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Abstract—We propose an online heuristic algorithm for the
problem of network slice placement optimization. The solution
is adapted to support placement on large scale networks and
integrates Edge-specific and URLLC constraints. We rely on an
approach called the “Power of Two Choices” to build the heuristic.
The evaluation results show the good performance of the heuristic
that solves the problem in few seconds under a large scale scenario.
The heuristic also improves the acceptance ratio of network slice
placement requests when compared against a deterministic online
Integer Linear Programming (ILP) solution.

Index Terms—Network Slicing, Optimization, Heuristics, Place-
ment, Large Scale, Power of Two Choices.

I. INTRODUCTION

By breaking the link between functions and their hosting
hardware, Network Function Virtualization (NFV) deeply mod-
ifies the architecture and the operation of telecommunications
networks. While so far specific network functions hardware
had to be deployed, virtualized network functions (VNFs)
can today thanks to virtualization be deployed on common
hardware. Furthermore, the life-cycle of VNFs can be managed
independently from the underlying physical infrastructure. A
network then becomes a programmable platform, which can
host chains of VNFs so that various logical networks (viewed as
series of VNFs) can be deployed over the same shared Physical
Substrate Network (PSN). This has given rise to the concept
of Network Slicing, which takes benefit of the logical and/or
physical separation of network resources to allow multi-tenancy
support, customization and isolation of Network Slices [1].
Even though several definitions of slicing have been considered
by standardization organizations, for instance NGMN [2], 3GPP
[3], or ETSI [4], we consider in this paper a network slice
as a set of VNFs interconnected by transmission links. Such
a Service Function Chain (SFC) has bandwidth and latency
constraints in addition to traditional IT resource requirements
in terms of computing and storage. All these constraints apply
to Service Level Agreement (SLA) as requirements of the
Network Slice tenant. Proper management and orchestration
of Network Slices, VNFs and their associated Virtual Links
(VLs) are essential to meet and maintain the SLAs of concurrent
Network Slice. Simultaneously achieving optimal utilization of
network resources and guaranteeing SLAs of Network Slices
is a major challenge for network operators. One component of
this process is the placement of network slices.

Network slice placement can be viewed as an optimization
problem that consists of choosing the servers of the PSN in
which the VNFs composing a Network Slice can be deployed
and which physical links to use in order to steer traffic between
these VNFs. This problem contains a specific optimization
objective (e.g., minimizing resource consumption, optimizing
a specific QoS metric, etc.) that must be satisfied [5], [6].
Network slice placement problem is a special case of more gen-
eral problems such VNF Forwarding Graph Embedding (VNF-
FGE), Virtual Network Embedding (VNE), Service Function
Chain placement (SFC-P), and VNF Placement and Chaining
(VNF-PC) problems. Numerous papers about network slice
placement and its variants use heuristic-based approaches to
solve associated optimization problems. However, most of them
do not jointly address the large scale PSNs and Network
Slice Placement Requests (NSPR), neither the Edge-specific
constraints and thus the direct impact on QoS metrics (notably,
E2E latency). In this paper, we develop an original method of
placing network slices through a heuristic based on the Power
of Two Choices (P2C) algorithm [7]. We adapt the heuristic to
large scale network scenarios and integrate both edge-specific
constraints related to user location and strict end-to-end (E2E)
latency requirements. We implement a policy for selecting
servers for VNF placement that offloads edge data centers and
improves Network Slice acceptance ratio in most simulation
scenarios when compared to an online ILP-based placement
algorithm proposed in a recent previous work [8] that we extend
here. The organization of this paper is as follows. In Section
II, we review related works. Section III provides assumptions
and definitions of the model. Section IV introduces the problem
statement and formulation. Section V introduces the proposed
heuristic approach. The experiments and evaluation results
are presented in Section VI. Some concluding remarks and
perspectives are presented in Section VII.

