A Comprehensive Solution for the Analysis,
Validation and Optimization of SDN Data-Plane
Configurations

Wejdene Saied, Faouzi Jaidi
Digital Security Research Lab, (Sup’Com)
University of Carthage, Tunisia
{wejdene.saied, faouzi.jaidi} @supcom.tn

Abstract—Software Defined Networking (SDN), as an emerging
paradigm, offers a centralized control platform by disassociating
the forwarding process of network packets (data plane) from
the routing process (control plane). However, the distributed
state of the Openflow rules across various flow tables and the
involvement of multiple independent rules writers may lead to
problems of inconsistencies and conflicts within configurations at
the infrastructure level. To tackle these issues, we propose, in
this paper, an offline approach to fix violations at data plane
side and a fine-grained control of SDN switches flow tables. Our
solution considers Flow entries Decision Diagram (FeDD) as data
structure and relies on formal techniques for analyzing the policy
defects and resolving misconfigurations. It allows ensuring that the
operator’s policies are correctly applied in an optimal way. The
implemented prototype, on top of OpendayLight, of our solution
and experimentations, based on a real network configurations
topology, demonstrate the scalability and applicability of our
approach.

Index Terms—Software Defined Networking, Security Policy,
Invariants Detection, Flow entries Decision Diagram, SDN Flow
Tables Analysis.

I. INTRODUCTION

Most operators check configurations device by device with an
ad-hoc way in order to debug traditional network faults. How-
ever, existing network tools are unable to automatically detect,
locate and repair the root causes. To solve these challenges,
Software Defined Networking (SDN) proposes the decoupling
of data and control planes in network equipments. This enables
independent development of their equipments and a centralized
control platform where operators can statically verify network
policies. However, many errors caused by switch software bugs
and external modification [6, 15] bring forth new security
challenges. We focus our study on recent approaches to verify
the correctness of network configuration at data plane side (i.e
proposals allowing to detect and correct misconfigurations at
the Openflow switch level). Most of existent (related) works
generate probe packets to check the existence of rules at
switches without verifying additional network properties (e.g.,
access control). These security properties are dependent on
paths under frequent network updates or reconfigurations. Other

978-3-903176-31-7 © 2020 IFIP

Adel Bouhoula
College of Graduate Studies

Arabian Gulf University, P.O. Box 26671, Kingdom of Bahrain

a.bouhoula@agu.edu.bh

works [12, 16, 18], are only able to simply raise alarms
to indicate some violations to users, but cannot provide an
automatic violation resolution. To overcome the limitations
of existing approaches, we proposed to use in [5] a graph-
based model, called Flow entries Decision Diagrams (FeDD), to
schematize the relations between intra and inter switch filtering
rules. This model allows detecting some network properties
violations like blackholes and loops forwarding. However, this
prior work is insufficient to meet the requirements of today’s
operators: a tool that ensures the operator’s configurations will
correctly reflect on packet forwarding paths. More, the defined
model deals only with defects detection and does not focus
on defects analysis and resolution. Given these limitations, we
think a missing part in our previous work that can enhance
the security at SDN data plane configurations. We focus, in
the current paper, on a complementary solution, that enhances
the previous model, allowing: (i) the identification of additional
invariants like partial and entire access violations with regards
to the firewall security policy; and (ii) the correction of all
the detected defects and faulty rules while ensuring the switch
configurations accuracy and correctness in an optimal way.
Therefore, the major contributions of this paper are summarized
as follows:

1) We propose a method to investigate access violation kinds
from FeDD analysis: entire and partial violations by
referring to the firewall application to bring out concrete
switches misconfigurations.

2) We propose fine-grained resolution mechanisms to correct
each discovered security invariant in the first step. This
process should be accurate, correct and effective by ap-
plying different controls (such as modifying some fields
of faulty rules, removing some rules, etc.) while respect-
ing the compliance of switch configurations regarding
the firewall security policy and without increasing the
configurations complexity.

3) To ensure a high level of surety, we formally specified
(via a set of inference systems) and proved the correctness
and completeness of our proposal.

4) We conducted several experimental results and eval-

uations that highlight the efficiency, effectiveness and
scalability of our approach.

