Building and Evaluating Federated Models for Edge Computing

Yasaman Amannejad
Department of Mathematics and Computing
Mount Royal University, Calgary, Canada

Email: yamannejad @mtroyal.ca

Abstract—Today’s state-of-the-art machine learning (ML)
techniques, such as deep learning (DL) networks are typically
trained using cloud platforms, leveraging elastic scalability of
the cloud. For such processing, data from various sources
need to be transferred to a cloud server. While this works
well for some application domains, it is not suitable for all
applications due to concerns about latency, connectivity, and
privacy. For example, sharing life logging photos and videos from
cellphones and wearable devices can cause privacy concerns for
users, and transferring the unstructured data can burden the
communication network. With the increase of such applications,
federated learning (FL) is proposed as a distributed ML solution
for learning on edge devices, such as cellphones and wearable
devices. In FL, clients collaboratively train a model on their
device without sharing their data. Each client trains a local
model with their data and shares the model parameters with
a FL server to aggregate and build a global model. Shifting
from traditional ML techniques to federated solutions requires
comparing these two approaches. Moreover, users need to study
the performance of FL. models to decide if federation is feasible
for their learning task. In this paper, we propose an automated
solution to compare centrally trained DL models with federated
solutions. The tool allows users to easily analyze the accuracy of
federated models for their learning task and study the effect of the
federated parameters. We show the features of our tool building
central and federated DL models from an input model structure
for recognizing images in the MNIST benchmark dataset.

Index terms— Distributed Machine Learning, Federated
Learning, Edge Computing.

I. INTRODUCTION

Learning from distributed data over edge devices has gained
increasing interest in recent years. This increase in popularity
is because of the following reasons. First, there is a need
for processing a massive amount of data that is continuously
being generated through devices such as cellphones, wearable
devices, and autonomous vehicles. Transferring all data to a
remote cloud server is not always feasible due to limiting
factors such as the network bandwidth of these devices and the
long propagation delays that can incur unacceptable latency.
Second, the private nature of the data, e.g., life-logging videos
and recorded phone calls, causes privacy concerns for sharing
the data with cloud servers. Finally, transferring such massive
data to a cloud server for processing can burden the backbone
networks especially for applications with unstructured data
such as images and videos. These factors along with the
improvements in the storage and computation capacity of edge
devices are shifting the data processing and model training of
ML applications from cloud servers to edge devices.

978-3-903176-31-7 © 2020 IFIP

Federated learning (FL) is introduced recently as a decen-
tralized ML approach suitable for edge computing [1]. In FL,
data remains private on devices. Clients work cooperatively
to train a complex ML model without sharing their data.
Consider a large number of client devices, such as cellphones,
each with personal collections of photos. If all the distributed
data on these devices are accessible in a central place, one
can obtain a high-performance ML model that is trained on
an extremely large dataset. However, it is not desirable for
clients to share their data due to privacy concerns. Each device
trains a local model using its own private data and shares the
model parameters, e.g., model weights, with an FL server that
aggregates them into a global model. This process continues
iteratively in multiple rounds until a desirable accuracy is
achieved or a training budget is hit.

FL has recently gained popularity and is shown to be
effective in different application areas [2-7]. To facilitate
building and evaluating FL applications, open-source algo-
rithms and protocols [8—10], simulators and libraries [11-14],
and benchmark datasets [13] are proposed by others. However,
they do not provide an automated solution for evaluating
federated models. Practitioners and researchers can benefit
from an automated solution that allows them to study the effect
of the federated parameters and compare federated and central
models. Such a solution can help users to decide if federation
is an appropriate approach for their learning task.

To address this need, we propose AutoEdgeML, an auto-
mated tool for building federated ML solutions. Specifically,
users can input their model structure and the tool provides
them with templates for training the model in federated and
central settings. The tool also allows users to study the effect
of federated parameters on the model accuracy and fine-
tune the values of the parameters. When a federated dataset
is not available, AutoEdgeML allows users to define their
data partitioning strategies to create distributed datasets for
clients from an existing central benchmark dataset. To show
how AutoEdgeML works, we build a federated DL model
for an image recognition task on MNIST benchmark [15]
and compare its accuracy with the same model when trained
centrally. The results show that the federated model built
using the tool is able to recognize images with high accuracy
comparable with the central solution, and the tool provides
insights on the selection of federated parameters.