II. RELATED WORK ANALYSIS

In this section, we review some recent studies on the network
slice placement problem. We notably consider comprehensive
surveys like [26], [27], [6], [28]. Tables I and II reflect this anal-
ysis based on 3 axes: i) heuristics for network slice placement
problem (Section II-A), ii) placement in large scale networks
(Section II-B), and iii) Edge-specific constraints (latency and
location) for slice placement (Section II-C).978-3-903176-31-7 © 2020 IFIP



TABLE I: Synthesis on heuristics for network slice placement optimization
References Heuristic strategies Technical constraints Optimization objectives

Online Dynamic Decentralized Resource utilization Quality-of-Service User location Resource utilization Quality-of-Service Cost or revenue
[9], [10], [5], [11], [12], [13], [14] X X X

[15] X X X
[16] X X X X X
[17] X X X X

[18], [19] X X X
[20], [21] X X X

[22], [23], [24], [25] X X X X X

TABLE II: Synthesis on network slice placement optimization network scale aspects

References
Network scale (# of nodes)

PSN NSPR
Small
[4,50]

Medium
[50,200]

Large
[1000,5000]

Small
[2,50]

Large
[50,200]

[22], [17], [23], [25], [11], [12], [18], [15] X X
[9], [16], [24], [20], [13], [19], [21], [8] X X

[5] X X
[14], [10] X X

A. On heuristics for network slice placement optimization

1) Heuristics Strategies: Most of the works on network
slice placement optimization propose heuristic approaches to
addressing the scalability issues due to the ever-growing com-
plexity of exact approaches like ILP. As shown in Table
I, most of existing heuristics are static and use centralized
strategies, mostly online algorithms, where placement requests
arrive dynamically and are not known in advance as opposed
to offline algorithms. We have identified only two decentralized
approaches ([15] and [16]) where the decision is taken by
multiple agents. In addition, we have found two dynamic
approaches ([16] and [17]) where a (re)optimization of the
already performed placement is possible. We propose in this
paper an online, static, centralized approach.

2) Heuristic technical constraints & optimization objectives:
As exhibited in Table I, technical constraints are related to
resource utilization (available CPU and RAM capacity on a
hosting node), QoS (e.g., E2E latency) and/or user location.
Optimization objectives are related to resource utilization (min-
imization of bandwidth usage) and QoS metrics (maximization
of availability). Table I also shows that most heuristics have
focused on resource utilization without always integrating QoS
constraints. Two kinds of approaches are used to take a QoS
metric into account: setting QoS metric as a strict constraint,
that is, a constraint that absolutely needs to be satisfied [21]
, and setting the QoS metric as an optimization target [20].
E2E latency is a performance measure to be minimized. Our
approach integrate all three kind of constraints mentioned with
and optimizes resource utilization.

B. On Large scale considerations for network slice placement

Table II shows how existing heuristics support large scale
for slice placement. Only small and medium scale networks
seem to be mainly considered. The work [5] solves VNF-FGE
in large scale network scenarios and proposes an online Eigen
decomposition approach to show its scalability via simulations
with PSN up to 5000 nodes.

Also, [14] proposes a ”boosted ILP” to solve VNF-FGE
problem by sharing VNFs between different VNF-FGs and their
objective is to minimize power consumption.

We evaluate our approach considering a large scale PSN
and small scale NSPRs. Hence, there is clearly still a lack of
heuristic approaches considering the large scale aspect for both
the PSN and the NSPR.

C. On Edge-specific constraints for network slice placement

Edge-specific constraints are usually related to latency and
access delays and directly linked to user location. Most of
works that consider E2E latency as a strict constraint for slice
placement calculate latency between a source and a destination
VNF. In an E2E Network Slicing view, however, the service
users need be considered as end-points in the E2E latency
calculation. Hence, taking user location into consideration is
of utmost importance.

From Table I, very few works take user location into account.
Most of them consider a preferred location for each VNF
to be placed as an input of the problem [22], [23], [24].
This assumption has the advantage of reducing the problem
complexity. However, to the best of our knowledge, the precise
definition of the preferred placement location for each VNF of
a Network Slice is not straightforward. Hence in our approach
we do not consider this assumption.

III. NETWORK MODEL

We introduce the components of the proposed model underly-
ing the network slice placement problem: the PSN and Network
Slice Placement Requests (NSPRs).

A. Physical Substrate Network (PSN)

The PSN (see Figure 1) is divided into divided in three parts:
the Virtualized Infrastructure (VI), the Access Network (AN)
and the Transport Network (TN). The PSN is composed of the
infrastructure resources needed to support the deployment of a
network slice VNFs and their interconnection by Virtual Links
(VLs).



Fig. 1: Physical Substrate Network example

1) The Virtualized Infrastructure (VI): this component of the
PSN is the set of data centers (DCs) interconnected by network
elements (switches and routers) and located at Point of Presence
(PoP) or centralized. They offer IT resources to run VNFs.

