

Environment Aware Adaptive Q-Learning to

Deploy SFC on Edge Computing

Suman Pandey

POSTECH

Pohang ,South Korea

suman17july@gmail.com

James W. Hong

POSTECH

Pohang ,South Korea

jwkhong@postech.ac.kr

Jae-Hyung Yoo*

POSTECH

Pohang ,South Korea

jhyoo78@postech.ac.kr

Abstract—Biggest challenge in deploying Service Function

Chain (SFC) in the Edge Computing environment is the lack of

resources at the edge. Hence while finding the optimum path for

SFC deployment, the resource constraint environment should

be observed and incorporated well in deployment scenarios. In

this paper, we developed an environment aware adaptive Q-

Learning algorithm to find an optimal SFC deployment path in

edge computing environment. The available servers are divided

into hierarchical network structure with local, neighbor, and

datacenter servers to model an edge computing environment.

The resource dynamics in the environment is modeled as a state

transition probability. We compared the new algorithm with

our base case algorithm that solely depends on Q-Learning and

doesn’t incorporate the state transition probabilities. An

intuitive reward function is designed to give maximum reward

to complex deployment with minimum delays. We integrated

our algorithm with physical testbeds using OpenStack and open

source REST APIs. We evaluated SFC deployment on physical

testbed using 42 different scenarios by measuring RTT.

Keywords—SFC, OpenStack, SDN, Edge Computing, Q-

Learning, Reinforcement Learning

I. INTRODUCTION

In Network Management research, several models have

been proposed to install SFC[1] and VNFs in Datacenter

(DC) efficiently [2]. However, in recent years computational

resources are positioned near to the end-users through edge

cloud [3] and there is a need to devise a mechanism for

deploying SFC in an edge computing environment. AT&T

has also proposed a Central Office Re-architected as a

Datacenter (CORD) infrastructure [4] to transform the edge

into an agile service delivery platform. Minimal research has

been done to exploit this edge infrastructure to deploy SFC.

In this paper we propose to install SFC across multiple COs

in the nearest proximity if resources are not enough at local

CO. As per our knowledge there are no standards to install an

SFC across multiple COs in edge cloud environment. We

propose to install SFC across neighbor COs to reduce the

overall latency. When multiple COs are involved in installing

a single SFC, it is important to allocate resources intelligently

to maximize the utilization and minimize the latency. We

modeled our network topology as a hierarchical structure of

local, neighbor, and DC servers to simulate the edge

computing infrastructure. We have also deployed a physical

978-3-903176-31-7 © 2020 IFIP

testbed to evaluate our proof of concept. Our physical testbed

topology resembles Multi-access Edge Computing (MEC)

scenario.

On top of the testbed hardware, we installed OpenStack [5]

to manage our servers and finally integrated our SFC

deployment algorithm with testbeds. To integrate our

machine learning algorithm with testbed we used open-

source NI-Mon and NFVO APIs [6].

Our machine learning algorithm for SFC deployment is

based on Reinforcement Learning (RL). RL has been proven

successful for pathfinding problems in game programming

and robotics etc. Recently it is also used for Routing [7] and

SFC path selection [8]. We chose the RL based Q-Learning

algorithm to deploy SFC in an edge computing environment.

This work is an extension of our previous work [9]. Our

previous algorithm deployed SFC by selecting the best path

with minimum delay using Q-Learning based approach. Q-

Learning typically involves an agent, action, states, policies,

and rewards. In the Q-Learning algorithm, the environment is

the task or simulation and a learning agent interacts with the

environment and tries to solve the task.

In our SFC deployment scenario, the environment consists

of servers and their capacity. Server capacity is devised in

terms of CPU and memory. Moreover, servers are deployed

in a hierarchical manner including local, neighbor, and

datacenter servers. The agent interacts with servers in a given

hierarchy, first with a local edge environment and then with

the neighbor environment and finally with the DC

environment looking for the appropriate server to deploy the

VNFs based on the rewards. To add to this complexity, our

environment isn’t static, it changes after every VNF

deployment.