II. FEDERATED LEARNING

Federated learning (FL) is an ML setting where many clients
(e.g. mobile devices) collaboratively train a model under the

coordination of a central server while keeping the training data
decentralized. There are two main entities in FL process: the
data owners, i.e., client, and the global model owner, i.e.,
server. Let Clients = {clienty, clients, ..., client, } denote
the set of n clients, each of which has a dataset D,, i
€ n, stored on their personal devices, e.g., cellphones. In
classical approaches, all clients send their data to a server
and the server trains a conventional model, model, using all
data D = U ,D;. However, as described earlier, this is
not possible for all applications due to privacy concerns, and
also the network bandwidth limitations of the edge computing
devices. In FL, clients do not share their private data with
the remote server, instead, they build a local model, model;,
using their own data, D;, and share the parameters of their
trained model with the FL server. The server collects all local
model parameters and aggregates them to build a global model,
model federateqd- This global model is sent back to clients for
further enhancements. This process continues for r rounds.

A typical training process is shown in Fig. 1 and includes
the following four steps:

1) Model broadcast: The server defines the structure of
the model to be trained by all clients and decides on the
hyper-parameters of the local and global models, e.g.,
the optimizer or the learning rate of a neural network.
Next, the server broadcasts the model and the hyper-
parameters to clients. In the first round, the broadcasted
model is not trained. In the following rounds, the server
broadcasts the model aggregated from the local training
of clients.

2) Local model training: Clients participating in the train-
ing process download the broadcasted model and train
the model based on their local data. The objective of
each client during its local training is to find optimal
model parameters that minimize the model loss based
on the client’s local data.

3) Model parameter updates: When each client, client;,
finishes its training, they share their trained model,
model;, with the FL server.

4) Global model aggregation: When the participating
clients share their models with the server, the server
aggregates them into a global model, modelgiopq;. The
server’s objective is to minimize a global loss function.

Training an FL model is an iterative process and happens
in multiple rounds r. In each round of the training process,
a subset of all clients, C' C Clients send their local updates
to the server. The number of training rounds and participating
clients can affect the accuracy of the global model. In an ideal
case, the accuracy of the model trained in this distributed
and iterative format should be close to the accuracy of the
model trained in conventional format over all available data
in a central place. However, the FLL model may result in
lower accuracy as a trade-off for gaining higher data privacy.
Therefore, it is important to evaluated federated models and
compare their accuracy with central solutions. We propose an
automated solution for evaluating the models trained in central

4. Global model aggregation

1. Model broadcast

1ont08 14
&

')
3. Model :parameter gpdates

Parameters of Paramefers of paf s of

local model 1 local mpdel 2 logal model 3
P ' '
L s

v ' '

' ' '

s of

Local Local Local Local
model 1 model 2 model 3

> © C o I

seld

1 2 3 n

2. Local model trainings

Fig. 1. The main steps in FL training process

and federated settings and studying the effect of federated
parameters on the performance of FL models.

The distribution of data among clients is an important factor
that can affect the performance of federated models. When
a conventional benchmark dataset is available, data needs to
be distributed among clients before training an FL model. In
general, there are two main forms of data distribution: IID!,
and non-IID data. IID data means that each batch of data used
for a client’s local model update is statistically identical to
a uniformly drawn sample with replacement from the entire
training dataset, i.e., the union of all local datasets at the
clients. In practice, clients collect their training data indepen-
dently which results in having training datasets with different
sizes and distributions from other clients. IID assumption does
not always hold in federated settings. In this work, we support
both IID and non-IID dataset creations. This allows users to
study the performance of federated models under various data
distribution scenarios.