We define three types of DCs with different capacities: Edge
Data Centers (EDCs) as local DCs with small resources capac-
ities, Core Data Centers (CDCs) as regional DCs with medium
resource capacities, and Central Cloud Platforms (CCPs) as
national DCs with big resource capacities.

2) The Access Network (AN): represents User Access Points
(UAPs) (Wi-Fi APs, cellular, etc.) and Access Links. Users
access the slices via one UAP, which may change during the
life time of a communication by a user.

3) The Transport Network (TN): represents the set of routers
and transmission links needed to interconnect the different DCs
and the UAPs.

The complete PSN is modeled as an undirected graph, where
each node has a type in the set {UAP, router, switch, server}.
The nodes of type server are labeled with a CPU and RAM
capacity. The edges on this graph represent the transport, access
and intra-data center links. Transmission links and data center
links are labeled with a bandwidth capacity and a latency.
Access links are labeled with a latency. The latency between
UAP and DC is referred to as Access latency. We assume the
latency between two VNFs of the same DC is negligible, i.e.,
latency in data center links are set equal to 0.

B. Network Slice Placement Requests (NSPR)

A NSPR is a representation of the resource and latency
requirements for a network slice to be placed on the PSN.
We model an NSPR as a VNF chain (requiring IT resources)
with bandwidth and latency requirements. The nodes of the
NSPR are labeled with a CPU and RAM requirements (for the
VNFs) and the edges are labeled with a bandwidth and latency
requirement (network links).

Each group of Network Slice Users (NSUs) imposes a
maximum acceptable Access latency between the UAP users
are connected to and the first VNF of the NSPR they request in
order to ensure the feasibility of the communication. The E2E
latency requirement for each NSPR stands for the maximum
latency allowed between the UAP associated to the NSPR and
the last VNF of the NSPR. Figure 2 provides an example of
NSPR of with VNFs and a respective UAP.

Fig. 2: NSPR example

IV. PROBLEM STATEMENT & FORMULATION

We present here the online network slice placement problem
statement and its formulation as an ILP.

A. Online Network Slice Placement: Problem Statement

The online network slice placement problem is as follows
with notation given in Tables III and IV for PSN and NPSR,
respectively.

• Given: a NSPR to be placed and a PSN,
• Find: in which server s ∈ S of the PSN to instantiate each

requested VNF v ∈ V ; which physical links (a, b) ∈ L
to use in order to realize the VLs (ā, b̄) ∈ E requested
between these VNFs,

• Subject to: the servers CPU available capacity
capcpus ,∀s ∈ S, the servers RAM available capacity
caprams ,∀s ∈ S, the physical links bandwidth available
capacity capbw(a,b),∀(a, b) ∈ L, the link latency
requirements dδ

(ā,b̄)
,∀(ā, b̄) ∈ E, the access latency

α requirement, and the E2E latency requirement δ
• Objective: minimizing total resource utilization or mini-

mizing blocking ratio.

B. Problem Formulation

To formulate the optimization problem, we introduce the
decision variables and we identify the constraints, which has
to be satisfied by the placement algorithm.



TABLE III: PSN parameters

Parameter Description

N Network nodes (switch, servers, routers)
S ⊂ N Set of servers
DC Set of data centers

Sdc ⊂ S, ∀dc ∈ DC Set of servers in data center dc
SWdc, ∀dc ∈ DC Switch of data center dc

L = {(a, b) ∈ N ×N ∧ a 6= b} Set of physical links
capbw

(a,b)
∈ R, ∀(a, b) ∈ L Bandwidth capacity of physical link (a, b)

capcpus ∈ R,∀s ∈ S CPU capacity of server s
caprams ∈ R,∀s ∈ S RAM capacity of server s
δ(a,b) ∈ R,∀(a, b) ∈ L latency induced by physical link (a, b)

TABLE IV: NSPR parameters

Parameter Description

V Set of VNFs of the NSPR
E = {(ā, b̄) ∈ N ×N ∧ ā 6= b̄} Set of VLs of the NSPR

vroot ∈ V Root VNF of the NSPR
dcpuv ∈ R CPU requirement of VNF v
dramv ∈ R RAM requirement of VNF v
dbw

(ā,b̄)
∈ R Bandwidth requirement of VL (ā, b̄)

dδ
(ā,b̄)

∈ R Latency requirement of VL (ā, b̄)