It is important to opt these environments into the actionable

insight in our algorithm. The accuracy of our algorithm

increased, by making our agent accountable to environment

changes. Hence in this paper, we changed the model to

incorporate the resource availability probability of the hostile

states and dynamically changing states. We achieved that by

introducing a transition probabilities p (s′ | s, a). In the new

model, we dynamically update the state transition

probabilities after each action and selectively reduce the

action space by removing the hostile states. Our proposed

method contribute in the following ways

1. To the best of our knowledge, this is the early research

conducted to deploy SFC on the edge computing

environment. Edge Computing is realized by dividing

the infrastructure into, edge, neighbor, and DC servers.

2. Environment aware adaptive Q-learning agent is

designed, where the environment is represented with

servers and their available capacity in three hierarchy.

3. The Algorithm is integrated and verified on the physical

testbed with the OpenStack management layer. SFC

deployment is verified and RTT is measured using

traceroute command.

The rest of the paper is organized in the following way.

Section II describes related work. Section III elaborates on

our proposed network topology. Section IV explains the

proposed method and the Q-Learning algorithm. Section V

explains our evaluation mechanism. Section VI discusses the

results and challenges encountered during this research and

Section VII concludes this research with future work.

II. RELATED WORK

We identified a few leading research that applied machine

learning method to dynamically deploy SFC. Runyu Shi et al.

[11] used RL based Markov Decision Processes (MDP) to

dynamically allocate VNFs. The authors used the Bayesian

learning method to monitor the historical resource usage to

predict future resource reliability. However, they did not

consider edge computing. All the resources were deployed at

DCs away from users. They showed very promising

computation time of 1 to 2 milliseconds but didn’t clarify

about the SFC length and number of iterations (epochs)

required for learning. Jian Sun et al. [12] also used Q-

Learning Framework Hybrid Module Algorithm (QFHLM)

which was derived from RL. They also didn’t consider edge

infrastructure, besides their computation time is 1 minute and

learning takes 2.25 million iterations. Moreover, their VNF

resource model is considering all VNFs with an equal amount

of resource requirement (CPU, mem, and bandwidth of 1

unit). These make their algorithm unrealistic. Aris Leivadeas

et al. [10] did consider the edge infrastructure, however they

relied on Mixed Integer Programming (MIP) formulation

solved using a CPLEX Branch-and-Cut search algorithm

resulting in high computation time as compare to Q-learning

algorithms. This paper extends our previous work [9] by

incorporating the environment variables such as state

transition probabilities to design an environment aware Q-

learning algorithm. The new feature improves our algorithm

accuracy and reduces SFC deployment latency significantly.

Apart from that, this algorithm is also integrated and tested

on the physical testbed with the OpenStack management

layer.

III. NETWORK TOPOLOGY

We implemented and tested our algorithm on a simulated

topology as well as on a physical test bed. The simulated

topology consists of Top of the Rack (TOR) switches, Leaf

switch, Spine switch, Edge, and Core router. Servers are

attached to the TOR, and have less capacity at the edge and

higher capacity at the core. The latency is modeled based on

the number of hops to cross for installing SFC. If the VNF is

deployed on the same server as previous VNF then latency

will be 0. If its in same TOR latency is 1, same edge will

result in latency 3, same neighbor installation will result in

latency 7 and DC will result in latency 9. To get the detail of

our simulated topology please refer to our previous work [9].

The same model explained in simulated testbed is emulated

on a physical testbed with more simplified network structure

by omitting TOR, Leaf, Spine switches. Our testbed consists

of three edge switch representing three COs, and one core

switch connecting these COs with DCs as shown in Figure 1.

This testbed is subjected to improvement in the future. Delay

is emulated on this test bed using DEMU[15]. It is a software-

based network emulator implemented as a Data Plane

Development Kit (DPDK) application. The delay between

edge and core switch is 5ms and DC and core switch is 12

ms.