This paper is organized as follows: Section 2 presents a
summary of related works. Section 3 overviews background
technologies and security challenges. In Section 4, we detail
our approach . In Section 5, we address the implementation and
evaluation of our solution. Finally, we present our conclusions
and discuss our plans for future work.

II. RELATED WORKS

Previous efforts on automatic network debugging addressed
the correctness of network configurations [6]. However, despite
the fact that the SDN controller program and the configurations
are correct, the data plane may show misconfigurations due to
switch software bugs [22] or malicious attacks [4]. Existing
verification tools can only ensure network correctness at the
controller side, but cannot guarantee the correctness of rules at
flow tables. The data plane verification tools are classified into
three categories as follows [3, 10]:

Network policies verification : Anteater [14] is a tool that
analyzes the data plane state of network devices by encoding
switch configurations as boolean satisfiability problems (SAT)
instances. Veriflow [13] can perform reachability checking in
real time. FlowChecker [20] identifies intra-switch misconfig-
urations within a single flow table. NetPlumber [12] checks
incrementally the compliance of state changes and use Header
Space Analysis (HSA) to capture all possible data paths via
the plumbing graph. Hu et al. [11] propose the FlowGuard
tool for building SDN firewalls, but, it cannot monitor dynamic
packet modifications. Authors in [9] further extended the work
of FlowChecker for adjusting the structure of multiple flow
tables by treating the table as the location of the state instead
of the device to check the flow table pipeline misconfiguration.
However, the result only returns a single counterexample for
the violation, which is hard to be used to analyze the reason
for failures. Li et al. introduced the field transition rules into
VeriFlow for defending covert channel attacks [8]. However, the
header change rules still cannot take action in the forwarding
graphs for verifying the reachability. A recent tool, called Flow-
Mon [7], addresses challenges created by the inter-reaction of
flow path and firewall authorization space. However, FlowMon
cannot detect indirect violations caused by rule dependencies.
Controller software verification : Canini et al. [23] present
the NICE tool which checks the correctness of SDN con-
troller but it cannot guarantee the absence of errors. More,
no correction approach or update inter-switches is proposed
after bugs detection. Besides, only the basic invariants are
detected. OFRewind [24] enables recording and replaying of
troubleshooting for the network. However, it does not auto-
mate the testing of Openflow controller programs. Authors,
in [1], propose a method for automatic verification of packet
reachability by automatically generating logical formulas for
reachability verification. However, it cannot handle other more
complex policies such as access violations and loop forwarding.
Authors, in [2], adopt the concept of atomic predicates and the

parallel process computational framework Spark to verify data
plane properties. However, they don’t propose the resolution
mechanism of these defects.

Packet trajectory tracers and data plane testing tools
ATPG [17] generates automatically test packets by injecting
network probes. However, it cannot localize the faulty rule.
More, this tool does not dictate how these probes should be
constructed. ATPG is limited to detect only liveness properties.
The highlight of VeriDP [21] is that in order to detect the flow
table inconsistencies, it uses the Bloom-filter-based tagging
method. However, this approach doesn’t incorporate all Set-
Actions in the flow tables. These approaches do not include
all types of actions and can detect only some basic invariants.
In our prior work [5], we propose a new approach for a deep
and automated data plane analysis with consideration of flow
rules dependencies. However, it is limited to discover some
reachability issues such as forwarding loops and blackholes. In
addition, we do not propose any method to correct the faulty
rules after localizing misconfigurations.

At the end, the major limitations of these works consist
in simply preventing users from possible anomalies, but it
cannot provide a fine-grained violation resolution. Also, they
ignore rule dependencies and some invariants within security
constraints, such as firewall policies, for compliance checking.
Unlike recent work that provides a manual invariant resolution
process that can trigger possible anomalies, our approach allows
the administrator to automatically correct detected defects while
ensuring that SDN data plane is continuously compliant with
the security policy deployed in the firewall application.

III. BACKGROUND

In what follows, we formally define some key notions to
explain our approach.