δ ∈ R E2E latency requirement of the NSPR
αmax ∈ R Access latency requirement of the NSPR
αdc ∈ R Access latency to data center dc

1) Decision Variables: We use the two following binary
decision variables:
• xvs ∈ {0, 1} for v ∈ V and s ∈ S is equal to 1 if the VNF
v is placed onto server s and 0 otherwise

• y
(ā,b̄)
(a,b) ∈ {0, 1} for (ā, b̄) ∈ E and (a, b) ∈ L is equal to 1

if the virtual link (ā, b̄) is mapped onto physical link (a, b)
and 0 otherwise

2) Problem Constraints:
a) VNF placement: The following constraint ensures that

1) all VNFs of the NSPR must be placed and 2) each VNF
must be placed in only one server:

∀v ∈ V,
∑
s∈S

xvs = 1 (1)

b) Network Resource Capacities Constraints: Con-
straints (2) and (3) below ensure that the resource capacities of
each server (for CPU and RAM, respectively) are not exceeded;
the subsequent constraint (4) guarantees that the bandwidth
capacity of each physical link is not exceeded:

∀s ∈ S,
∑
v∈V

dcpuv xvs ≤ capcpus (2)

∀s ∈ S,
∑
v∈V

dramn xvs ≤ caprams (3)

∀(a, b) ∈ L,
∑

(ā,b̄)∈E

dbw(ā,b̄)y
(ā,b̄)
(a,b) ≤ cap

bw
(a,b). (4)

c) Eligible Physical Path Calculation: Constraints (5), (6)
and (7) below ensure that if two connected VNFs are mapped
onto different servers, the VL that connects them is mapped

onto one physical path between these two servers: for all a ∈ S
and (ā, b̄) ∈ E,∑

b∈N :
(a,b)∈L

y
(ā,b̄)
(a,b) −

∑
b∈N :

(b,a)∈L

y
(ā,b̄)
(b,a) = xb̄a − xāa, (5)

and

∀a ∈ N \ S,∀(ā, b̄) ∈ E,
∑
b∈N :

(a,b)∈L

y
(ā,b̄)
(a,b) −

∑
b∈N

(b,a)∈L

y
(ā,b̄)
(b,a) = 0,

(6)

∀(ā, b̄) ∈ E,∀(a, b) ∈ L, y(ā,b̄)
(a,b) + y

(ā,b̄)
(b,a) ≤ 1. (7)

d) Network Slice Latency Requirements Constraints:
Constraint (8) below guarantees that the latency requirements of
each virtual link of the NSPR will be respected. Constraint (9)
ensures that the access latency is respected and Constraint (10)
reflects the fulfillment of the required E2E latency:

∀(ā, b̄) ∈ E,
∑

(a,b)∈L

δ(a,b)y
(ā,b̄)
(a,b) ≤ d

δ
(ā,b̄), (8)

∑
s∈S

αrsx
vroot
s ≤ αmax, (9)∑

s∈S
αsx

vroot
s +

∑
(a,b)∈L

∑
(ā,b̄)∈c

δ(a,b)y
(ā,b̄)
(a,b) ≤ δ. (10)

3) Objective Function: We consider two objective functions.
The first one is to minimize the consumption of resources. The
second one is the maximization of accepted requests.

a) Minimization of the total resource utilization: The
placement of all VNFs of a slice is mandatory otherwise the
solution would violate Constraint (1). The optimization objec-
tive in this case is the minimization of bandwidth resources
utilization given by

min
x,y

∑
(ā,b̄)∈E

∑
(a,b)∈L

y
(ā,b̄)
(a,b)cap

bw
(a,b) (11)

b) Maximization of accepted slice requests: The maxi-
mization of accepted slices requests objective function is given
by Equation (12). Auxiliary variable z ∈ {0, 1} representing
whether the NSPR is accepted (z = 1) or not (z = 0) is used
in this case.

max
x,y,z

z (12)

where the additional Constraints (13) and (14) below need to
be inserted in the model:

∀v ∈ V, z ≤
∑
s∈S

xvs , (13)

z ≥
∑
s∈S

∑
v∈V

xvs − |V − 1|. (14)

It turns out that the ILP optimization problems formulated
above are very time and resource consuming to solve. This is
why we introduce a heuristic approach in the following section.



