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Abstract—Network function virtualization (NFV) is a key
technology of the 5G network era. NFV decouples a network
function from proprietary hardware so that the network function
can operate on commercial off-the-shelf (COTS) servers as
a form of virtual network functions (VNFs). Owing to the
advantage of NFV, network functions can be applied dynam-
ically to the networks. However, NFV complicates network
management because this technology creates numerous virtual
resources that should be managed. To solve the problem of
complicated network management, studies on applying artificial
intelligence (AI) to the NFV-enabled networks, i.e., VNF life
cycle management, have attracted attention. In particular, auto-
scaling, which is one of the essential functions of VNF life cycle
management, adds or removes VNF instances to meet service
requirements. It is a challenging task to determine the optimal
number of VNF instances in dynamic networks, satisfying service
requirements. In this paper, we propose a novel auto-scaling
method using reinforcement learning (RL) for scale-in/out of
multi-tier VNF instances, i.e., service function chaining (SFC) in
NFV environments. The proposed approach defines RL’s states
using a status of SFC composed of multi-tier VNF instances and
uses service level objectives (SLO) to make a reward model. We
validate the proposed approach in an OpenStack environment,
and it shows that our proposed auto-scaling method provides the
optimal number of VNF instances in each tier while minimizing
SLO violation.

Index Terms—Network Function Virtualization (NFV), Auto-
Scaling, Reinforcement Learning (RL), Scale in/out, Artificial
Intelligence (AI)

I. INTRODUCTION

With the advent of the 5G network era, it is required to
flexibly build and manage networks to meet rapidly changing
service requirements. To this end, network function virtual-
ization (NFV) and software-defined networking (SDN) have
emerged as key technologies to enable service providers to
provision new services dynamically. NFV decouples a net-
work function from proprietary hardware so that the technol-
ogy provides network functions as software, which are virtual
network functions (VNFs). When networks require network
functions, VNFs can be instantiated on commercial off-the-
shelf (COTS) servers because VNFs operate on virtual ma-
chines (VMs) or containers hosted on the servers. Therefore,
NFV can reduce OPEX and CAPEX for network management.
However, despite the advantage of the NFV, there are still

challenges to apply NFV to the networks. For instance, NFV
complicates network management because it creates numerous
virtual networks and functions, which should be managed
by operators. It is hard for human operators to manage the
networks manually because the on-demand virtual resources
can be created dynamically. Accordingly, studies on applying
artificial intelligence (AI) to complicated network manage-
ment have attracted attention.

Due to the development of AI technology, various AI
algorithms have been applied to network management. For
example, machine learning algorithms are used for traffic
classification, anomaly detection, intrusion detection, and so
on [1]. Although the studies propose a direction on how to
manage complicated networks using AI, there still have been
issues. One of the critical issues is that machine learning
approaches must have big data for training. In other words,
it should store huge data volume for the training, and the
data should be pre-processed, i.e., labeling, used for ma-
chine learning. Besides, it is a challenge to prepare network
data representing dynamic conditions. Reinforcement learning
(RL) can be used for network management to overcome the
problem.

RL is well-suited to the dynamic networks because it does
not require a priori knowledge or data. In particular, RL can be
applied to the VNF life cycle management required in NFV-
enabled networks. The VNF life cycle management provides
functions such as VNF deployment, service function chaining
(SFC), anomaly detection, and auto-scaling to operate VNF
instances well. Among those functions, auto-scaling is an
essential function to provide the ability and knowledge to
add/remove the required amount of resources in response to
changes in demand. In other words, determining the optimal
number of VNF instances, which can run in VMs or contain-
ers, is defined as scale-in/out of auto-scaling.

Traditional methods use threshold-based auto-scaling,
which adds or removes VNF instances in case of service level
objectives (SLO) violation. However, it is difficult to deter-
mine the threshold value by a human because this value can be
significantly affected by various conditions such as available
resources in the networks and network status. Besides, many
services in NFV-enabled networks are provided through SFC,
in which VNF instances are distributed to multi-tier. Hence,
when auto-scaling is required, it is required to consider not978-3-903176-31-7 ©2020 IFIP



only the total number of VNF instances in SFC but also the
optimal number of VNF instances in each tier. Therefore, RL
can be used for the auto-scaling to provide the optimal number
of VNF instances while minimizing the SLO violation.