A. Security Policy

A security policy SP represents a collection of all packets
either allowed or denied by the firewall rules. We consider two
sets, SP; and SP, where SP, consists of packets accepted
to pass through the set of directives SP and SP; is the
subset of denied packets. In this paper, we suppose that SP
is consistent,i.e.S P;NSP,=0.

B. Flow Policy

Openflow-enabled devices [19] support the abstraction of a
flow table, which is manipulated by the Openflow controller.
When a packet arrives at the OpenFlow switch from an input
port, it is matched against the flow table to determine if
there is a matching flow entry. Formally, a flow entry is
Ft = {r;l <@ < n} = {fi = action;;1 < i < n}
where f; =< Qsourcel P, Qdestinationl P, portDest > and
action;={Set_Field \Forward, Forward, Drop, Empty,
Controller}. The action Controller forwards packets to the
controller which in turn will filter according to the security
policy.

C. FeDD Description

In this paper, we referred to the data structure used for mul-
tiple switches, called Flow entries Decision Diagrams (FeDDs)
and built from a set of rules in the switch configurations. A
FeDD is an acyclic and directed graph that has exactly one
node, called the root. A directed path from the root to a terminal
node is called a decision path dp;. The algorithm used to
construct a FeDD is detailed in [5]. A decision path dp; is
depicted as follows:
dp; = (dp;.S) A (dp;.D) A (dp;.P) A (dp;.Sid.r) A (dp;.rid) A
(dp;.r.actions) where:

e dp;.S, dp;.D, dp;.P are the domain of 3-tuple fields (Source
IP address, Destination IP address and Port destination)
matched by the direct path dp;.

o dp;.Sid.r is the identifier of the current switch that owns
the rule matching the domain of packets in the dp;.

e dp;.rid identifies the rule overlapped with the packets
domains represented by this dp;.

o dp;.ractions is the action of each direct path that depends
on the actions of each flow entry handled by this direct
path from every switch in this path. It can be Exit, Drop,
fwd_nextSw, Empty or Controller.

All FeDD based models convert the switch flow tables into a
flow entries decision diagram. Therefore, FeDD of our network
is: FeDD = U;FeDD; = U;.1. ndpi

D. Security Challenges

Openflow switch misconfigurations have a direct impact on
the security and the efficiency of the network. To highlight this
situation, we introduce the following invariants:

Loop freedom: it means that there should not exist any packet
injected into the network, that it would cause a forwarding loop.
The loop invariant can be identified by checking the flow history
to determine if the flow has passed through the current switch
before.

Access violation : Openflow allows various Set-actions, which
can rewrite the values of header fields in packets. This challenge
can influence the path parsed by some packets. More, flow
rules may overlap each other in the same switch or between
switches which cause indirect network breaches. Depending
on the complexity of an overlap found in violated space, we
distinguish between two types of access violations:

« Entire Violation: if the fields domain of the decision path
covers the whole space (denied or accepted) of the security
policy.

« Partial Violation: if the fields domain of the decision path
partially covers the space of the security policy.

Blackholes and Controller: in order to pinpoint the "Black-
hole” and ”SendTo controller” invariants, the SDN switch
configuration considers the default-action (Drop, Empty or
SendTo controller) as an action used for packets that don’t
match any existing flows.

IV. OUR APPROACH
A. Principle

The principle of our approach, depicted in Fig.1, is based on
three main phases: Phase 1: Security Policy Space Analysis—

Output

mmmmmmmmmmmemoeeooeog
Security Policy i
H1->H3: Drop [N
Rule 2 ' o
¥ 1
|

Security Policy Space Analysis

SP Space Partition

i
Correct |
& i
i
I
I
]

Complete FeDD

FeDD Y
Space Comparison i

Decisions Paths Analysis

Rule Actions Analysis
DP Domains Analysis

« Pinpoint of
the faulty rule

‘
|
CONTROLLER | [Blackheles Entire Violation ||| ™|

Partial Violation

Violation Detection

v

©

‘ Rule Actions Change ‘
\

& Optimization || |70
valid& |
Optimized |
SDN H
1

'

I—|[Flow Rerouting 8& FeDD Updatd Forward I Configuration |
!
- Flow Removing Drop Flow
Packet Blocking Drop some
packets

OpenFlow Flow Tables

Fig. 1. Approach Architecture.

given the security policy deployed in the firewall application as
input, we extract accepted and denied packets respectively as
two spaces SP,ccept and S Pgeny.