V. PROPOSED HEURISTIC ALGORITHM

We here describe the proposed heuristic based on P2C
to solve the network slice placement problem introduced in
Section IV. P2C has shown good results in solving a similar
problem in a previous work [7] what motivates its use here.

A. Proposed Network Slice Placement Optimization Heuristic

Algorithm 1 presents the pseudo code for the proposed
heuristic to solve network slice placement problem introduced
in the previous section. The algorithm is fed with the NSPR
to place, the PSN and also a policy id parameter used to
differentiate two possible candidate server selection policies.

It returns the status of the NSPR (Accepted or Rejected)
and, if status = Accepted, it also returns the amount of
bandwidth consumed C by the NSPR and the values for x
and y decision variables. The algorithm performs a sequence of
steps for each VNF v of the NSPR. Step 1 (line 5) calculates
the set S′ of feasible servers for the placement of VNF v. This
is done by the procedure getFeasibleServers detailed in
Section V-B. If there are feasible servers for the placement of
VNF v, i.e. S′ 6= ∅, the algorithm proceeds to Step 2 (line 7)
that returns two candidate servers s1 and s2 for the placement
of VNF v using the getTwoCandidateServers procedure
detailed in Section V-C. Finally, the algorithm proceeds to the
Step 3 (lines 8-53) evaluate candidate servers s1 and s2. If
one of these two servers was previously used to place VNF
v − 1, i.e., it is the same than last s, this server is chosen
for the placement of VNF v as it is the optimal solution with
0 bandwidth consumption. Otherwise one path Pi needs to be
calculated between last s and si, for i = 1, 2. This is done
using the dijkstra procedure (line 17). This latter procedure
implements the Dijkstra shortest path algorithm and first tries to
calculate the feasible path providing minimum bandwidth con-
sumption between last s and the evaluated server si, i = 1, 2.
If the path satisfies the latency constraint between VNFs v− 1
and v, it is returned by the dijkstra procedure. Otherwise
the procedure tries to find a feasible path minimizing the latency
between VNFs v − 1 and v. If no feasible path is found the
procedure returns ∅. The server allowing minimal embedding
cost, i.e., the one which induces the use of less bandwidth
resources, is chosen for the placement of VNF v. Variables
x and y, the available server and physical links capacities and
the NSPR placement cost C are updated accordingly. If for
some VNF v no feasible servers or paths are found, there is a
blocking and the algorithm returns Rejected status (lines 52
and 56).

B. Calculation of Eligible Servers for Placement

The procedure getFeasibleServers implements the
different problem constraints described in Section IV to filter
eligible servers S′ for the placement of VNF v. The implemen-
tation of these constraints is different according to the value
of v. The value v = 1 corresponds to the root VNF of the
NSPR. The procedure first obtains the eligible data centers
DC ′,i.e., the ones satisfying the access latency requirement of
the NSPR.

Algorithm 1: Heuristic for Network Slice Placement
Optimization using Power of two Choices (P2C).

Data: NSPR, PSN ,policy id
Result: status, C, x, y

1 last s← 0 , C ← 0;
2 xv

s = 0, ∀v ∈ V, ∀s ∈ S ;
3 y

(ā,b̄)

(a,b)
= 0, ∀(ā, b̄) ∈ E, ∀(a, b) ∈ L ;

4 for v ∈ V do
5 S′ ← getFeasibleServers(NSPR, PSN ,v) // Step 1
6 if S′ 6= ∅ then
7 s1, s2 = getTwoCandidateServers(S′, v,policy id) // Step 2
8 if v = 1 or last s = s1 then
9 xv,s1

= 1;
10 last s = s1;
11 capjs1

− = djv, ∀j ∈ {cpu, ram};
12 else if last s = s2 then
13 xv,s2

= 1, ∀s ∈ S′ \ s2;
14 last s = s2;
15 capjs2

− = djv, ∀j ∈ {cpu, ram};
16 else
17 Pi =dijkstra(last s, si), i = 1, 2;
18 if P1 6= ∅ and P2 6= ∅ then
19 costi = |Pi|dbwv−1,v, i = 1, 2;
20 if cost1 ≤ cost2 then
21 xv,s1 = 1;
22 last s = s1;
23 capjs1

− = djv, ∀j ∈ {cpu, ram};
24 y

(v−1,v)

(a,b)
= 1, ∀(a, b) ∈ P1;