In this paper, we propose an RL-based, deep Q-networks
(DQN), auto-scaling method to determine the optimal number
of VNF instances, and the approach is validated in an Open-
Stack environment. The proposed way defines the auto-scaling
model, which includes states, actions, and rewards to set an
optimal auto-scaling policy. According to our evaluation, the
proposed auto-scaling method not only provides the optimal
number of VNF instances but also minimizes SLO violation.
Our contributions can be described as follows.
• Deep Q-networks (DQN) model for auto-scaling:

Defining each state, action, and reward for auto-scaling.
We propose a DQN-based auto-scaling method, consid-
ering which tier is scaled and which node is used for
scaling.

• Reward model for auto-scaling: Reward definition to
deal with the number of running VNF instances in SFC
and SLO violation. Our proposed reward model considers
not only the number of VNF instances but also the SLO
in terms of response time.

• Development of an auto-scaling module as open-
source: open-source module interacting with an Open-
Stack environment. We develop an auto-scaling module
by considering ETSI standard MANO architecture [2]
and publish the source on a GitHub page [3].

The remainder of this paper is structured as follows. In
Section II, we describe previous studies that have been con-
ducted to apply machine learning and RL to auto-scaling.
We give a detailed description of the proposed method in
Section III, covering deep Q-network (DQN), and reward
models for finding an optimal auto-scaling policy. Based
on this, we highlight the characteristics of the auto-scaling
module implementation in Section IV. In Section V, we
evaluate our proposed method in terms of SLO violation.
Finally, we summarize the paper and discuss possible future
work in Section VI.

II. RELATED WORK

In dynamic networks, it is an essential requirement to
provide various services while meeting SLO. Many studies
have been conducted to deploy VNF instances for meeting
the service requirement. In particular, deciding the optimal
number of VNF instances is related to both VNF deployment
and auto-scaling. To make clear the difference between those
functions, we define that VNF deployment determines the
initial number of VNF instances or selects optimal nodes to
deploy VNF instances.

To address the VNF deployment problem, the authors of
[4], [5] use integer linear programming (ILP). The ILP-based
solutions generate ground-truth labels for temporally dynamic
request traces and use them to train supervised learners that
can predict VNF deployment decisions. The decisions can

be increasing, decreasing, or maintaining VNF instances.
However, the studies have not dealt with VNF placement.
To handle the placement of VNF deployment, the authors of
[6] use machine learning with graph neural network (GNN)
[7]. The study conducts training labeling data generated by
ILP and predicts the processing time of different VNF types.
According to the study, machine learning approaches can be
used to decide the optimal number of VNF instances and VNF
placement. Besides, various studies have been conducted to
deploy VNF instances by considering the resource capacities
of physical servers and traffic rates [8]–[10].

Auto-scaling is a function to re-allocate resources such as
CPU, memory, and disk to VNF instances (scale-up/down)
or resize the number of VNF instances (scale-in/out) while
VNFs are running. It is hard to determine how much resources
or instances are needed to meet each service requirement.
Therefore, the authors of [11] propose an application-agnostic
auto-scaler that requires minimal application knowledge and
manual tuning. They use neural networks to build a perfor-
mance model of application and leverage a linear regression
algorithm to predict a post-scaling state. Further, there have
been studies that propose a performance model to predict
resource usages for auto-scaling [12]–[14]. Besides, it is also
hard to decide manually when auto-scaling should trigger. To
solve the problem, the authors of [15] propose a fully auto-
mated workflow for resource allocation of the VNF instance.
The study provides a Q-learning based auto-scaling method.
Q-learning is one of the RL algorithms, and many recent
studies have used various RL algorithms for auto-scaling in
NFV environments.

In NFV environments, services are provided through SFC
composed of multi-tier VNF instances. Because SFC consists
of various VNF types an auto-scaling method applied to NFV
environments should consider the number of VNF instances in
each tier. To deal with the problem, the authors of [16] propose
a way of predictive auto-scaling of multi-tier applications. The
proposed approach uses supervised learning to identify the
appropriate resource provisioning for multi-tier applications
based on the prediction of the application response time and
the request arrival rate. Further, the authors of [17] propose
a vertical auto-scaling method, i.e., scale-up/down to meet
the service requirement for multi-tier web applications. The
approach uses Q-learning for adaptive resource allocation such
as CPU and memory. Q-learning is a simple and effective
algorithm to solve a Markov decision process (MDP) problem.
However, Q-learning defines states and actions by tabular
representation, so the table size increases extremely when
the MDP problem, auto-scaling in this paper, is complex.
To solve this problem, the authors of [18] propose an auto-
scaling method using deep RL. Because deep RL leverages
neural networks to take any number of possible states instead
of tables, it can be used to address a complex auto-scaling
problem.