III. RELATED WORK

FL framework is proposed by McMahan et al. [1] as a dis-
tributed ML solution with a focus on keeping data private. The
growing demand for FL technology has resulted in a number
of open-source algorithms and protocols [8—10], simulator and
libraries [11, 12, 14], and benchmark datasets [13].

NVIDIA Clara [8], PaddleFL [9] and FATE [10] are open-
source frameworks that support FL. NVIDIA Clara is a
healthcare application framework for imaging that makes it
easy for developers to build, manage, and deploy intelligent
medical imaging workflows and instruments. This platform
supports training collaborative FL models for medical use
cases. PaddleFL allows users to deploy an FL system in dis-
tributed clusters. FATE [10] is an open-source project initiated
by Webank’s AI Department to provide a secure computing

!Independent and Identically Distributed

framework to support the federated Al ecosystem. It imple-
ments multiple secure computation protocols in compliance
with data protection regulations.

To help users build their own federated models, program-
ming libraries [12, 14], simulation tools [11, 13, 14], and
benchmark datasets are provided [13]. PySyft [12] is a Python
library for secure, private DL. PySyft decouples private data
from model training using FL, differential privacy, and multi-
party computation within PyTorch. Mugunthan et al. [11]
has proposed a simulator that supports simulating the accu-
racy of FL models and the convergence time of the model.
Leaf [13] provides multiple datasets, as well as simulation and
evaluation capabilities. TensorFlow Federated [14] provides
a programming framework as well as simulation capabilities
that target research use cases. Our tool is built on top of
the TensorFlow Federated library and provides an automated
solution for building and evaluating FL. models.

IV. FEATURES OF AUTOEDGEML

AutoEdgeML allows users to create FL. models from an
input model structure and study the effect of the federated
parameters on the performance of FL models. Users can
compare the performance of their FL. model with a model
trained in conventional central fashion. For this purpose,
AutoEdgeML supports data partitioning strategies, model cre-
ation, and model evaluation. The tool is built on top of
well-known ML libraries such as Keras and TensorFlow, and
supports models created by these libraries. Users can input
their model structures and the tool will create the template of
the FL process to train the model and observe the effect of
the federated parameters. The tool generates federated models
based on TensorFlow Federated library. In cases where a
federated dataset is not available, the tool supports converting
central datasets into IID and non-IID datasets to train and
test federated models. The code used in this work is publicly
available [16].

A. Data Partitioning

As described in Section II, each client in federated models
owns their own data and the distribution of the data may
vary among clients. The distribution of the data can affect
the training time and the accuracy of the trained models.
Therefore, when comparing a conventional solution with a
federated solution, users need to consider this in their compar-
ison. AutoEdgeML allows users to generate IID and non-IID
datasets for federated clients from their central datasets. For
generating non-1ID data, AutoEdgeML allows users to define
their custom data partitioning strategy. A custom strategy may
assign a subset of target labels or feature values to each client.

B. Building Model

AutoEdgeML can create the template for training an input
model in federated and conventional settings. The input models
can be in one of the two accepted model formats: HDF5
and SavedModel. HDF5 is a grid format for storing multi-
dimensional arrays of numbers and is suitable for storing

model weights and structure. SavedModel format is another
way to serialize models and is the default format in Tensor-
Flow 2.x.

P
| saved Model e

Pravide the URL (Web or local) to your model:

Model URL.: file:/fftmp/demo_model.tar.gz

Fig. 2. Building model using AutoEdgeML

C. Model Evaluation

When the data and the model are converted into federated
format, the next step for users is to evaluate the accuracy of
the federated model under various parameters and compare
it with the accuracy of the model trained centrally. For a
fair comparison between central and federated models, the
tool uses the same hyper-parameters for both models. The
FL model has additional parameters that can affect the model
accuracy. The tool allows users to study the performance of
the model with different number of clients and training rounds.
Tensorboard is integrated into the tool to allow users to view
the results of their study. Moreover, users can benefit from
the custom graphs provided for comparing the effect of the
FL parameters. Sample graphs are shown in Fig. 3

. e - —3 = -
‘. . e
i = [in
i . l. I.