Phase 2: Security Analysis & Violation Detection— in this
step, we analyze each decision path in our FeDD in order to
detect possible defects in the configuration. We identify basic
anomalies as well as network security policy access violations.
This detection is based on the verification of a set of invariants
according to the Security Policy (SP). The major advantage of
this detection is to specify the rule that caused the error, unlike
other related works which reject the flow or identify only the set
of faulty switches. This step will help us directly and quickly
correcting the wrong decision without analyzing all the paths
in our FeDD.

Phase 3: Automatic Violations Resolution & Refinement— in
this step, we define a set of resolution methods for each detected
invariant with respect to the following technical requirements:
accuracy, flexibility and scalability.

B. Case Study

To make our discussion concrete, we consider an example
of network topology, shown in Fig.2, with three switches, three
hosts, and a simple firewall application used to deploy the
security policy. We assume in our study that the SDN con-
troller program is correct and the firewall rules are consistent.
One such challenge is introduced by the feature of packet
modification bypassing a firewall. In the following scenario,
we demonstrate a detection of indirect access violation due to
modification of field values: a packet from the host 191.55.3.4
arrives at switch S1, it matches the first rule that sends it to

switch S3 after replacing its source IP address with the new
191.55.3.9. Then, the switch S3 drops this packet after applying
its first matching rule. However, this flow must be forwarded to
the destination host 191.55.7.2 according to the second firewall
rule.

Source IP Destination Destination
13 Port
191.55.7.2 191.55.3.25 *
191.553.4 191.55.7.2 *

191.55.3.0/24 191.55.3.25 25
* . +

Action

f

AT
E
[

.

accept
accept
accept
drop

PwnrzD
P

H1:191.55.3.4 H2:191.55.3.9 Rule Source IP | Destination | Destination | Action
= n- N 13 Port
— ! — I 1 1915534 1915572 * Set_Src(191.55.3.4,191.55.3.9)\Fwd_s3
P S 2 191.55.3.4 * 25 Fwd_S2
3 1915539 * 25 Fwd_S2
4 19155325 * * Fwd_S3
5 % * Drop

==F = ? switch 52 1
Switch $3

Rule Source IP | Destination | Destination| Action | [Rule |Source 3 ‘Des!ina!iun‘Des‘ina!ion Action
' [Port ' Port
1 191.55.3.9 * * Drop 1 191.55.3.4 191.55.7.2 * Fwd_Firewall
2+ 191.55.7.2 * Exit 2 191.55.3.25 * Fwd_S1
3 191.55.3.25 * Fwd_s2 |3 191.55.7.2 * Fwd_s3
a * * Empty | |4 * . Drop

Fig. 2. Network Topology Case of Study.

C. Security Analysis & Defects Detection

In this section, we introduce our method, as described in
Algorithm 1, for discovering various invariants from our FeDD.
To achieve our goal, we start with the following definition:

Algorithm 1: Discovering Access Violations

1 Input: FeDD, a set of decision paths dp ;
2 SP,, a set of accepted packet from SP;
3 SPy, a set of denied packet from SP;
4 Output: EnV, a set of dp detecting an entire violation
5 PaV, a set of dp detecting a partial violation
1: for each dp € FeDD
2: if (r.actions # fr.actions) A (dom(dp) C SP actions)
then
dp.append("EnV”) ;
else
if (dOm(dp) N SPT.actions 7é Q)) then
dp.append(’PaV”) ;
return EnV, PaV;

A A

Definition 1. FeDD is called misconfiguration-free if and only
if 3dp; € FeDD that verifies one of the following conditions:
- Loop (LP): a direct path dp; € FeDD invokes forwarding
of loops if the previousPaths stores twice the same switch
traversed by this dp;.

- Blackhole (BLK) : a direct path dp; € FeDD depicted a
blackhole if the packet matched the default action Empty as
configured in the switch.

