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Abstract—Automation of mobile network fault diagnostics and
troubleshooting is critical for successful transformation to new
network technologies such as 5G and core Network Function
Virtualization (NFV). This paper presents a decision tree-based
call detail record (CDR) labeling process, which is used to
construct an automated end-to-end diagnostics system for mobile
network faults. The presented diagnostics system will enable
the utilization of automated troubleshooting systems, and the
execution of automated corrective actions in third party systems
such as Self-Organizing Network (SON) and NFV domain or-
chestrator.

Index Terms—Mobile network monitoring, service assurance,
automated end-to-end diagnostics, decision tree, machine learn-
ing, call detail record

I. INTRODUCTION

Automation of the mobile network fault diagnostics and
troubleshooting process in mobile networks has recently been
recognized as an important topic because of network evolution
to 5G [1] and core Network Function Virtualization (NFV)
[2]. Increasing mobile traffic and growing complexity of the
networks make the Quality of Service (QoS) challenging
to monitor and assure. Currently, network fault diagnostics
and troubleshooting is mostly manual work and therefore
time consuming, error prone and requires substantial domain
expertise [3].

Probably the most researched area of network automation
is Self-Organizing Networks (SON), which aims to automate
Radio Access Networks (RAN) troubleshooting process, con-
taining fault detection, diagnosis, compensation and recovery
phases [4]. It also includes network self-healing and self-
optimization functionality [5]. However, SON does not en-
compass diagnostics or self-healing functionality for Extended
Packet Core (EPC), IP Multimedia Subsystem (IMS) or Core
Networks (CN), which provide essential functionality for voice
and other mobile services. SON is based on summarised
Key Performance Indicators (KPIs), making it impossible to
automatically diagnose, troubleshoot and eventually perform
corrections to individual usage events.

Call Detail Records (CDR) contain much more information
than KPIs and enable Quality of Service (QoS) diagnostics
on a single subscriber level. CDRs can be collected from
various standardized interfaces of mobile network, making it
possible to construct an end-to-end view to service quality. The

challenges of working with CDRs are related to data volumes,
data labeling and ambiguity of the information. Assuming that
the challenges can be solved, the use of CDRs enable effective
utilization of supervised learning techniques to automatically
diagnose user QoS issues with much more detailed granularity
than with using KPIs [6].

This paper presents a novel method for accurate labeling and
resolution of ambiguity of CDR data in mobile networks for
voice service. This labeling mechanism is used to construct
an automated diagnostics system, which groups the labeled
CDR information to QoS KPIs while preserving the relation
to individual call details. This will enable further automated
troubleshooting and corrective actions by third party systems.

The rest of the paper is organized as follows. Related work
is described in Section 2. Section 3 describes the utilization of
decision tree for labeling of CDRs, and Section 4 illustrates
how automated diagnostics system is constructed. Section 5
presents the training scenarios, Section 6 the test results and
conclusions are presented in Section 7.

II. RELATED WORK

Most of the literature on automated fault diagnostics and
troubleshooting in mobile networks is based on utilization
of KPIs and radio networks. However, a little research has
focused on use of CDRs.

ARCD [7] is an example of automated diagnostics system
that is based on supervised learning process enabled by labeled
CDRs. However, the described labeling is rather basic and is
based only on standardized success/failure labels of CDRs,
and the suggested ARCD system would greatly benefit from
more granular CDR labeling.

CDRs are utilized for analysis of user activities and detec-
tion of anomalies [8], traffic prediction [9], understanding the
calling patterns [10], characterizing mobile application usage
[11], [12], modeling metro density [13] and predicting user
location [14]. None of these studies discusses CDR-based
automated diagnostics or troubleshooting functionality.

An automated root cause system can be also based on
call traces [15], which are structurally very similar to CDRs.
The main difference is that call traces store only radio mea-
surements and signaling messages, whereas CDRs contain
also Circuit and Packet Switched, EPC, IMS and Policy &
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Charging events, i.e., end-to-end view across the multiple types
of networks. The article presents a rule-based classification
system, which is based on threshold values and therefore is
not suitable for more granular classification.

The combination of measurements from User Equipment
(UE) and related radio conditions are used for automated
root-cause analysis [16]. The proposed system uses binary
classification tree to identify most common radio causes that
may impact user throughput. The diagnosed data sessions are
aggregated at cell level and compared to reference values to
find anomalous cells. This article considers only radio and UE
measurements, and does not discuss end-to-end diagnostics.

