–7.

[15] I. M. A. Jawarneh, P. Bellavista, F. Bosi, L. Foschini, G. Martuscelli,
R. Montanari, and A. Palopoli, “Container Orchestration Engines: A
Thorough Functional and Performance Comparison,” in 53rd IEEE
International Conference on Communications (ICC). IEEE, 2019, pp.
1–6.

[16] O. Ben-Kiki, C. Evans, and B. Ingerson, “YAML Ain’t Markup
Language (YAML™) Version 1.1,” Working Draft, vol. 11, 2009.
[Online]. Available: https://yaml.org/spec/1.1/index.html

[17] P. Phaal, S. Panchen, and N. McKee, “RFC 3176 - InMon Corporation’s
sFlow: A Method for Monitoring Traffic in Switched and Routed
Networks,” 2001.

[18] N. Kamiyama and A. Nakao, “Analyzing Dynamics of MVNO Market
Using Evolutionary Game,” in 15th International Conference on
Network and Service Management (CNSM). IEEE, 2019, pp. 1–6.

[19] M. A. Marotta, H. Ahmadi, J. Rochol, L. DaSilva, and C. B.
Both, “Characterizing the Relation Between Processing Power and
Distance Between BBU and RRH in a Cloud RAN,” IEEE Wireless
Communications Letters, vol. 7, no. 3, pp. 472–475, 2018.

[21] A. Curtis-Black, A. Willig, and M. Galster, “Scout: A Framework for
Querying Networks,” in 15th International Conference on Network and
Service Management (CNSM). IEEE, 2019, pp. 1–7.