- Entire Violation (EnV) : a direct path dp; € FeDD is
totally violated if all the packets tracked by this path apply
a different action as applied in the security policy SP. Hence
EnV is identified by applying Algorithm 1 (L1-L3). Formally:

(dom(dpz) c SP!dpi.rvi.action)

- Partial Violation (PaV) : a direct path dp; € FeDD is
partially violated if some packets tracked by this path apply
a different action as applied in the security policy SP. Hence
PaV is identified by applying Algorithm 1(L4-L6). Formally:
(dom(dpz) ¢ SPdpi.rui.action>/\(dom(dpi)mspdpi.rvi.action 7&
(). In fact, it compares the domain of the direct path with the set
of packets of the security policy having two different actions,
if it is totally included by it, then we have the entire Violation
EnV and if it is partially included by it, then we have a partial
Violation PaV.

S>-Re-Fwd_S1S2.Re.Fwd_S][52.Re.Fwd_S1
S1.Rs.Drop || Ss.Ra.Exit || S1.Ra.Fwd_Ss
Ss.Ra.Fwd_S2
PaVv EnV Loop
dp1 dp2 dp3

Fig. 3. Discovering Invariants from FeDD2.

Sa.Re.Exit [|Ss.Rs.Fwd_Sy[Ss.Ra.Empty
S2.R2.Fwd_S4
S1.Rs.Drop
EnV EnV Blackhole
dpl dp2 dp3

Fig. 4. Discovering Invariants from FeDD3.

For example, in our case study and according to Fig.2,
we have three sets of possible input addresses (h1:191.55.3.4,
h2:191.55.3.9 and h3:191.55.7.2), and by applying our Algo-
rithm 1, we obtain all invariants discovered from FeDD depicted
in Fig.3 and Fig.4.

D. Invariants Correction & Refinement

Our objective is to determine which correction method
should be used for each detected invariant.

1) Resolving loop forwarding: our approach to resolve
loop forwarding from our FeDD is described in Algorithm
2. At first, we extract all possible paths from our topol-
ogy to track a packet from source to target destinations.
For example, (source,target) = (191.55.3.4,191.55.7.2) =
(51,52,53) v (S1,.53). Then, for each dp; € LP, we compare

Algorithm 2: Discovering Loop Defects

1 Input: LP, a set of decision paths dp where a loop is
detected;

2 Output: dp well corrected

: for each dp € LP

if dom(dp) € SP, then

if dom(dp.D).attached(dp.Sid) then

r.setAction(”Exit”) ;

dp.append(”Exit”) ;

else

nextPort < dom(dp).finDestPort(Sid);

r.set Action(” port> + nextPort);

flowAuz.Update Flow(dom(dp) N dom(r));

nextSw < dom(dp).extractSid(r.actions);

10: if (dom(dp).islastSwitch(dp.nextSw) then

11: r.setAction(” Exit”);

12: else

13: explore(flowAux, nextSw, previousPaths, dp());

14: else

15: r.setAction(” Drop”);

16: dp.append(” Drop”) ;

R A A S

the domain of this dp; with allowed or denied spaces from the
space SP set. Thus, we have two cases:

e Case 1: dom(dp;) € SP,; in this case, we have two
situations: (i) the destination of this dp; is not linked to
the switch caused a loop : in this situation, we forward
the packet to the next switch. In fact, given a network
topology, we identify the paths followed by the packet
from the source address (dp.S) to the target destination
(dp.D). Then, we retrieve the following switch identifiers
from these paths. When, we reach the last switch (termi-
nal), we assign the action “Exit” to the corresponding rule
(L10-L11). (ii) Otherwise, we just modify the rule action
to “Exit” as described in 2(L3-L5);

o Case 2: dom(dp;) € SP,, we just change the action of
the rule r; which caused a loop to "Drop” (L15-L16).

2) Inference System for Resolving Access Violations: the
inference system rules, shown in Fig.5, apply to triplet (EnV,
PaV, FeDD) where EnV and PaV are the sets of entire and
partial violations respectively and FeDD is the set of all flow
entries decision diagrams of all paths in our network. The
inference rule Correctg,y is used to correct EnV. It deals
with each dp; from the set EnV and changes the action of
the rule that caused this violation in dp;. The inference rule
Correct pgyis used to divide dp;, into two sets:

1) dpi™e is the set that has the correct action as defined in
the security policy;

2) dpi™*e’ represents the subset of dp, that should be fixed.
This inference rule is used to correct the action of this
path dp;.