Another example of automated troubleshooting is a KPI-
based, unsupervised root cause analysis system [17], in which
the diagnostics process emulates the manual process to en-
sure accuracy and reliability. This article suggests that the
automatic root cause analysis system can utilize supervised
learning processes to learn the behavior of faults if accurate
information of known network faults is available. The auto-
mated diagnostics system presented in this article is able to
produce such accurate network fault information and would
therefore improve the automated learning of the network fault
behavior. Other examples of similar automated diagnostics and
troubleshooting systems are presented in [18], [19], [20], [21]
and [22].

Decision tree algorithm is utilized for detection of QoS
anomalies [23] and network anomaly detection [24]. Neither
of the suggested systems consider the classification of CDRs.

III. LABELING OF CDRS WITH DECISION TREES

A. CDR data

CDRs are data records used to log all communications
transactions, such as calls or location updates in all parts of the
mobile network. A monitoring device creates a separate CDR
for each transaction transferred in the connected network in-
terface. A single CDR may contain over one hundred fields of
information per transaction. Such information includes event
data, such as calling parties, call location, user equipment
identification, time, date, call duration and call quality, and
network data such as call termination cause, mobile network
cell information and identifiers of serving network elements.
The structure of CDR is not standardized, and field naming
and contents can vary depending on the interface, network
vendor and the monitoring device, complicating the correlation
of CDRs from different interfaces.

Real-time identification, i.e. labeling of various scenarios
within CDR flow is a common challenge in LTE networks
[15]. Current monitoring devices usually contain rule-based
labeling mechanisms to identify simple fault scenarios, such
as handover failures or radio network coverage issues, but
the rules cannot cover more complex scenarios since labeling
process is executed in real-time. The rules are slow and time-
consuming to maintain, and labeling of any new scenario
in the network will require code changes to the monitoring
device. Labeling of more complex scenarios is usually done

off-line in post-processing stage and requires specific analytics
functionality.

Adjustable real-time CDR labeling would be highly bene-
ficial for automating the network monitoring and assurance
process, because it would enable utilization of supervised
learning methods in diagnostics, troubleshooting and definition
of next best actions. CDRs also can be used to construct end-
to-end view to service quality across various types of networks,
which will improve the accuracy of the diagnostics process.

B. Decision tree

Decision tree is a supervised learning algorithm which is
well-suited for both regression and classification problems.

Fig. 1. Example of decision tree for labeling of CDRs.

Decision trees are often used to predict a qualitative re-
sponse, and it predicts that each observation belongs to the
most commonly occurring class of training observations in
the region to which it belongs [25]. There are several benefits
which make decision tree a good fit for labeling of CDRs:

• Trees can easily handle qualitative predictors such as
CDR field values

• The tree construction logic is transparent and easy to
explain

• Trees can be displayed graphically and are easily inter-
preted

Decision tree has a tree-like model structure where each
internal node represents a test, each branch represents an
outcome of the test, and each leaf node holds the class label.
For labeling of CDRs, the tree is trained with the attributes
of manually labeled CDR classes, tests will be done on CDR
field values and leaf nodes are the CDR classes, i.e., CDR
labels.

Example of a decision tree for CDR labeling is presented
in Figure 1 above.

CDR labels can be based also on a combination of multiple
attributes and contain diagnostic information. For example, a
call with normal release and low voice quality score could be
labeled as a successful call with low speech quality, or the
call termination cause and location can be identified in the
label (i.e. call drop due to insufficient IMS capacity). Some
attributes for different CDRs classes are listed later in Section
5.

Once trained, the decision tree uses the attribute information
to perform recursive binary splitting to determine the growth



of the tree. Either Gini index or entropy measurement is
used to evaluate the quality of the split. The Gini index
measures the probability of misclassification, and it is defined
by a measure of total variance across K classes [25]:

G =

K∑
k=1

pmk(1− pmk (1)

Where pmk represents the proportion of training observa-
tions in the mth region that are from the kth class.

Entropy measures the impurity of the node and is defined
by

D = −
K∑

k=1

pmklogpmk (2)

As described later in Section 6, the decision trees con-
structed with the Gini index and entropy are very similar.