25 capbw(a,b)− = dbw(v−1,v), ∀(a, b) ∈ P1;
26 C+ = cost1;
27 else
28 xv,s2

= 1;
29 last s = s2;
30 capjs2

− = djv, ∀j ∈ {cpu, ram};
31 y

(v−1,v)

(a,b)
= 1, ∀(a, b) ∈ P2;

32 capbw(a,b)− = dbw(v−1,v), ∀(a, b) ∈ P2;
33 C+ = cost2;
34 else if P1 6= ∅ then
35 xv,s1

= 1;
36 last s = s1;
37 capjs1

− = djv, ∀j ∈ {cpu, ram};
38 cost1 = |P1|dbwv−1,v ;
39 y

(v−1,v)

(a,b)
= 1, ∀(a, b) ∈ P1;

40 capbw(a,b)− = dbw(v−1,v), ∀(a, b) ∈ P1;
41 C+ = cost1;
42 else if P2 6= ∅ then
43 xv,s2

= 1;
44 last s = s2;
45 capjs2

− = djv, ∀j ∈ {cpu, ram};
46 cost2 = |P2|dbwv−1,v ;
47 y

(v−1,v)

(a,b)
= 1, ∀(a, b) ∈ P2;

48 capbw(a,b)− = dbw(v−1,v), ∀(a, b) ∈ P2;
49 C+ = cost2;
50 else
51 • Backtrack to initially available PSN capacities;
52 x← ∅; y ← ∅; status = Rejected;
53 return;
54 else
55 • Backtrack to initially available PSN capacities ;
56 x← ∅; y ← ∅; status = Rejected; return;
57 status = Accepted;

Two conditions are used to define whether a server s located
in a data center dc ∈ DC is eligible for the placement of
VNF 1:

1) Server s has enough CPU and RAM resources to host
VNFs 1 and 2. In this case, the available bandwidth
capacity of the physical link connected to this server does
not need to be checked since the server can host both
VNFs 1 and 2 without using any bandwidth.



2) Server s has enough CPU and RAM resources available to
host VNF 1 only. In this case, if server s were selected to
place VNF 1, VNF 2 would need to be placed on a server
s′ 6= s. Hence, to be considered eligible, the data center
link connected to server s must have enough available
bandwidth capacity to host VL (1,2).

Assume now that v = |V |, where |V | is the length of
the NSPR in number of VNFs to be placed. This means that
the last VNF of the NSPR is to be placed. The procedure
iterates through all servers in the network to find the feasible
ones. The server last s is eligible if it has enough CPU and
RAM capacities to host VNF |V |. Other servers s located in
last dc will be eligible if they have enough CPU and RAM
capacities to host VNF |V | and if there is an intra-data center
path between last s and s with enough available bandwidth
capacity to steer traffic between VNFs |V |−1 and |V |. A server
s in a data center dc 6= last dc is considered eligible if there is
feasible path between last s and s to map VL (|V | − 1, |V |),
i.e., a path respecting the latency requirements and bandwidth
requirements of the VL (|V | − 1, |V |).

If 1 < v < |V |, the procedure also iterates through all servers
in the network to find the eligible ones but the conditions to
determine if a server is eligible are different from the case when
v = |V |. Two conditions are used to define if server last s is
eligible: 1) last s has enough CPU and RAM capacity to host
VNF v and VNF v + 1. In this case the available bandwidth
capacity of the physical link connected to last s does not need
to be checked since the server can host both VNFs without
using any bandwidth; 2) last s has only enough CPU and RAM
capacity to host VNF v and there is an intra-data center path
between last s and s with enough available bandwidth capacity
to steer traffic between VNFs v and v+1. In this case, if server
last s were selected to place VNF v, VNF v + 1 would need
to be placed in a server s′ 6= last s hence the data center
link connected to server last s must have enough available
bandwidth capacity to the VL between VNFs v and v + 1.

Two conditions are used to define if a server s 6= last s
located in last dc is eligible: s has enough CPU and RAM
capacities to host VNF v and VNF v + 1 and there is an
intra-data center path between last s and s with available
bandwidth capacity to serve VL (v − 1,v); s has enough CPU
and RAM capacities to host only VNF v. In the last case there
must be an intra-data center path between last s and s with
enough available bandwidth capacity to serve VL (v−1,v) and
the data center link connected s must have enough available
bandwidth capacity to serve VL (v,v + 1). For a server s in a
data center dc 6= last dc to be eligible, it must exist a feasible
path between last s and s to map VL (v − 1, v), i.e., there
is a path that respects the latency requirements and bandwidth
requirements of the VL (v − 1, v).