With the attraction of NFV, many NFV frameworks have
been proposed [19]–[24]. However, those studies lack pro-



viding an auto-scaling function using AI. Besides, most
commercial cloud providers offer only reactive auto-scaling
methods based on a threshold, which are required manual
tuning by operators [25]. This reactive auto-scaling checks
SLA violation by comparing a pre-defined threshold value to
measured performance metrics and triggers scaling in case
of SLA violation. Owing to the simplicity of threshold-based
auto-scaling, this approach has become popular. However, it
is difficult to define an appropriate threshold for auto-scaling
in complicated NFV environments. Therefore, it is required
to not only develop an AI-based auto-scaling method but
also implement an NFV framework regarding the European
telecommunications standards institute (ETSI) NFV architec-
ture to support the method.

While the above studies have effectively suggested a direc-
tion on how to apply AI algorithms to the resource allocation
to VNF instances in NFV environments, most of the studies
validate their approaches by simulations. Besides, they have
not deeply dealt with how to define the reward of RL. Because
a reward model of RL significantly affects the performance,
it should be considered in more detail. Further, there is still a
lack of AI-enabled framework compliant with ETSI standards.
Therefore, future auto-scaling studies with RL should consider
not only the issue of allocating resources to VNF instances
but also the implementation in a form referring to the ETSI
NFV reference architectural framework.

III. PROPOSED APPROACH

In NFV environments, various services are provided
through service function chaining (SFC) composed of multiple
VNFs. SFC consists of multi tiers, and different type’s VNF
instances can be placed in each tier. For example, SFC
composed of 2-tier can have a firewall in the first tier, and an
IDS in the second tier. Besides, each tier can have multiple
VNF instances. When traffic passes an SFC path, a load-
balancer in each tier distributes the traffic to VNF instances
as shown in Fig 1. In this multi-tier scenario, it is required
to apply auto-scaling to an SFC while considering each tier’s
status because if one of the tiers occurs a bottleneck, SLO such
as throughput and response time can be violated. Therefore,
we propose a deep Q-networks (DQN)-based auto-scaling
approach and a method selecting a tier to be scaled.

A. Deep Q-networks (DQN) Model for auto-scaling

A goal of our proposed approach, an RL-based auto-scaling
method, is to automate making a scaling decision. Thus, an
auto-scaling problem should be an RL model that consists
of state, action, and reward to be solved by the proposed
method. However, it is a challenge defining the RL model
because numerous conditions that complicate the model can
be candidates. For instance, dynamic network metrics and
low-level data about VNF instances such as CPU usage and
memory usage can be used. Besides, if various conditions
are used, the number of states extremely increases, and it
complicates an RL problem. To define and solve the RL-based
auto-scaling problem effectively, we use deep Q-networks

(DQN) with a target network and replay memory proposed
in [26].

Fig. 1. Multi-tier architecture VNFs in SFC

DQN used in this paper is one of the popular deep RL
algorithms, which consists of RL agent, replay memory, and
an environment as shown in Fig 2. An RL agent is responsible
for finding an optimal policy to solve an RL problem. A policy
of an RL problem determines an action to be performed in
each state. In other words, an RL agent of auto-scaling should
determine an optimal scaling action from a given state. An
agent interacts with NFV environments, in which physical
nodes and VNF instances are running. When an RL agent
chooses an auto-scaling action, it adds, removes, or maintains
VNF instances in the environments and gets a new state and
reward.

Fig. 2. Overall Deep Q-networks architecture for auto-scaling

Whenever an agent carries out a scaling action, this agent
stores a transition that is a tuple composed of a current state,
an action performed in the current state, reward of the action,
a new state, and a mask into a replay memory. The mask is a
value to check whether scaling successes or not. In general,
training data for RL is collected sequentially over time from an
environment, so this sequential data has a high correlation. If
an agent learns this data sequentially, training will be unstable
due to the high correlation of input data. To solve this problem,
an agent uses transitions stored in the memory by mini-batch
sampling. This approach prevents the correlation of data sets
and enables the DQN model to learn well.



