
NFV-VIPP: Catching Internal Figures of Packet
Processing for Accelerating Development and

Operations of NFV-nodes
Masahiro Dodare

Nagoya Institute of Technology
Nagoya-shi, Aichi, 466-8555, Japan

dodare@matlab.nitech.ac.jp

Yuki Taguchi
Nagoya Institute of Technology

Nagoya-shi, Aichi, 466-8555, Japan

Ryota Kawashima
Nagoya Institute of Technology

Nagoya-shi, Aichi, 466-8555, Japan
kawa1983@ieee.org

Hiroki Nakayama
BOSCO Technologies, Inc.

Minato-ku, Tokyo, 105-0003, Japan
nakayama@bosco-tech.com

Tsunemasa Hayashi
BOSCO Technologies, Inc.

Minato-ku, Tokyo, 105-0003, Japan
hayashi@bosco-tech.com

Hiroshi Matsuo
Nagoya Institute of Technology

Nagoya-shi, Aichi, 466-8555, Japan
matsuo@nitech.ac.jp

Abstract—Server-based NFV-nodes have disparate internals,
such as simultaneous deployment of Virtual Network Functions
(VNFs) and layered software abstractions including a virtual
switch. The traditional operations tailored for function-hardware-
coupled devices cannot cope with the increase of related com-
ponents as well as complicated packet forwarding paths inside.
Besides, self-development of VNFs attracting Telcos is still highly
complicated work, due to lack of exact troubleshooting of internal
NFV-nodes caused by exclusive resource management by Data-
Plane Development Kit (DPDK). OPNFV Barometer provides
means of stats acquisition, but internal figures of packet process-
ing are still unveiled. In this paper, we propose an integrated
metrics collection framework (NFV-VIPP) specialized to NFV-
nodes. NFV-VIPP provides seamless understandings of system
components in a node, and reveals the inside by transparently
exposing implementation-related metrics. NFV-VIPP can be in-
corporated into Barometer/collectd via RESTful APIs to reinforce
system visibility, meaning that our framework bridges NFV-node
internals to existing management frameworks. We explore NFV-
node management using intra-VNF metrics obtained by NFV-
VIPP. Specifically, we prove that CPU-cycle consumption of inter-
receive-polling is a driving force to estimate system load.

Index Terms—NFV, DPDK, Barometer, Visualization, Network
Monitoring, Load Measurement, DevOps

I. INTRODUCTION

Decoupling traditional function-hardware mapping of net-
work functions complicates management of themselves. First,
deployment of multiple Virtual Network Functions (VNFs) on
a server-based NFV-node needs to be monitored, although they
are dynamically instantiated, terminated, or migrated. Second,
layered software abstractions in NFV-nodes introduces further
tracking targets, such as virtual switches and virtual NICs. This
complicated structure obscures internal packet processing,
which results in difficulty of identifying forwarding paths and
locations of packet drops/delays for detailed troubleshooting.

Presently, Y. Taguchi is with LINE Corporation, Inc.

Telcos have expected self-development of VNFs for their
networks (e.g. vVIG [1] by AT&T, and Kamuee [2] by
NTT Communications); however, realizing highly-optimized
VNFs is an arduous work even for experienced developers
due to the obscure internal of NFV-nodes. There is a few
developer/operator supportive tools specialized to NFV-nodes.
NFVPerf [3] can detect a bottleneck of inter-components by
packet capturing. OPNFV Barometer [4] can acquire basic I/O
stats of NFV-nodes accelerated by Data Plane Development
Kit (DPDK) [5]. Barometer paves the way for conventional
stats-based monitoring of NFV-nodes, but there still remains
uncollectible promising metrics as explained in VI.

We propose an integrated metrics collection framework,
Visualizing Internals of Packet Processing (NFV-VIPP), for
DPDK-accelerated NFV-nodes. One remarkable aspect is that
intra-VNF metrics are exposed for exact understandings of in-
ternal packet processing. NFV-VIPP is implemented in DPDK
as a dedicated library that collects internal metrics transpar-
ently to VNFs, and its instance within the host (hypervisor)
manages other instances within VMs/containers for providing
an integrated view to existing monitoring frameworks. In this
paper, we describe details of our framework, and examine
system load estimation of DPDK-accelerated NFV-nodes as
a case study of intra-VNF metrics usage. We prove CPU-
cycle consumption of inter-receive-polling alongside our novel
analysis is a driving force to estimate the system load.

This paper is an extended version of our technical report
[6]. We describe the refined NFV-VIPP that co-works with
Barometer as well as renewed evaluations conducted with
upgraded environment, adding container-formed VNFs.

The rest of the paper is organized as follows: related work
is introduced in II. We present requirements, architecture, and
implementation details in III, IV, and V respectively. In VI,
we explore the load estimation of NFV-nodes, and finally, we
conclude this study and give future work in VII.

978-3-903176-24-9 © 2019 IFIP



II. RELATED WORK

VNF orchestration tools like OpenStack [7] and network-
wide monitoring frameworks, such as NFV-Throttle [8], Ne-
tAlytics [9] and CloudHealth [10], have resource monitoring
mechanisms inside, but they are not available for NFV-nodes
powered-by DPDK because it invalidates traditional usage-
based grasping of system status. NFVPerf [3] and ConMon
[11] can detect performance anomalies by direct monitoring
of inter-component communications within a node. Their ap-
proaches can be theoretically applied to DPDK-based systems;
however, packet capturing is not suitable for short packet
dominant high-speed traffics.