Once the tree is constructed, the prediction accuracy of the
decision tree can be tested with a confusion matrix. It is a table
which describes the performance of a classification model on
a set of test data for which the true values are known. The
decision tree accuracy is defined by

Classification accuracy =
correct predictions

total predictions
(3)

A typical challenge with decision trees is over-fitting, which
means that algorithm reduces the errors in classification of the
training set at the cost of error rate in classification of the
test data. Non-necessary branches are created to reduce the
impurity of the samples in each leaf, and in the worst case
a leaf node is created for every sample in the data set. This
reduces the performance and accuracy of the decision tree, and
the algorithm may lose the ability to generalize well to new
data sets. Over-fitting can be avoided by pruning the tree after
the classification has been done, as discussed later in Section
6.

IV. AUTOMATED DIAGNOSTICS SYSTEM

The goal of network diagnostics is to identify the most likely
fault cases among the total traffic. For this, a system utilizing
the previously described CDR labeling method is presented.
Such system contains CDR collection, tree construction, train-
ing, labeling and accuracy analysis phases as presented in
Figure 2 below.

This study focuses primarily on voice calls in LTE networks
and secondarily on voice call service inter-operability between
LTE and UMTS / GSM networks. Voice calls within UMTS
or GSM network are not considered.

A. Call types in LTE networks

There are three types of calls in LTE networks
• Voice over LTE (VoLTE) call where both users are in

LTE network

• Circuit Switched Fallback (CSFB) where call is initi-
ated in LTE network is handed over to Circuit Switched
3G or 2G network due to missing VoLTE service [26]

• Single Radio Voice Call Continuity (SRVCC) where
call is initiated as VoLTE call but then handed over to
legacy 3G / 2G network due to missing VoLTE capacity
or coverage [27]

Fig. 2. CDR labeling based diagnostics system.

B. System overview

In order to avoid over-fitting of the decision tree, it is
practical to split the CDR labeling phase according to call
types and this way reduce the number of trained CDR classes
per tree.

As presented later on in next sections, CDR collection and
labeling are different for each type of the call.

C. CDR collection

A VoLTE call is the simplest scenario to reconstruct and
diagnose from CDR information. Figure 3 below describes
a simplified mobile originated VoLTE call architecture with
potential CDR collection interfaces.

CDRs from S1-MME interface contain control plane VoLTE
call related signaling information, such as call result and call
termination cause, which are sufficient to determine whether
the call was successful. VoLTE call utilizes the capabilities of
EPC and IMS, and therefore call quality indicators can be seen
only in CDRs containing S11 or Session Initiation Protocol
(SIP) messaging.

Fig. 3. Simplified LTE call architecture with potential CDR collection points.

When CSFB call is triggered, the network moves the User
Equipment (UE) temporarily to a legacy circuit switched



TABLE I
SUMMARY OF INTERFACES AND CDR CONTENTS

Interface CDR contents
S1-MME Signaling protocols between eNodeB and MME

S1-U User plane Protocol Data Unit (PDU) details between eNodeB and S-GW
S6a Authentication information such as location updates and authentication requests
S11 Establishment and deletion of bearer sessions within EPC

S5/S8 User plane tunneling and tunnel management between S-GW and PDN GW
A 2G signalling between GERAN and CS Core

IuCS 3G signalling protocols between UTRAN and CS core
SGi Between PGw and external network such as Internet

GSM / UMTS network to perform the call. Once the call is
completed, the UE moves back to LTE network.

In a similar way than in VoLTE call, the initiation of the
call can be analysed from S1-MME CDRs, but once the call
has been handed over to GSM / UMTS network, also analysis
of corresponding A (GSM) or IuCS (UMTS) CDRs is needed.

Example of CSFB call architecture is presented in Figure 4
above.

Fig. 4. CSFB call architecture with potential CDR collection points.

A SRVCC call is initiated as VoLTE call but then handed
over to legacy GSM / UMTS network when it is already active
in LTE network. So in addition to CS connection, also EPC
and IMS signaling should be analysed in order to diagnose the
entire call flow. Example of SRVCC call flow is presented in
Figure 5 below.

Fig. 5. SRVCC call architecture with potential CDR collection points.

Table 1 above summarizes the CDR collection interfaces
and main contents of CDR types.