Figure 1. Physical Infrastructure with OpenStack Management Layer

Figure 2. Overall Design

IV. METHOD

Figure 2 explains our overall design. The algorithm is

developed using python 3.7. The algorithm takes two types

of the input files. The first input is related to the network

topology, where the algorithm takes core-switch-id to which

the edge network and DC is connected. Once the algorithm

gets the core-switch-id, it requests for edge switch, servers,

and links information using REST APIs of the NI-Mon

module. Using this information, the algorithm builds edge as

well as DC topology. Based on the edge-switch-id the

algorithm divides the edge topology into local and neighbor

servers. So ultimately the infrastructure is divided into three

hierarchy, 1) Local edge servers, 2) Neighboring servers and

3) DC servers. It also gathers the available CPU and memory

on each compute node. It also requests for available VNF-

flavors, the VNF-flavor objects give CPU and memory needs

of each VNFs. The second input is SFC request. The

algorithm passes the topology information to the SFC

deployment module. The Q-learning agent will learn the best

deployment for VNFs in the chain. The algorithm then uses

NFVO open-source APIs to deploy each VNF on the selected

server.

A. Q-Learning SFC deployment

Usually, an RL problem is modeled by 4-tuple states (s),

actions (a), state transition probabilities (pi), and rewards (r).

In our implementation states represent the VNFs in SFC.

Actions represents the selection of the appropriate server for

deployment, state transition probabilities are represented with

the resource availability on nodes, and rewards are based on

the overall latency and resource demand to deploy the SFC.

Q-Learning is a model-free RL learning approach, where

learning happens in several episodes (epochs). In each

episode, the agent in state s performs an action a, receives a

reward r, and moves to the next state s_next. The action value

is updated in the Q matrix of size [s × a] with the formula

given in Eq. 1.

���, �� = �1 −
��� ∗ ���, �� +
�� ∗ [� + ����� ∗
max {���_�
��, �}] (1)

Eta represents the learning rate (Eta = 0.05). Gamma

represents a discount rate (Gamma = 0.5) for a given Q-

Learning algorithm. Refer to Eq. 1, to find how they are used

in Q-Learning. Periodic decay of Q-values is taken care of

using gamma (discount factor). Epsilon (epsilon = 0.8)

represents the e-greedy coefficient used later in the algorithm.

For each episode, the epsilon is also reduced by a factor of

1.5 (epsilon = epsilon/1.5). In machine learning, the learner

tries to improve the current solution while switching between

exploration and exploitation of the solution space. ε-greedy

selection in addition to greedy selection helps the learner uses

a small amount of randomness to explore new solutions.

B. Reward

A good reward functions determines Q-learning algorithm

accuracy. We devised an intuitive reward function as shown

in Eq. 2. Rewards in SFC deployment scenario would depend

on various factors including the E2E number of hops of the

SFC path, and SFC length and resource ratio.

 In reward equation, l represents latency of SFC path and z

is the length of the SFC. We took a ratio of l and z to

normalize the latency parameter. Reward should be low for

high value of l/z. Hence we chose an exponentially decaying

type of profile. Then this exponential decay equation is

multiplied with resource ratio.

Resource ratio is calculated by dividing resource demand

and the lowest available resource at the edge. x represents the

CPU resources and y represents memory resource. High

resource ratio represents a complex deployment. We assign a

higher rewards to the complex deployment by multiplying it

to the exponential decay parameter. Hence this function

assigns high reward to complex deployment with lower

latency. α and β are the constants where α represents a higher

value such as 50 to manipulate the reward points giving

higher rewards to high resource demand with low latency,

and β represents a lower value such as 2, which is used for

adjusting the reward point to give very low reward for low

resource demand served with high latency.

� = � ∗ �� !
" # ∗ e%&'

((2)

Figure 3. Reward function for given resource ratio, SFC latency and SFC

length.