C. Selection Policies of Candidate Placement Servers
The getTwoCandidateServers procedure receives as

arguments the set S′ and the policy id parameter and returns
two candidate servers s1 and s2 selected using the server
selection policy coded by policy id parameter.

1) Policy 1: This server selection policy chooses s1 and s2

completely randomly from S′. If |S′| = 1, we set s2 = s1.
2) Policy 2: This is a more intelligent policy. It also selects

s1 and s2 randomly but preferentially from CCPs or CDCs.
The procedure will try to select s1 and s2 from a subset of S′

containing only servers located in CCPs. If it is not possible
it will try servers located in the CDCs and in the last case
it will try to select EDCs servers. The aim of this policy is
to save EDCs capacities when possible since these are critical
resources.

VI. IMPLEMENTATION & EVALUATION RESULTS

We present in this section the implementation and the nu-
merical experiments carried out to evaluate the heuristic.

A. Implementation Details and Experimentation Settings

We have implemented the proposed heuristic and ILPs in
Julia. We used the default branch-and-bound algorithm from
ILOG CPLEX 12.9 solver to solve the ILPs. Experiments were
executed in a 2x6 cores @2.95Ghz 96GB machine.

1) Physical Substrate Network Settings: We considered a
PSN that could reflect that of an operator such as Orange, see
[29]. In this network, 3 types of DCs match our description
made in Section III. Each CDC is connected to 3 EDCs which
are 100km away. CDCs are interconnected and connected to a
CCP that is 300 km away. Tables V and VI summarize the DCs
and transport links properties. The CPU and RAM capacities
of each server are 50 and 300 units, respectively. Latency is
computed by considering the speed of light in fiber.

TABLE V: Data centers description

TABLE VI: Transport links capacities

2) Network Slice Placement Requests Settings : Tables VII
and VIII show the network resources and latency requirements
for the three NSPR classes taken into account: Best Effort
(BEF), Ultra Reliable Low Latency Communications (URLLC)
and Enhanced Mobile Broadband (eMBB).

3) Tested Algorithms: We compare four algorithms: two
variants of the ILP introduced in Section IV (ILP 1 and 2 for
objective functions a and b, respectively) and two variants of
the proposed heuristic approach introduced in Section V (P2C
1 and P2C 2 for server selection policies 1 and 2, respectively).



4) Simulation Scenarios: We consider three simulation sce-
narios named BEF, URLLC, eMBB in which all requests to
be placed are of the same class and one simulation scenario
named MIX in which we have a percentage of requests of each
class: 67% of BEF, 22 % of eMBB and 11% of URLLC. We
set simulation duration to 2000 time units.

TABLE VII: Resource requirements by NSPR class

TABLE VIII: Latency requirements by NSPR class

B. Network Load Calculation

We use the formula proposed in [29] to calculate the arrival
rates of NSPRs (λk) in the different network load conditions
used: underload (ρ < 1), critical (ρ = 1), and overload (ρ > 1).
Network loads are calculated using CPU resource since it is
the scarcest resource in the PSN. Generally speaking, we set
1/µk = 100 time units for all k ∈ K, the set of slice
classes. For resource j with total capacity Cj , the load is
ρj = 1

Cj

∑K
k=1

λk

µkA
k
j , where Akj is the number of resource

units requested by a NSPR of class k.

C. Evaluation Metrics

We consider 3 performance metrics:
1) Average execution time: the average execution time in

seconds needed to place 1 NSPR;
2) Average final blocking ratio: the average of the final

blocking ratios. The final blocking rations are calculated
as # accepted NSPRs

# of NSPR’s arrivals at the end of each execution. We
average the results for 100 executions;

3) Resource utilization: the amount CPU, RAM and band-
width consumed.

D. Average Execution Time Evaluation

The average execution times in function of the number of
servers in the PSN is given in Figure 3. Starting from a PSN
with 126 servers as described in Section VI-A1 and captured
in Figure 4 we generated new PSN settings by doubling the
number of servers in each DC. The evaluation results confirmed
our expectations showing that the average execution time grows
much faster for the ILPs than for the heuristics. In the scenario
with 16128 nodes the execution times are 9.8 and 12.5 seconds
for the ILPs 1 and 2 respectively and 2.17 and 1.96 seconds
for P2C 1 and 2 respectively.
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Fig. 3: Average execution time evaluation.