V. TRAINING OF CDR LABELING SYSTEM

The service quality of mobile network is assured by mon-
itoring KPIs that are grouped to higher level categories such
as accessibility, retainability, integrity, availability, mobility,
utilization and energy efficiency [28]. The names of KPI
categories already indicate the aspect of service quality that

they address, and similar grouping is used in this article to
group CDR training rules.

The presented list of training scenarios is not meant to be
exhaustive and for practical reasons all various combinations
cannot be listed. Some examples for accessibility, retainability,
integrity and mobility classes are provided instead.

• Voice accessibility measures how often the requested
network or service can be accessed normally. Call block-
ing may take place radio or core network and can be
identified by looking at the CDR termination cause codes.
For example, ’Cell not available’ cause code in S1-MME
CDRs, or ’EPC bearer termination’ cause code in S11
CDRs are such termination causes. IMS blocking can be
seen in SIP signaling by looking for failed SIP session
initiation.

• Voice retainability measures how often voice service is
interrupted while call is ongoing. Abnormal interruption
in all types of radio networks are similar, and can be
identified by looking at cause codes such as ’Radio
connection to UE lost’ or ’Fail in radio interface’ either
in S1, IuCS or A interface CDRs.

• Voice integrity measures the quality of the service. Mean
Opinion Score (MOS) is the most common quality metric
in VoLTE, where MOS can be measured from Real-Time
Transport (RTP) stream in IMS Mb interface. Another
quality measurement for is call setup time, which can be
seen directly in IuCS or A interface. For IMS calls is has
to be measured from SIP signaling. Integrity can can be
measured also indirectly, for example looking for calls
with abnormally short duration.

• Voice mobility measures how successfully the user ses-
sions are handed over from one cell to another within
same network, or from one network to another. In addi-
tion to standard RAN handovers, there are also previously
mentioned special voice mobility scenarios CSFB and
SRVCC.
In order to correctly diagnose the completion of a CSFB
call, the diagnostics system has to analyse the successful
completion of call setup steps in each of the CSFB steps
listed in Section 4 above. In practice the correlation
between S1-MME and either A or IuCS CDRs, depending
on the target legacy network type, is needed. It should
be noted that even if some of the call mobility events are
completed unsuccessfully, it is possible that CS call is still



TABLE II
EXAMPLE TRAINING RULES FOR CDR LABELING

Category RAN EPC IMS CS Core
Accessibility Cell not available S11 bearer creation failure Failure in SIP initiation IuCS reloc protocol error
Retainability Radio connection to UE lost Abnormal PDN termination SIP abnormal termination Release due to CN failure

Integrity N/A N/A Bad quality: MOS score < 3.5 Abnormally short calls
Mobility / CSFB A or IuCS reloc failure N/A N/A CN acc. or retain. failure

Mobility / SRVCC S1 relocation to 3G/2G failure EPC acc. or retain. failure IMS acc. or retain. failure CN acc. or retain. failure

complete successfully and end user does not experience
any quality degradation.
In order to diagnose SRVCC process correctly, the call
flow steps has to be reconstructed from multiple CDRs
from S1-U, IuCS / A and Sv interfaces. It should be
also noted that single SRVCC call may consist of tens
of individual CDRs and each call setup step should be
analysed to properly diagnose fault situations. Session
Initiation Protocol (SIP), which is used for initiating and
terminating VoLTE calls, is fault tolerant and any failed
initiation or registration attempt is followed by another
attempt which may lead to success. Therefore it is com-
mon that a single successful SRVCC call contains also
a number of failed SIP events. Usually a call where call
duration > 0, MOS > 4 and termination cause = normal
can be considered successful. In case of unsuccessful
calls, it is important to label in which part of the network
(RAN, EPC, IMS, CS etc.) the failure happens.
Due to a special nature of these two mobility scenarios,
the diagnostics system should contain two separately
trained decision trees for analysing CSFB and SRVCC
calls. As presented later on in Section 6, this will ef-
fectively prevent tree over-fitting and improve overall
performance of the diagnostics process.

Table 2 lists the examples of training rules for end-to-end
accessibility, retainability, integrity and mobility analysis.