Most of the related work [10] defines a reward as 1 for

successful deployment and 0 for unsuccessful deployment,

however our reward function is very intuitive and considers

several parameters. Figure 3, further clarifies equation

behavior for different value of x, y, l and z.

C. Environment

We introduced two environment variables theta and Pi in the

already existing algorithm in previous work [9]. These

variables represent state transition probability in the Q-

learning algorithm. theta will store 1 if the server has enough

capacity (CPU and memory) to deploy the VNF, or else it will

store 0. Later this array is converted into the state transition

probability and stored in Pi using the Eq. 3.

)*+ = ,-.,/0
1 ,-.,/0

2
034

 (3)

If the SFC chain is long, very often it will hit a hostile local

server. We solved this by reducing the action space by

removing the servers with state transition probability as 0 (Pi

= 0) as shown in Eq. 4. This step is taken at each level, of

local, neighbor, and DC servers.

5. = 5.– 57 | 57 ∈)*7 = 0 (4)

By introducing these variables we were able to solve two

important issues with our previous algorithm. 1) An

encounter of the hostile servers 2) Incorporating the

dynamically changing environment.

V. EVALUATION AND DISCUSSION

We did evaluation of our method in two phase, 1) Q-

learning algorithm evaluation. 2) Deployment evaluation on

the testbed.

A. Q-learning algorithm evaluation

We conducted 1200 tests with 100 episodes each. The SFC

length varies between 3~8. The SFC could consist of 8 types

of VNF flavors with different CPU and memory demands

ranging from 1 to 4 CPU and 1 to 8 memory units. The

simulated topology for testing the algorithm consists of 9

local servers, 18 neighbor servers, and 27 DC servers,

however, the algorithm can support any number of servers.

The edge server has the capacity of 6 CPU and 8 memory

units and DC servers have a capacity of 34 CPU and 48

memory units. Figure 4, shows the Q-learning behavior of

our algorithm for SFC of length 8 with high, medium, and

low resource demands. The environment aware adaptive Q-

learning (Figure 4 (a)) shows lower latency and better

learning behavior as compared to a simple Q-learning

algorithm (Figure 4 (b)). The Latency for medium and high

resource demand is much improved.

Figure 4. Q-Learning algorithm results of SFC-Length 8 for 100

episodes. (a) Adaptive-Q-Learning, (b) Q-Learning

B. Deployment testing on the testbed

In second phase of validation, we deployed our algorithm

on a physical testbed with 9 servers, including 2 local, 6

neighbor, and 1 DC servers. We deployed SFC of size 3~8

successfully subjected to the resource availability. SFCs

contains several VNFs of different types including firewall,

flow monitor, deep packet inspection (DPI), intrusion

detection system (IDS), and proxy. To this end, we use open-

source software such as iptables, ntopng, nDPI, Suricata, and

HAProxy. While creating the VNF instances we choose the

appropriate images with these applications installed. The

SFC can be tested using iperf, apache-bench, nuttcp or

traceroute. These mechanisms gives us response time, and

throughput and RTT. We used Traceroute command in this

paper to validate if the request is passing through the SFC in

the appropriate manner. The traceroute command sends a

request through all the VNFs in the chain making it’s way to

the destination, and it sends back a short message at each

intermediate VNFs containing name, address and RTT of the

VNF.

Figure 5 represents 42 different deployment scenarios

chosen by the Q-learning algorithm based on resource

availability. These results validate our proof of concept as

RTT is least for local server deployment and highest for the

deployment across local-neigh-DC. Figure 5 also shows that

the SFC of varying length have similar latency. This is

because, the VNFs deployed at the same server have

negligible delay. To achieve each deployment scenario, we

have increased and decreased load the servers. In reality this

result could differ based on other parameters that influence

RTT.