DQN uses Q-values to present an optimal policy for given
states. Each action has a Q-value, and an agent chooses an
action, which has the maximum Q-value in a given state. Thus,
an agent should store Q-values and update them to be used
as an optimal policy. In general, Q-values can be stored in
a Q-table as a tabular representation. However, this table is
inadequate for auto-scaling applying to an SFC. In particular,
a tabular representation cannot be used to define many states
because the table size infinitely increases in a complex auto-
scaling problem.

Li(θi) = E(s,a,r,s′)[(r + γmaxQ(s′, a′; θ−i )−Q(s, a; θi)
2] (1)

Accordingly, DQN uses neural networks as a function
applicator instead of the tabular representation. Besides, we
use a target Q-network proposed in [26] for stable DQN
training. DQN learns input data, E(s, a, r, s′) from a replay
memory and sets network parameters of neural networks using
a back-propagation algorithm to minimize a loss function
shown in an equation 1. Q-value at iteration i is updated by the
formula, in which γ is a discount factor, θi are the parameters
of the Q-network at iteration i and θ−i are network parameters
used to compute the target value.

Fig. 3. Deep Q-networks model for auto-scaling

In our proposed approach, we define a state of an auto-
scaling problem using each tier’s status and input the state
to DQN as shown in Fig. 3. The proposed DQN model has
two hidden layers and uses ReLU (Rectified Linear Unit) as
an activation function. A tier’s status consists of 5 elements,
which are the utilization of CPU and memory, the number of
disk operations, size, and distribution value. Among them, the
size is the number of VNF instances placed in the tier, and
the distribution value presents how many nodes host the VNFs
in the tier out of the total nodes. CPU utilization affects the
response time of SFC because a VNF instance consumes CPU
resources to process packets. Although memory utilization
does not smoothly effect on packet processing, high memory
utilization increases packet processing time as well because
it occurs swapping activity [17]. During the activity, OS tries
to free memory by saving pages to a disk. Since the speed of
the disk operation is slower than memory it negatively affects
the response time of SFC. Therefore, the number of disk

operations is also used to define a state of an auto-scaling
problem. When DQN gets the state, this network outputs
one of the auto-scaling actions, i.e., adding, removing, or
maintaining. Besides, the proposed approach chooses one of
the tiers to apply the selected action.

B. Reward model for auto-scaling

In general, if many VNF instances are running and process-
ing traffic by load-balancing, it helps to meet SLO. However, it
can be an over-provisioning problem that consumes resources
inefficiently in NFV environments. Therefore, the proposed
auto-scaling method not only minimizes the SLO violation
rate but also allocates the right amount of resources to operate
an SFC. In this paper, we use mean response time as the SLO.
Although the same number of VNF instances is in a tier, the
SLO measured in the tier can be different because of VNF
placement. For example, each tier’s VNF instances distributed
in many nodes can make the response time measured through
the SFC is highly variable due to different packet forwarding
paths. Therefore, it is necessary to consider placing the VNF
instances of the same tier in SFC on nodes, which are close
to each other. In other words, if VNF instances in SFC
are placed regarding VNF placement, it can guarantee SLO
effectively than that many instances are highly distributed
in an environment. Accordingly, we use node utilization and
density of VNF instances to define a reward model as shown in
equation 2. The proposed reward model is helpful to not only
maintain the appropriate number of VNF instances in SFC but
also use a small number of nodes hosting those instances.

NodeUtil. =
Nodeused

Nodetotal
, Dens.V NF =

n∏
i=1

V NFnodei

V NFtotal
(2)

(Note that nodei is a node hosting at least one VNF instance)

Node utilization (NodeUtil.) shows how many nodes host
VNF instances of an SFC, and it is calculated as the number
of nodes hosting the VNF instance (Nodeused) out of the
total number of available nodes (Nodetotal). The density value
(Dens.V NF ) shows how much VNF instances in SFC are
dense in the environment. For example, this value increases
when many VNF instances are running on a small number of
nodes. To obtain the density of VNF instances, we first calcu-
late values that the number of VNF instances running in each
node (V NFnodei ) out of the total number of VNF instances
in SFC (V NFtotal). In this calculation, nodes hosting at least
one VNF instance are used only. Finally, we multiply every
value to obtain the density of VNF instances of SFC.