VI. TEST SYSTEM

A test system was constructed to test the accuracy of pre-
sented labeling mechanism and diagnostics system. It contains
following functions:

1) Input and data preparation
2) CDR labeling
3) Accuracy and coverage testing
4) Output

A. Input and data preparation

The method was tested with anonymized data set that
contains 4.35 M CDRs from commercial mobile network. The
data set consisted of CDRs from 89 interfaces between LTE,
3G and 2G network elements.

Training data was prepared by labeling manually the
extracted VoLTE, CSFB and SRVCC CDRs. The calls were
randomly selected and training data for each call type con-
tained approximately 200 - 300 CDRs.

Test data was prepared in a similar way by extracting ran-
dom samples of each call type, and the test data was manually
labeled to test the accuracy of the labeling afterwards.

B. Tree construction

The training was done separately for each call type by
feeding the training data to the tree algorithm. In all of the
scenarios the labeling was done based on interface, cause
code, root cause, CDR type and CDR subtype fields. For
VoLTE and SRVCC calls MOS indicator was available and
included to the labeling.

The depth of the decision tree was not constrained to see
how large the tree will become. Splitting of the tree was
based on entropy to reduce the randomness of data in CDR
categories. The same trees were also constructed with using
gini and it was noticed that while the prediction accuracy
remained the same, the depth of the tree grew. This reduces
the performance of the classification because more splits are
needed.

To analyse the risk of over-fitting, a 4th scenario that
combined all 3 calling scenarios was tested. As expected, the
decision tree grew larger.

C. Accuracy and coverage testing

The tested CDR samples were all labeled perfectly, and the
accuracy remained 1.0 regardless of the test sample size.

The accuracy of labeling is monitored by analysing entropy
values of leaf nodes. Increased entropy value indicates that
decision tree is not able to classify all provided CDRs properly
and as a result, leaf nodes are not homogeneous and contain
multiple types of CDRs. As a rule of thumb, entropy values
close to 0 with more than 1 sample per leaf is an indication of
a well performing tree. Any leaf node with increased entropy
value should be analysed further.

In the analysis it was noticed that the test CDRs contained
minor variations in the CDR subtype field, and the leaf nodes
containing such events had increased entropy value. However,
the CDRs were correctly labeled based on other CDR field
values.

Another explanation for misclassification is previously men-
tioned over-fitting, in which the algorithm has over-optimized
the tree based on training data, ended up reducing the accuracy,
performance and adaptability of the classification. The best
mechanism to detect over-fitting in this scenario is to monitor
the number of leaf nodes and sample size. As a second rule
of thumb, if the number of leaf nodes is substantially higher
than trained CDR classes, the tree is over-fitted and it needs



TABLE III
CDR DIAGNOSTICS TEST

Call type CDR Classes Nodes Leafs Depth (entropy) Depth (gini) Accuracy
VoLTE 17 41 21 8 12 1.0
CSFB 18 51 26 8 10 1.0

SRVCC 28 67 34 8 13 1.0
Combined 55 121 61 10 13 1.0

to be pruned. Another sign of over-fitting is a high number of
leaf nodes with just 1 sample. In case over-fitting is detected,
the negative impact can be mitigated with two methods: pre-
and post-pruning the tree.

Pre-pruning means that the growth of the tree is restricted
to prevent the creation of non-necessary branches. All pre-
pruning methods require prior analysis of data sets to stop the
tree construction exactly when all CDR classes are learned.
This is challenging in real-time CDR classification where
the number and the content of the samples are not known
beforehand.

In post-pruning the decision tree is allowed to classify the
training set, and afterwards the non-significant branches are
removed to reduce the amount of needed splits in classifi-
cation. In all of the previously tested labeling scenarios the
number of leaf nodes was close to trained CDR classes and
no post-pruning is needed.

D. Output

The end result was a CDR test set which was labeled
successfully to 55 voice CDR categories according to trained
sample values. The results of the labeling tests are presented
in Table 3 and a subset of the decision tree is presented in
Figure 6 below.

The output provides a number of benefits compared to
current monitoring systems:

• Real-time recognition of user impacting call accessibility,
retainability and integrity issues in RAN, EPC, IMS or
CS Core network. Once identified, such issues can be
sent further to SON, NFV domain orcherstrator or other
automated management systems for self-optimization and
self-healing purposes.