The function UpdateFeDD(Sw, 1;.id,
allows to update the FeDD by replacing dp;

dp;.ry;.action)
by the

Init —
EnV,PaV,FeDD
EnV U {dp;}, PaV,FeDD
Correctg,y
EnV,PaV,FeDD’
Where FeDD' = UpdateFeDD(Sw, 7. id, SPay, .- action)
EnV,PaV U {dp;'}, FeDD
Correctpgy
EnV, PaV,FeDD’
FeDD' = FeDD\ {dp,'} U FeDD™mter U FeDDinter'
FeDD™" = UpdateFeDD(Sw,7,_y),.id,dp, . 7¢_y),- action) A
Where (domain(dp;,"™") = domain(dp;") N LY —
FeDD™*r' — UpdateFeDD™* (Sw,1,,.id, ! dp, .1, action) A
(domain(dp,™*" ") = domain(dp, Y\domain(dp, ™)
?,0,FeDD
Success e
FeDD

Fig. 5. Inference system for resolving entire and partial access violations.

new direct path. As an example, we deal with the case
of PaV discussed in Fig.3. We consider dpli™ter =
dpl N SP, = the branch represented by these values:
[@Qsre;p, Qdest_ip, port_dest]=[191.55.3.0,191.55.3.25, 25].
Therefore, dpl=(dp1 \ dp1"*°") U (dpl N dpli™te"). Then, the
inference rule correctp,y allow to divide this direct path into
two sub paths where the first dpl N dp1?***" represent paths
which are conform to SP and the second one (dpl \dplmt‘”")
is the totally violated path. The Swuccess rule is applied when
the two sets EnV and PaV were exhausted.

i_S3 ‘ R2.Fwd_S3

ssz.Fwd_ssu‘ 2.R

S3.R2

Fig. 7. Modified FeDD of Fig.4

3) Blackholes and Controller Resolution: the main idea to
resolve blackhole defects is to compare the domain of each
dp; € BLK with the space of set packets in SP. Hence, we
have two cases: (1)dom(dp;) C SP,, we change the action of
matched rule in this dp; to ”Drop”; (2) dom(dp;) C SP, we
replace the Empty action by Exit. For example, we resolve the
blackhole identified at dp3, highlighted in Fig.4, by assigning
the action ”Drop” to rule R4 of switch S3 because dom(dp3) C
SPy (see fr4 depicted in Fig.2). As an example of controller
invariant resolution: SMTP traffic will be accepted from source
191.55.3.4 to destination 191.55.7.2 according to second rule
deployed in the firewall configuration (see fr2 in Fig.2). After
applying our correction methods, we obtain the new updated
FeDD shown in Fig.6 and Fig.7.

E. SDN Switch Configuration Validation

We observe that after resolving an invariant “loop” (dp3
of Fig.3) by changing the two rules actions of S2 and S3
(S2.R2.Forward_ S3 and S3.R3.Exit), a partial violation PaV
(identified at dp1 of Fig.3) and an entire violation EnV (identi-
fied at dp2 of Fig.4) are also well corrected as shown in Fig.6
and Fig.7. As results, we obtain the new switches configurations
validated and well consistent after applying our anomalies
analysis and resolution techniques as depicted in TABLE I and
TABLE II

TABLE 1
NEW SWITCH S2 CONFIGURATION
Rule Source Destination Port action

1 191.55.3.4 191.55.7.2 * | Forward_Firewall
2 * 191.55.3.25 * | Forward_S3
3 * 191.55.7.2 * | Forward_S3
4 * * * | Drop

TABLE 11

NEW SWITCH S3 CONFIGURATION

Rule Source Destination Port action
1 191.55.3.9 * * | Exit
2 * 191.55.7.2 * | Drop
3 * 191.55.3.25 * | Exit
4 * * * | Drop