With node utilization and the density of VNF instances,
we also use a response time measured through an SFC path
(resTime) to calculate a reward value. However, measured
response time can have a large deviation so negatively affect
the convergence of the auto-scaling model. Therefore, we use
a ratio of measured response time to pre-defined SLO. As a
result, the reward model is defined as shown in equation 3.



Reward = −resT ime
SLO

+ αDens.V NF × e−βNodeUtil. (3)

In the reward model, a reward is obtained by the sum of the
pre-processed response time and the value of an exponential
function, e−x(x > 0). α and β are weights to adjust the value.
Owing to the exponential function tuned by node utilization
and the density of VNF instances in SFC, a reward value
increases when only a few nodes host VNF instances to
operate an SFC, or those instances are placed concentrated
on a small number of nodes. In other words, the proposed
reward model considers not only how many nodes and VNF
instances are used to operate SFC but also performance in
terms of response time measured through SFC.

C. Auto-scaling for service function chaining

When DQN makes an auto-scaling decision, an agent
should choose one of the tiers to apply the decision, adding or
removing instances. A simple way to select a tier to be scaled
is to regard the resource utilization of each tier. However, it
is hard to choose which tier should be scaled in/out when
the utilization of each tier is slightly different. Therefore, we
define equation 4 selecting a tier to be scaled.

score = mask × f(Tieri) (4)

According to the equation, an agent calculates a score per
each tier and selects a tier with the highest score. This equation
consists of a mask variable and a score function. The mask
variable presents whether a scaling action can be applied to
an environment. For example, the mask is 0 when there are no
available resources for scale-out or not enough VNF instances
running in the tier for scale-in, so it makes the score as 0.
Otherwise, the value is 1 and enables the formula to calculate
score per tier.

resUtil = αCPUUtil. + βMEMUtil. (5)

The score is calculated by each tier’s status, which includes
an average resource utilization (resUtil) and a distribution
value of the tier. Equation 5 uses the utilization of both CPU
and memory to calculate a score because they affect packet
processing of VNF. In the formula, α and β are weights to
adjust each resource utilization.

f(Tieri) =

{
Nodetier
Nodeused

× e−resUtil, if scale-in
Nodeused

Nodetier
× eresUtil , else if scale-out

(6)

The distribution value of a tier is defined by how many
nodes host the tier’s VNF instances (Nodetier) among all
nodes hosting the SFC’s VNF instances (Nodeused). A score
function in equation 6 calculates each tier’s score. For the
calculation, this equation uses not only the distribution value
of a tier but also an exponential function tuned by a resource

utilization. In the case of scale-out, the score function pro-
duces a high score when a tier consumes the large amount of
resources, or this tier’s VNF instances are running on a few
nodes, which are close to each other. On the other hand, in
the case of scale-in, this function provides a high score if the
resource utilization of a tier is small, or VNF instances of the
tier are highly distributed.

IV. IMPLEMENTATION

In this paper, we implement an auto-scaling module to
provide auto-scaling functions using DQN and threshold.
The implemented module runs in an OpenStack environment
and interacts with other components such as a monitoring
module and NFV orchestrator (NFVO) to add or remove
VNF instances as shown in Fig 4. Besides, we develop shell
programs to test the proposed auto-scaling mechanism in the
environment. We publish all of the implemented sources and
detailed documents on a GitHub page [3].

Fig. 4. Implementation of auto-scaling module

An auto-scaling module is responsible for adding or remov-
ing VNF instances in an SFC of the OpenStack environment.
The proposed module needs to get information about resource
utilization and VNF placement to define an auto-scaling prob-
lem. Thus, we implement a monitoring module that collects
various data from the environment, physical nodes and VNF
instances. In addition to the traditional purpose of monitoring
systems, which is to monitor the status of the system and
ensure that the system is working well, the purpose of a
monitoring module is to provide state data which are used
for running RL algorithms, DQN in this paper. A monitoring
module continuously collects the data and stores it in a time-
series database, InfluxDB.