Fig. 4: Used Physical Substrate Network topology

E. Average Final Blocking Ratio Evaluation

Figure 5 shows the blocking ratios results. We expected
ILP 2 would provide the best acceptance ratio results which
was not confirmed: ILP 2 obtains the best acceptance ratio
in scenarios BEF, eMBB, and MIX, but in URLLC scenario,
P2C 1 and 2 provide the best acceptance ratio. We explain
this by a critical load balancing as heuristics usually perform
better load balancing (see Figures 7-10). Also, ILP 1 has good
performance in the eMBB scenario as shown in Figure 5(b) as
the bandwidth here is a critical resource so ILP 1 resolve with
optimal bandwidth consumption by concentrating the VNFs
on the same machines. However ILP 1 have higher final
blocking ratio than P2C in BEF, MIX and URLLC simulation
scenarios (see Figures 5(a), 5(c) and 5(d)) since the strategy of
concentrating VNFs in the same machines does not fit well. In
the BEF simulation scenario, since we have only BEF NSPRs
which have low CPU and RAM requirements, the ILP 1 strategy
ends up concentrating all the VNFs of each NSPR in the same
machine. Since the first VNF of the NSPR is always placed
in a EDC due to the access latency requirements, the optimal
solution considering bandwidth minimization is to concentrate
all the VNFs in the same machines on a EDC. This strategy
leads to a overload of EDC servers and without EDC servers
available the PSN cannot accept new NSPRs. In URLLC and
MIX simulation scenarios, the same problem happens but with
lower intensity since the CPU and RAM required by the VNFs
in these cases are higher than in the BEF simulation scenario
which reduces the concentration of VNFs in the same machine.
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(b) eMBB simulation scenario.
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(c) URLLC simulation scenario.
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(d) MIX simulation scenario.

Fig. 5: Average final blocking ratios.

The random selection policies of candidate placement servers
implemented in P2C 1 and 2 helps improve load balancing
and avoids EDC overload. P2C 2 has the best performance
when compared with P2C 1 as it seeks to offload EDC
critical resources by placing VNFs in CCP or CDC servers
preferentially. Figures 6(a) and 6(b) present how much each
VNF participates in the blocking ratio obtained with P2C 1
and P2C 2 respectively in the URLLC scenario. We see that
P2C 2 highly reduces the amount of blocking in the root VNF
of the NSPRs and provides a well balanced blocking profile.
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Fig. 6: Blocking ratio

F. Resource Utilization Evaluation

Figures 7-9 show the amount of resources consumed during
one simulation for P2C 1, P2C 2 and ILP algorithms, respec-
tively. In this simulation, we consider the URLLC simulation
scenario with a critical network load (ρ = 1). As expected,
the graphics show that the P2C heuristics distributes better
the load among data centers and consumes more bandwidth
resources. P2C 1 distributes almost equally the load between
EDCs, CDCs and the CCP, while P2C 2 concentrates the load
on CCP and CDCs to offload EDCs. The ILP 1 concentrates the
load on EDCs and CDCs to minimize bandwidth consumption,
while the ILP 2 also uses uses CCP resources. The total band-
width consumption obtained with the ILP 1 is minimum since
it calculates solutions with optimal bandwidth consumption.
ILP 2 objective function leads to solution higher bandwidth
consumption than ILP 1.
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Fig. 7: P2C 1 Resource cons.
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Fig. 8: P2C 2 Resource cons.
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Fig. 9: ILP1 Resource cons.
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Fig. 10: ILP2 Resource cons.

VII. CONCLUSION & PERSPECTIVES

We have proposed an online heuristic to optimize Network
Slice Placement with three main contributions: i) adaption to
slice placement requests on large scale networks, ii) integration
of Edge-specific and URLLC-based QoS constraints (E2E la-
tency), iii) reuse of the strength of P2C algorithm to implement
selection policies. Evaluation results show that the heuristic
yields good solutions within a small execution time (1.96s for
a PSN of 16128 nodes). The selection policies improve load
balancing and reduce load of edge data centers which improves
the acceptance ratio in most simulation scenarios comparing to
an online ILP-based placement algorithm. As a future work,
we plan to extend this approach to support placement over
multiple network domains and explore the use of machine
learning strategies for network slice placement optimization.
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