—— ——

Fig. 3. Generated graphs for model evaluation

V. EXPERIMENT SETUP AND RESULTS

To show how AutoEdgeML works, we use the tool to build a
federated model based on a DL model structure for an image
recognition task. The architecture of the network is shown
in Fig. 4. Using AutoEdgeML we generate an FL structure
based on a central deep network with convolution, pooling, and
dense layers. To make a fair comparison between the federated
and central models, we use the same hyper-parameters, e.g.,
batch size and the number of epoch for both models. We use
MNIST dataset [17] which is a writer-annotated handwritten
digit classification dataset collected from many users. In total,
MNIST dataset contains 70, 000 grayscale images of size 28 x
28 for 10 hand-written digits.

We use AutoEdgeML on the Google Colab platform to
build a federated model based on an input model structure
and study the accuracy of the federated model in comparison
with the central model. We first compare the two models when
5 clients participate in the training of the federated model for
100 rounds. Next, we show the performance of the federated
model with various number of clients and rounds.

&r

Convolution Layer

Kernel size: 3x3
Filters: 32

Input: 28x28

Convolution Layer
Kernel size: 3x3
Filters: 64

Poaling Layer L
Pool size: 2x2

Dropout: 0.25 Dropout: 0.5

Class =0

Class =1

Class =2

Class =8

1L
¢

— Class =9

Dense Layer
Units: 128
Activation: Relu

Dense Layer
Units: 10
Activation: Softmax

Faltten

Fig. 4. The architecture of the model used in the study

A. Comparing Federated and Central Models

The FL model generated and trained by AutoEdgeML has
achieved 92% accuracy when predicting for an unseen test
dataset. Fig. 5 compares the accuracy of the central and
federated models when trained with the same training data
and the same hyper-parameters. As it can be seen in the figure,
the federated model achieves lower accuracy compared to the
central model. This lower accuracy is due to the fact that in a
federated setting the data is distributed over the client devices
and we do not have access to all data to train the global
model. Instead, the global model is built by aggregating local
models of the 5 clients who participated in the model training.
The accuracy of the FL. model can be improved by tuning
the number of participating clients or the number of training
rounds. Next, we study the effect of these two parameters.

99%
100 92%

80

60

Accuracy (%)

40

20

Centeral Federated

Fig. 5. Test accuracy of central and federated models

B. Effect of the Federated Parameters

Using AutoEdgeML, we evaluate the model accuracy with
varying the number of rounds between 1 to 100 and the
number of clients from 5 to 15 in steps of 5. Fig. 6 shows
the accuracy of the federated models with different number of
clients and training rounds. As it can be seen in Fig. 6, in all
experiments the model converges and achieves high accuracy.
The model trained with less number of clients quickly gets
training accuracy close to 99%. This is while it takes more
number of rounds for the model with 15 clients to achieve the
same accuracy during the training time.

AutoEdgeML also reports the test accuracy of the models.
The test accuracy shows the ability of the model to generalize
and recognize unseen data records. This metric is often more
important than the training accuracy. As it can be seen in

100

95

Accuracy (%)

920

© C5-R100
— C10-R100
4 C15-R100

85 1
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Rounds

Fig. 6. Training accuracy in rounds with different number of clients

Fig. 7, the model trained with more number of clients, i.e. 15,
achieves better accuracy on the test data. By comparing Fig. 6
and 7 we can see that incorporating more clients in the training
process while may slow down the training process, it can result
in a better model. A more comprehensive analysis on the effect
of client selection is provided in our recent study [18].

100

98

96
95%

Accuracy (%)

94
93%

9
o 92%

20

C5, R100 C10, R100 C15, R100

Fig. 7. Test accuracy with different number of clients

VI. CONCLUSION AND FUTURE WORK

To help users and researchers study the performance of
federated models for learning tasks with distributed datasets,
this paper proposes an automated solution for building and
evaluating FL. models. AutoEdgeML is a tool that is designed
for this purpose and this paper reports the progress on the
early phases of the tool. We show the main features of the
tool using one use case trained on MNIST benchmark. In the
future, we plan to extend the features of the tool and also to
evaluate the tool with more use cases.