To handle the VNF life cycle in an OpenStack environment,
we implement an NFV Orchestrator (NFVO) module. An
NFVO module provides REST APIs to create, update, and
remove VNF instances. Besides, this module can set SFC.
In this implementation, we use OpenStack Nova APIs1 to
deploy VNFs and OpenStack SFC APIs2 to configure SFC
paths. After an auto-scaling module has determined one of
the SFCs created by NFVO to apply auto-scaling, the module
continuously observes each tier’s status in the SFC.

1OpenStack Nova, https://opendev.org/openstack/nova
2OpenStack SFC, https://opendev.org/openstack/networking-sfc



When an auto-scaling module runs, it interacts with a
monitoring module to get information about nodes and VNF
instances running in an OpenStack environment. An auto-
scaling module applies a scaling policy to each SFC to be
scaled, so the module gets available node information where
VNF instances for the target SFC are running or can be
deployed later. After obtaining the information, the module
creates two Q-networks, one is for training, and the other is
a target Q-network. Because a replay memory helps stable
training of DQN, the auto-scaling module creates a memory
buffer as a replay memory in this step. To implement the DQN
algorithm for auto-scaling, we use PyTorch [27] and ADAM
optimizer by default.

An auto-scaling module performs scaling actions as many
times as episodes to find an optimal scaling policy. Although
an optimal scaling action can improve performance in terms
of load-balancing and SLO violation, it can also degrade
performance if the scaling action is not optimal. Thus, a
DQN agent should do many trial-and-errors for many episodes
to find an optimal scaling policy. During those episodes, an
auto-scaling module needs to consider a cooldown period to
avoid oscillations regarding the number of VNF instances. The
cooldown period is a time during which the module waits
for scaling’s effect. When an auto-scaling module performs
a scaling action this module executes a new episode after
a cooldown. A DQN agent in an auto-scaling module uses
the current state as input data, so the module pre-processes
information from a monitoring module to input the data to
the agent. An auto-scaling module presents the input data as
a tensor, and the size of a tensor depends on SFC length,
i.e., the number of tiers in SFC. For example, the size of an
input tensor is 10 if SFC length is 2 because each tier’s status
consists of 5 values such as CPU usage, memory usage, the
number of disk operations, distribution, and size.

After creating and inputting a current state as a tensor
data, an auto-scaling module chooses one of the actions such
as add, remove, and maintain from the given state. The
number of actions depends on the number of active nodes
in an OpenStack environment because the proposed approach
considers a node where scaling-in/out is carried out. If a
selected action is maintain, the number of VNF instances
does not change. DQN uses Q-value as a policy, so an agent
chooses an action that has the maximum Q-value in the given
state. However, the Q-values are not optimal in the initial
stages, so the policy does not guarantee that a selected action
is an optimal choice from the state. Therefore, it is necessary
to consider the ratio at which to determine exploitation and
exploration when choosing an action in each state.

Exploitation is a way of finding a policy with a preference
in choosing an action by using a given value, and exploration
chooses randomly one of the actions. Since the auto-scaling
action is not optimal in the early episodes, the policy can con-
verge into the wrong auto-scaling policy if an agent carries out
using exploitation only. Therefore, an agent needs to consider
carrying out random actions while DQN is running. Thus,

an auto-scaling module uses an ε-greedy algorithm. The ε-
greedy algorithm determines what to do between exploitation
and exploration based on the ε value. An agent chooses an
action more often randomly with a large ε value. Besides,
an agent reduces an ε value by a certain percentage for each
episode, gradually reducing the cases of choosing a random
action.

Whenever an auto-scaling module chooses a scaling action,
the module observes an OpenStack environment whether there
are available resources to add or remove a VNF instance. If
there are available resources for scale-out or enough VNF
instances for scale-in, the module adds or removes a VNF
instance in a target node and updates an SFC through an
NFVO module. Otherwise, an auto-scaling module fails to per-
form a scaling action. After scaling, the module observes new
states and calculates a reward. An auto-scaling module saves a
transition into a memory buffer, which is an implementation of
a replay memory. The mask included in a transition presents
whether scaling action carries out or not. If transition data
stored in a memory buffer is over a pre-determined number,
which is 200 in this paper, an auto-scaling module uses the
data for DQN learning. Besides, the module updates a target
Q-network whenever an agent repeats a certain number of
episodes.