We also measured the SFC deployment time for each

scenario. We found that deployment time steadily increased

with increasing SFC size and is least impacted by the choice

of deployment, local, neighbor or DC as shown in Figure 6.

Figure 5. RTT through traceroute request for each SFC deployment

across local, neighbor and DC.

Figure 6. SFC deployment time

VI. CONCLUSION & FUTURE WORK

The dynamic optimal resource allocation of SFC is a critical

research topic. In this paper, we have presented a method

based on environment aware adaptive Q-Learning to

dynamically allocate edge and DC computing resources to

SFC. The hierarchical network model based on the local

server, neighbor server, and dc server in this paper are more

realistic as compared to dynamic graph-based models. We

designed an intuitive reward model based on cumulative

latency, VNF resource demand, and SFC length. We

evaluated this research by running 1200 tests with varying

SFC-length, resource demand, and server capacity. In the first

phase, we evaluated Q-learning behaviors of the algorithm

and in the second phase of evaluation we tested our algorithm

on Openstack testbed. We verified the deployment using

traceroute command. We measured the RTT for 42 different

deployments. Based on the availability of the resources in the

local, neighbor and DC the algorithm chooses the best

possible deployment. RTT is highest for SFC deployment

across local, neighbor and DC. In future, we will also

consider network bandwidth and server NIC card capacity as

a resource requirement apart from CPU and memory.

Another possible consideration is to upgrade the algorithm to

Deep Q-Leaning.

ACKNOWLEDGMENT

This work was supported by the Institute of Information &

Communications Technology Planning & Evaluation (IITP)

grant funded by the Korean government (MSIT) (2018-0-

00749, Development of Virtual Network Management

Technology based on Artificial Intelligence).

REFERENCES

[1] “IETF SFC specification,” 2015

[2] S. Jeong, H. Kim, J. H. Yoo, and J. W. Hong, “Machine Learning

Based Link State Aware Service Function Chaining,” The 20th Asia-

Pacific Network Operations and Management Symposium (APNOMS

2019), Matsue, Japan, Sep. 18-20, 2019

[3] “ETSI Mobile Edge Computing (MEC). Framework and

Reference Architecture,” 2016.

[4] L. Peterson, A. Al-Shabibi, T. Anshutz, S. Baker, A. Bavier, S.

Das, J. Hart, G. Palukar, and W. Snow “Central Office Re-Architected as

a Data Center”, IEEE Communications Magazine, October 2016, pp

96~101

[5] “OpenStack Nova,” https://opendev.org/openstack/nova

[6] “GitHub Repository for Network Intellegnec,”

https://github.com/dpnm-ni/

[7] Z. Mammeri, “Reinforcement learning based routing in

networks: Review and classification of approaches,” IEEE Access, vol. 7,

pp. 55916– 55950, 2019.

[8] D. Lee, J. H. Yoo, and J. W Hong , “Q-learning based Service

Function Chaining using VNF Resource-aware Reward Model,”

APNOMS 2020, Daegu, South Korea, Sep. 23-25, 2020

[9] S. Pandey, J. W. Hong, and J. H. Yoo, “Q-Learning based SFC

deployment on Edge Computing Environment”, APNOMS 2020, Daegu,

South Korea, Sep. 23-25, 2020

[10] A. Leivadeas, G. Kesidis, M. Ibnkahla, and I. Lambadaris, “VNF

Placement Optimization at the Edge and Cloud,” Future Internet, vol. 11,

issue. 3, article number 69, 9 March 2019

[11] R. Shi et al., “MDP and Machine Learning-Based Cost-

Optimization of Dynamic Resource Allocation for Network Function

Virtualization,” IEEE International Conference on Services Computing,

USA, pp. 65~73, 2015

[12] J. Sun, G. Huang, G. Sun, H. Yu, A. K. Sangaiah and V. Chang

, “A Q-Learning-Based Approach for Deploying Dynamic Service

Function Chains,” Symmetry, vol. 10, issue 11, article number 646, 2018