V. EXPERIMENTAL RESULTS AND EVALUATION

The experiments were run on desktop with an Intel Core
i7 CPU 3.6GHz and 32GB Memory. Then, to implement our
methods, we use Java JDK 1.8 with Eclipse. In order to
easily integrate our solution, we used all-in-one pre-built virtual
machine by SDN Hub [25] within Ubuntu-14.04.4. We emulate
networks with Mininet and use the controller OpendayLight
with support of Openflow v1.3. It is supposed that we have
IP v4 addresses with netmasks and port numbers of 16 bits
unsigned integer with range support. To evaluate the practical
value of our methods, we have implemented them based on
the FeDD data structure using the rules set provided by two
topologies:

1) Fat tree shown in Fig.2. We used, at first, the following
command to build the configuration of our topology
from a file "MyTopo™:

ubuntu@sdnhubvm : /mininet/configurationSsudo mn --custom
MyTopo.py ——topo MyTopo

Then, We used the ping tool in order to populate the
switches configurations with shortest-path forwarding
rules.
2) The Stanford backbone network [26] which consists
of 16 Cisco routers. For Stanford, the configuration
files are translated to correspondent OpenFlow rules,
and installed at Open vSwitches. Then, we extracted
data from switches using the command line tool
‘ rodvand@atpgSsudo ovs-ofct! dump ‘

Violations Analysis Time Changes
in scalable architecture

Analysis and Resolution Time Changes

——Fat Tree
—m— Stanford

Time (s)

Processing

Number of rules

Fig. 8. Resolution Time Changes. Fig. 9. Scalability Analysis.

Hence, we consider time treatment factor that we review by
varying the number of rules for each dataset. The maximum
number of rules, deployed in a single switch, is 3000. In
overall terms, we consider the average processing time, in
seconds, of the main procedures of misconfigurations detection
and correction. The violation detection and resolution overhead
were increased linearly as the switches size increases as shown
in Fig.7. The experimental results, depicted in the Fig.8, show
a polynomial increase with the growth of flow rules in scalable
architecture such as Stanford topology. The traffic latency
in Stanford is due to rules complicated dependencies. We
identify accurately the faulty rule from the violated decision
paths. More, we provide a fine grained, automatic correction
process for each defect detected. Thus, it reduces complexity
constraints. Therefore, obtained processing time shows that our
tool performed efficiently within the case studies.

VI. CONCLUSION AND FUTURE WORK

In this paper, our proposal is intended for a comprehensive
discovering and fixing of data plane security invariants based
on formal techniques and by using FeDD as data structure.
The main advantages of our proposal are the following: First,
unlike other works, our approach ensures continuous SDN
data plane compliance with the security policy without causing
further errors as a result of our accurate and optimal resolution
mechanism. Second, we formally proved the correctness and
completeness of our formal reasoning for validating SDN data-
plane configurations. Third, our experimentations, that have
been conducted on different case studies, highlighted promising
results. As a future work, we plan to consider techniques for
verifying SDN security policies and resolving violations in a
real time context.

(1]

[2]

[3]

[4]

[3]
[6]

[7]

(8]

[9]

[10]

[11]

[12]

[13]
[14]
[15]
[16]
[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

REFERENCES

N. Yoshiura, K. Sugiyama. Packet Reachability Verification in Open-
Flow Networks. In: 9th International Conference on Software and
Computer Applications, ICSCA 2020, pp. 227-231. ACM, Langkawi,
Malaysia,2020. URL https://doi.org/10.1145/3384544.3384573

Y. Zhang, J. Li, S. Kimura, W. Zhao, S. K.Das. Atomic Predicates Based
Data Plane Properties Verification in Software Defined Networking Using
Spark. IEEE Journal on Selected Areas in Communications, 2020.

A. Shaghaghi, M. A. Kaafar, R. Buyya, S. Jha.Software-Defined Network
(SDN) Data Plane Security: Issues, Solutions, and Future Directions.
In: Handbook of Computer Networks and Cyber Security, pp. 341-387.
Springer, Cham, 2020.

B. Celesova, J. Val’ko, R. Grezo, P. Helebrandt. Enhancing security of
SDN focusing on control plane and data plane. In : the 7th International
Symposium on Digital Forensics and Security (ISDFS), pp. 1-6. IEEE,
2019.