V. EVALUATION

To evaluate the proposed approach, we build an OpenStack-
based testbed as shown in Fig 5. The testbed is built on
Dell servers operating Ubuntu version 18.04. Those servers
consist of compute nodes, a controller node, AI nodes, and a
monitoring node.

Fig. 5. OpenStack-based testbed

The controller node and compute nodes are components
of OpenStack. When installing a new VNF, the controller
node creates a VNF instance, i.e., VM in an OpenStack
environment, on one of the compute nodes. The AI nodes
run the DQN algorithm to apply an auto-scaling policy
to running VNF instances. The monitoring node running a
monitoring module collects the data used by DQN at every
1 second and stores it in a time-series database, InfluxDB3.

3InfluxDB v1.7.9, https://github.com/influxdata/influxdb



Collectd4 is used as the collector since it is fast and does not
consume much resources of compute nodes in the OpenStack
environment. In this evaluation, we assume that each VNF
instance executes one VNF process. Those VNF instances run
based on Ubuntu version 16.04, and specification is vCPU 1
core, RAM 1024MB, disk 10GB.

An auto-scaling module carries out scale-in/out for an SFC.
Therefore, we create an SFC and have the module handle
the SFC. A DQN agent in the module iteratively trains data
and updates Q-networks to set an optimal scaling policy. We
tune hyper-parameters for the iterations as shown in Table I.
Besides, we limit the longest SFC length to 5, so SFC can have
up to five VNF types. They are firewall, flow monitor, deep
packet inspection (DPI), intrusion detection system (IDS), and
proxy. To operate those VNFs, we use open-source software
such as iptables [28], ntopng [29], nDPI [30], Suricata [31],
and HAProxy [32] respectively.

TABLE I
DQN PARAMETERS

Parameter Value(s)
η (learning rate) 0.01
γ (discount factor) 0.98

ε (probability of exploration) 0.08
Replay memory size 5000

Batch size 32

After creating an SFC, we need to generate traffic pass-
ing through the SFC’s path. For traffic generation, we use
RUBiS [33], which is a web application and an open-source
benchmark tool widely used for experimental evaluation, as a
destination of the SFC. RUBiS is an auction web application
that users can access the web to search, bid, buy, and sell
products. This tool provides an emulator to generate traffic
which is client requests. We use this emulator to create
dynamic traffic through an SFC and run a benchmark tool,
stress-ng [34] optionally, to give VNF instances random
stress. Moreover, an auto-scaling module uses a response
time measured through an SFC to calculate rewards or check
SLO violation. For response time measurement, this module
leverages an Apache-Bench (AB) tool to generate probe
packets, i.e., HTTP messages, and measure the mean response
time of those messages. In our evaluation, an auto-scaling
module measures the mean response time at every 10 seconds.

To evaluate the proposed approach, we create two SFCs, in
which SFC lengths are 2 and 5 respectively. We apply three
scaling approaches to each SFC; 1) Threshold (Random):
threshold-based scaling, randomly selecting a tier to be scaled,
2) Threshold (Target): threshold-based scaling, selecting a
tier to be scaled by proposed score function, 3) Proposed
DQN: proposed DQN-based scaling. The evaluation environ-
ment is shown in Fig. 6.

In this evaluation, an auto-scaling module applies scaling-
actions to two SFCs while each RUBiS client sends traffic

4Collectd v5.8.1, https://github.com/collectd/collectd

Fig. 6. Evaluation environment

through the SFCs. The Threshold (Random) and Threshold
(Target) approaches carry out scale-in/out when measured
response time is under or over the threshold. The threshold
values triggering scale-in/out are 25ms, 35ms for 2-tier SFC,
and 30ms, 40ms for 5-tier SFC. We determine those threshold
values by referring to measured mean response time through
each SFC while no client traffic.

Fig. 7. Measured response time during auto-scaling (5-tier SFC)

RUBiS emulator generates traffic for about 45 minutes, i.e.,
2700 seconds, so each auto-scaling approach also runs during
that period. Fig. 7 presents response time measured by each
approach. We also measure the response time while no auto-
scaling to validate whether our scaling methods are effective.
According to the result, Threshold (Random) and Threshold
(Target) reduce response time compared to no auto-scaling
case. Besides, the Threshold (Target) approach provides a
smaller mean response time than Threshold (Random). This
is because it chooses a tier to be scaled by using the proposed
score function, which enables an auto-scaling module to select
an adequate tier for scaling. Moreover, the result shows the
DQN-based auto-scaling effectively adds or removes VNF in-



stances. The experiment presents that the method we proposed
carries out appropriate scaling actions to handle dynamic
traffic stably.