• Automated end-to-end analysis of CSFB and SRVCC
call scenarios. Previously the reconstruction of CSFB and
SRVCC call scenarios from various signaling events has
been mostly manual work. With the proposed diagnostics
system, the analysis can be automated and quality issues
reported further to SON or NFV orchestrator, or for
manual troubleshooting.

• Accurately labeled CDR data enables utilization of more
advanced, supervised learning based algorithms for fur-
ther automated diagnostics and troubleshooting. For ex-
ample, combined analysis of labeled CDR information
and CDR sequence can be used to discover previously
unknown quality issues in the network.

Fig. 6. Subset of CDR labeling tree.

VII. CONCLUSION

Lack of end-to-end automated diagnostics and troubleshoot-
ing system is a major issue in the management of mobile
network quality. Existing research is mostly based on RAN
quality and summarized KPIs, which do not enable diagnostics
or troubleshooting on individual session level.

CDRs are a rich data source which is currently underutilized
due to large data volumes and the complexity of the data
structure. To solve this, a decision tree based CDR labeling
method and a system for automated diagnostics were pre-
sented. Decision tree is a simple yet effective method for
classification, and manual CDR labeling based training is easy
to understand, configure and maintain.

The accuracy of the system was high, and there were no
signs of over-fitting when the number of trained CDR classes
is kept small. The proposed solution to use separate decision
tree for each call type is an effective way to manage the
accuracy of the labeling system. Methods for monitoring the
prediction accuracy and optimization of the algorithm were
also presented and evaluated.

The main benefits of presented automated diagnostics sys-
tem are enabling of automated corrective actions and utiliza-
tion of supervised learning based methods for troubleshooting
and definition of next best actions.

As a next step, utilization of supervised learning based
diagnostics and troubleshooting methods for CDR data should
be researched further.



REFERENCES

[1] “Technical Specification Group Services and System Aspects; Service
requirements for the 5G system," 3GPP, TS22.261 version 16.7.0
Release 16, 2019.

[2] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck and
R. Boutaba. “Network Function Virtualization: State-of-the-Art and
Research Challenges." IEEE Communications & Tutorials, Vol. 18, No.
1, pp. 236-262, 2016.

[3] A. Celdrán, M. Pérez, F. Clemente and G. Pérez. “Automatic monitoring
management for 5G mobile networks," Procedia Computer Science, Vol.
110, pp. 328-335, 2017.

[4] A. Asghar, H. Farooq and A. Imran. “Self-Healing in Emerging Cel-
lular Networks: Review, Challenges, and Research Directions," IEEE
Communications Surveys & Tutorials, Vol. 20, No. 3, 2018.

[5] “Telecommunication management; Self-Organizing Networks (SON);
Concepts and requirements," 3GPP, TS 32.500 version 15.0.0 Release
15, 2018.

[6] C. Zhang, P. Patras and H. Haddadi. “Deep Learning in Mobile and
Wireless Networking: A Survey, " IEEE Communications Surveys &
Tutorials, March 2019.

[7] M. Mdini, G. Simon, A. Blanc and J. Lecouvre. “ARCD: a Solution
for Root Cause Diagnosis in Mobile Networks, " 14th International
Conference on Network and Service Management (CNSM), 2018.

[8] S. Parwez, D. Rawat and M. Garuba. “Big data analytics for user-activity
analysis and user-anomaly detection in mobile wireless network," IEEE
Transactions on Industrial Informatics, Vol. 13, no. 4, pp. 2058-2065,
Aug. 2017.

[9] K. Sultan, H. Ali and Z. Zhang. “Call Detail Records Driven Anomaly
Detection and Traffic Prediction in Mobile Cellular Networks," IEEE
Access, Vol. 6. pp 41728 -41737, 2018.

[10] Z. Aziz and R. Bestak. “Analysis of Call Detail Records of Interna-
tional Voice Traffic in Mobile Networks," International Conference on
Ubiquitous and Future Networks, ICUFN, pp. 475 -480. 2018.

[11] Y. Leoa, A. Bussona, C. Sarraute and E. Fleurya. “Call detail records
to characterize usages and mobility events of phone users," Computer
communications, Vol. 95, pp. 43 -53. 2016.

[12] J. Wu, M. Zeng, X. Hen, Y. Li and D. Jin. “Characterizing and Predicting
Individual Traffic Usage of Mobile Application in Cellular Network,"
Proceedings of the 2018 ACM International Joint Conference and 2018
International Symposium on Pervasive and Ubiquitous Computing and
Wearable Computers, pp. 852 -861. 2018.