W. Saied, N. B. Y. B. Souayeh, A.Saadaoui and A. Bouhoula. Deep and
Automated SDN Data Plane Analysis. In SoftCOM, 2019.

A. Banerjee, D. A. Hussain. Maintaining Consistent Firewalls and Flows
(CFF) in Software-Defined Networks. In : Smart Network Inspired
Paradigm and Approaches in IoT Applications, pp. 15-24. Springer,
Singapore, 2019.

Hu.Hongxin, Han.Wonkyu, K.Sukwha, W.Juan, A.Gail, Z.Ziming,
Li.Hongda. Towards a reliable firewall for software-defined net-
works. In Computers & Security, vol. 87, 101597. Elsevier, 2019.
https://doi.org/10.1016/j.cose.2019.101597

Q. Li, Y. Chen, P. P. Lee, M. Xu, K. Ren. Security policy violations in
SDN data plane. IEEE/ACM Transactions on Networking, 26(4), 1715-
1727, 2018.

B. Yamansavascilar, A. C. Baktir. Flowtable pipeline misconfigurations in
software defined networks. In : IEEE Conference on Computer Commu-
nications Workshops (INFOCOM WKSHPS), pp. 247-252. IEEE, 2017.
K. Benzekki , A. Fergougui and A. E. Elalaoui. Software-
defined networking (SDN): a survey ?. In CNSM, 2017. URL :
https://doi.org/10.1002/sec.1737

H.Hongxin, H.-Wonkyu , A.Gail-Joon , and Z.Ziming. FLOWGUARD:
building robust firewalls for software-defined networks. In HotSDN, 2014.
P. Kazemian, M. Chan, H. Zeng, G. Varghese, N. McKeown, and S.
Whyte. Real time network policy checking using header space analysis.
In USENIX, 2013.

A. Khurshid, W. Zhou, M. Caesar, and P. Godfrey. Veriflow: Verifying
network-wide invariants in real time. In USENIX, 2013.

H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. Godfrey, and S. T. King.
Debugging the data plane with Anteater. In SIGCOMM, 2011.

G. Pickett. Staying persistent in software defined networks. In Black Hat
Briefings, 2015.

H. Yang and S. S. Lam. Real-time verification of network properties using
atomic predicates. In ICNP, 2013.

H. Zeng, P. Kazemian, G. Varghese, and N. McKeown. Automatic test
packet generation. In CoONEXT, 2012.

H. Zhang, C. Lumezanu, J. Rhee, N. Arora, Q. Xu, and G. Jiang. Enabling
layer 2 pathlet tracing through context encoding in software-defined
networking. In HotSDN, 2014.

N. McKeown, T. Anderson, H.Balakrishnan, G.M. Parulkar, L.L. Peter-
son, J.Rexford, S.Shenker, and S.T.Jonathan. Openflow: enabling inno-
vation in campus networks. In: Computer Communication Review, pp.
69-74. ACM, 2008.

E. Al-Shaer and S. Al-Haj. Flowchecker: Configuration analysis and
verification of federated openflow infrastructures. In SafeConfig, 2010.
Z.Peng, L.Hao , H.Chengchen, H.Liujia , X.Lei , W.Ruilong, Z.Yuemei.
Mind the Gap: Monitoring the Control-Data Plane Consistency in Soft-
ware Defined Networks. In CoNEXT, 2016.

T. Ball, N. Bjgrner, A. Gember, S. Itzhaky, A. Karbyshev, M. Sagiv,
M. Schapira, and A. Valadarsky. Vericon: Towards verifying controller
programs in software-defined networks. In PLDI, 2014.

M. Canini, D. Venzano, P. Peresini, D. Kostic, and J. Rexford. A NICE
way to test Openflow applications. In USENIX, 2012.

A.Wundsam, D.Levin, S.Seetharaman, A.feldmann, et al. OFRewind:
Enabling record and replay troubleshooting for networks. In USENIX,
2011.

All-in-one sdn app development starter vm.
http://sdnhub.org/tutorials/sdn-tutorial-vm/, 2019

[26] Hassel, the header space library. https://bitbucket.org/peymank/hassel-
public, 2020