Fig. 8. The number of VNF instances during auto-scaling (5-tier SFC)

Our proposed auto-scaling method using DQN operates
the appropriate number of VNF instances while reducing
SLO violation. DQN takes states as input and determines
a scaling action. Therefore, it can make a scaling decision
before a mean response time exceeds a pre-defined threshold.
Because the threshold-based method carries out scaling after
the measured time exceeds the threshold value the SLO can be
already violated at that time. However, our proposed method
can make a scaling decision from a given state proactively
before the SLO violation. Fig. 8 presents the number of VNF
instances while auto-scaling is applied to an SFC, and traffic is
generated through the SFC. Threshold-based approaches add
or remove VNF instances when SLO is violated so it cannot
effectively resize the number of instances. However, the pro-
posed DQN method can effectively resize VNF instances. To
show the effectiveness of the proposed method, we compare
a trained DQN model using our reward model with an initial
DQN model not trained yet in Fig. 8. According to the
result, our proposed DQN model can operate the appropriate
number of VNF instances while dynamic traffic passes an
SFC. However, the initial DQN model before learning resizes
the number of VNF instances inefficiently.

TABLE II
EVALUATION RESULTS

Mean RT SD SLO violation

2-tier
Threshold (Random) 38.92ms 74.36 5.2%
Threshold (Target) 35.26ms 55.52 4.2%

Proposed DQN 26.38ms 10.71 5.3%

5-tier
Threshold (Random) 42.57ms 65.53 7.1%
Threshold (Target) 45.36ms 82.04 5.7%

Proposed DQN 35.91ms 81.38 4.6%

Table II summarizes the evaluation results in terms of
mean RT (response time), SD (standard deviation), and SLO
violation rate by each approach in two scenarios. An auto-
scaling module implemented measures mean response time at
every 10 seconds and if the mean response time exceeds a
pre-defined SLO, it is an SLO violation.

According to the results, our DQN-based auto-scaling re-
duces mean RT. Therefore, the results present that the pro-
posed method of updating an optimal policy using our reward
model effectively makes scaling-actions. In this evaluation,
we assume that the SLO is 45ms because it is enough time to
process traffic through an SFC in our testbed. SLO violation
rate of the proposed DQN is 5.3% in 2-tier SFC and 4.6% in
5-tier SFC respectively. The proposed auto-scaling approach
uses DQN and provides scaling actions that minimize both
mean RT and SLO violation effectively. Although a standard
deviation of measured response time increases when SFC
length is long, our approach ensures stable response time by
allocating the appropriate number of VNF instances.

VI. CONCLUSION

In this paper, we propose a novel auto-scaling approach
applied to NFV environments, which can deal with multi-
tier VNF instances, i.e., SFC. The proposed method uses a
deep Q-networks (DQN) algorithm to define an auto-scaling
model and determines an optimal action for scaling of VNF
instances. We define that an optimal action is adding or
removing VNF instances to provide the optimal number of
VNF instances while minimizing SLO violation. We use
resource utilization of VNF instances, the number of disk op-
erations, size, and a distribution value to define each state. The
proposed auto-scaling method is validated in an OpenStack-
based testbed. We implement an auto-scaling module running
with the OpenStack components and evaluate the module
by comparing it to a threshold-based auto-scaling method.
According to the evaluation, our auto-scaling approach mini-
mizes SLO violation while the module adds or removes VNF
instances.

In the future, we plan to use a graph neural network (GNN)
to apply network topology information to auto-scaling policy.
Because the GNN can present network topology as a feature
applied to machine learning algorithms, this feature can be
used for RL-based auto-scaling in the NFV environments.
Further, we plan to improve the proposed method and evaluate
it in various scenarios that include showing the learning
time required to find the optimal number of VNF instances
and comparison with other methods of auto-scaling methods.
Finally, we will study to speed up the DQN learning time to
converge an optimal policy fast.
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