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

REFERENCES

B. McMahan, E. Moore, D. Ramage, S. Hampson, and
B. A. y Arcas, “Communication-efficient learning of
deep networks from decentralized data,” in Artificial
Intelligence and Statistics, pp. 1273-1282, 2017.

E. Bakopoulou, B. Tillman, and A. Markopoulou, “A
federated learning approach for mobile packet classifi-
cation,” arXiv preprint arXiv:1907.13113, 2019.

Y. Liu, J. James, J. Kang, D. Niyato, and S. Zhang,
“Privacy-preserving traffic flow prediction: A federated
learning approach,” IEEE Internet of Things Journal,
2020.

S. Samarakoon, M. Bennis, W. Saad, and M. Debbah,
“Federated learning for ultra-reliable low-latency v2v
communications,” in 2018 IEEE Global Communications
Conference (GLOBECOM), pp. 1-7, IEEE, 2018.

Y. M. Saputra, D. T. Hoang, D. N. Nguyen,
E. Dutkiewicz, M. D. Mueck, and S. Srikanteswara,
“Energy demand prediction with federated learning for
electric vehicle networks,” in 2019 IEEE Global Com-
munications Conference (GLOBECOM), pp. 1-6, IEEE,
2019.

T. D. Nguyen, S. Marchal, M. Miettinen, H. Fereidooni,
N. Asokan, and A.-R. Sadeghi, “Diot: A federated self-
learning anomaly detection system for iot,” in IEEE
39th International Conference on Distributed Computing
Systems (ICDCS), pp. 756-767, IEEE, 2019.

A. Abeshu and N. Chilamkurti, “Deep learning: the
frontier for distributed attack detection in fog-to-things
computing,” IEEE Communications Magazine, vol. 56,
no. 2, pp. 169-175, 2018.

T. C. T. F. Authors,
https://developer.nvidia.com/clara,

“Nvidia
2019.

clara.”
Accessed:

(9]

[12]

2020-07-20.
T. P. Authors, “Paddlefl.”
https://github.com/PaddlePaddle/PaddleFL, 2019.

Accessed: 2020-07-20.

T. F. Authors, “Federated ai technology enabler.”
https://www.fedai.org/, 2019. Accessed: 2020-07-20.

V. Mugunthan, A. Peraire-Bueno, and L. Kagal, “Pri-
vacyfl: A simulator for privacy-preserving and secure
federated learning,” arXiv preprint arXiv:2002.08423,
2020.

T. Ryffel, A. Trask, M. Dahl, B. Wagner, J. Man-
cuso, D. Rueckert, and J. Passerat-Palmbach, “A generic
framework for privacy preserving deep learning,” arXiv
preprint arXiv:1811.04017, 2018.

S. Caldas, P. Wu, T. Li, J. Kone¢ny, H. B. McMahan,
V. Smith, and A. Talwalkar, “Leaf: A benchmark for fed-
erated settings,” arXiv preprint arXiv:1812.01097, 2018.
“Tensorflow federated learning.”
https://github.com/tensorflow/federated. Accessed:
2020-06-30.

Y. LeCun, C. Cortes, and C. J.C. Burges, “Mnist dataset.”
lzlgp://yann.lecun.com/exdb/mnist/. Accessed: 2020-07-

Y. Amannejad, “Federated learning tools.”
https://github.com/Yasaman-A/federated-learning-tools,
2020. Accessed: 2020-10-15.

Y. LeCun, C. Cortes, and C. Burges, “MNIST handwrit-
ten digit database,” 2010.

S. Lameh, W. Noble, Y. Amannejad, and A. Afshar,
“Analysis of federated learning as a distributed solu-
tion for learning on edge devices,” in The International
Conference on Intelligent Data Science Technologies and
Applications (IDSTA2020).