[13] V. Liang, R. Ma, W. Ng, L. Wang, M. Winslett, H. Wu, S. Ying, and
Z. Zhang. “Mercury: Metro density prediction with recurrent neural
network on streaming CDR data, " IEEE 32nd International Conference
on Data Engineering, pp. 1374 -1377, 2016.

[14] N. Chen, W. Xie, R. Welsch, K. Larson, and J. Xie. “Comprehensive
predictions of tourists’ next visit location based on call detail records
using machine learning and deep learning methods, " IEEE International
Congress on Big Data (BigData Congress), pp. 1–6, 2017.

[15] A. Gomez-Andrades, R. Barco, I. Serrano, P. Delgado, P. Caro-Oliver
and P. Muñoz. “Automatic root cause analysis based on traces for LTE
self-organizing networks," IEEE Wireless Communications, Vol. 23, pp.
20-23, 2016.

[16] P. Muñoz, R. Barco, E. Cruz, A. Gómez-Andrades, E. J. Khatib, N.
Faour. “A method for identifying faulty cells using a classification
tree-based UE diagnosis in LTE, " EURASIP Journal on Wireless
Communications and Networking, 2017.

[17] A. Gómez-Andrades, P. Muñoz, I. Serrano and R. Barco. “Automatic
Root Cause Analysis for LTE Networks Based on Unsupervised Tech-
niques," IEEE Transactions on Vehicular Technology, Vol. 65, No. 4,
April 2016.

[18] R. Barco, V. Wille and L. Diez. “System for automated diagnosis in cel-
lular networks based on performance indicators," European Transactions
on Telecommunications,Vol. 16, pp. 399–409. 2005.

[19] P. Szilagyi and S. Novaczki. “An Automatic Detection and Diagnosis
Framework for Mobile Communication Systems," IEEE Transactions on
Network and Service Management, Vol. 9, No. 2, June 2012.

[20] R. Khanafer, B. Solana, J. Triola, R. Barco, L. Moltsen, Z. Altman and
P. Lázaro. “Automated Diagnosis for UMTS Networks Using Bayesian
Network Approach," IEEE Transactions on Vehicular Technology, Vol.
57, No. 4, July 2008.

[21] R. Khanafer, L. Moltsen, H. Dubreil, Z. Altman and R. Barco. “A
Bayesian Approach for Automated Troubleshooting for UMTS Net-
works," IEEE International Symposium on Personal, Indoor and Mobile
Radio Communications, PIMRC, art. no 4022501, 2006.

[22] R. Barco, L. Diez, V. Wille and P. Lazaro. “Automatic diagnosis of
mobile communication networks under imprecise parameters," Expert
Systems with Applications, 36(1), pp. 489-500, 2009.

[23] G. Zhu, J. Zan, Y. Yang and X. Qi. “A Supervised Learning Based
QoS Assurance Architecture for 5G Networks," IEEE Access, Vol. 7.
pp 43598 - 43606, 2019.

[24] “Network anomaly detection by cascading K-means clustering and C4.
5 decision tree algorithm,” Procedia Eng., Vol. 30, pp. 174–182, 2012

[25] J. Gareth, D. Witten, T. Hastie, R. Tibrishani. “An Introduction to
Statistical Learning: with Applications in R," New York: Springer. pp.
303–336. 2017.

[26] “Digital cellular telecommunications system (Phase 2+); Universal Mo-
bile Telecommunications System (UMTS); LTE; Circuit Switched (CS)
fallback in Evolved Packet System (EPS); Stage 2," 3GPP, TS 23.272
version 10.4.0 Release 10, 2011.

[27] “Digital cellular telecommunications system (Phase 2+); Universal Mo-
bile Telecommunications System (UMTS); LTE; Single Radio Voice
Call Continuity (SRVCC); Stage 2, " 3GPP TS 23.216 version 11.7.0
Release 11, 2013.

[28] “Technical Specification Group Services and System Aspects; Telecom-
munication management; Key Performance Indicators (KPI) for Evolved
Universal Terrestrial Radio Access Network (E-UTRAN); Requirements
(Release 15), " 3GPP TS 32.451 version 15.1.0 Release 15, 2018.