OPNFV Barometer [4] is a DPDK-dedicated monitoring
framework based on collectd [12]. Barometer can be transpar-
ently attached to a target VNF as secondary process that can
access shared variables holding various information including
packet I/O stats and packet buffer usage. However, non-shared
data cannot be acquired by other processes because of the
system security, and therefore, we directly introduce dedicated
metrics collecting feature within VNF processes.

J. Xie et al. have proposed a load estimation approach
using length of reception queues in DPDK-enabled NFV-nodes
[13]. The evaluations showed that overloaded condition can be
detected, but the approach cannot predict of that state due to
uprush of the queue length. Therefore, a yet another metric
have to be considered.

III. SYSTEM REQUIREMENTS

We clarify system requirements of NFV-VIPP here. Follow-
ings have been derived from current situations of SDN/NFV
where most high-performance VNFs depend on DPDK, and
they do not have practical OAM features (our framework
cannot rely on the features offered by VNFs). We suppose
users of our system are not only network operators and but
also developers (for optimizing VNFs), and therefore, both
easy management and detailed metrics need to be satisfied.

A. Functional Requirements
Shedding light on implementation-related metrics is a key

feature of NFV-VIPP providing far beyond visibility of NFV-
nodes. Hence, NFV-VIPP instances should reside within each
VNF to directly collect the metrics. Parallel monitoring of
VNFs degrades both operation and performance costs. For
instance, a monitoring server goes slow if multiple agents on
an NFV-node send trap messages notifying a same syndrome.
Therefore, multiple instances of NFV-VIPP must form a uni-
fied monitoring view and be seamlessly integrated into existing
frameworks that can be categorized into metrics collector (e.g.
collectd), metrics conveyer (e.g. SNMP [14] and Telemetry
[15]), and metrics consumer (e.g. Zabbix [16]).

B. Non-functional Requirements
Implementation of NFV-VIPP needs to be covered by com-

mon software infrastructure like DPDK, to prevent existing
VNFs from being modified. DPDK has brought 10 Gbps+
traffic to software-oriented nodes, and the metrics acquisition
by NFV-VIPP should not degrade performance of NFV-nodes.

Controller

Developer Operator

DevOps

Control/Monitoring
Plane

Data Plane

VM/Container
VNF

DPDK

Host
Virtual Switch

VM/Container
VNF

DPDK

DPDK
NFV-VIPP
Instance

NFV-VIPP
Instance

NFV-VIPP
Instance

API
Unified View

Monitoring
Agent

Monitoring
Server

Fig. 1. An Architectural Overview of the Proposed System

IV. SYSTEM ARCHITECTURE

In this section, we explain architectural design of NFV-VIPP
based on the aforementioned system requirements.

The feature of our framework is realized by a collabo-
ration of NFV-VIPP instances deployed into a same NFV-
node. Figure 1 illustrates how they collaborate each other
to provide the unified monitoring view of the NFV-node
to the existing frameworks. An NFV-VIPP instance is de-
ployed into each VNF environment regardless of its forms
(baremetal/VM/container), and each instance, realized as a
DPDK subsystem, is dedicated to the VNF. most work of NFV-
VIPP instances is not performed in the context of data-plane
(except recording of CPU-cycle consumption), and they do not
degrade packet processing efficiency of VNFs.

There is a special NFV-VIPP instance, attached to the
baremetal virtual switch, that works as an integrator of moni-
toring planes within the node. That is, the instance provides a
unified monitoring view to the agents of existing frameworks
via RESTful APIs. Such an integrated design not only simpli-
fies the agents to support our framework, but also bundles the
monitored metrics from the perspective of an NFV-node (not
a VNF) for the monitoring servers like Zabbix.

In terms of the control plane, the SDN controller can use
NFV-node status information notified by a monitoring server.
For instance, the controller can determine update of current
structure of the network by re-routing network paths (to avoid
overloaded areas), or adjusting the number of VNF instances
depending on load of each NFV-node.

V. IMPLEMENTATION

We describe implementation details of NFV-VIPP in this
section. As explained in the previous section, NFV-VIPP
instances are directly deployed into VNFs as a DPDK sub-
system. We have achieved this by adding a yet another thread
group into DPDK, monitoring plane threads, that are dedicated
to manage acquired metrics inside the VNF process.

Figure 2 shows NFV-node internal with NFV-VIPP imple-
mented in DPDK v19.05. There are three NFV-VIPP instances
in the NFV-node. Two of which reside in container-formed



Container

Host

core 2 core 3

core 4 core 5 core 6 core 7
vSwitch
DPDK

NFV-VIPP

Barometer

PMD

NFV-VIPP
Metrics

Container
Metrics DB

VNF
DPDK

PMD

NFV-VIPP
Plugin RESTful APIs

Implemented

Polling Interval
Batching Size

Rx_Queue

Control Plane

NFV-VIPP

ovs_stat
dpdkstat
cpu

interface

Unimplemented

Metrics DB

Container
core 0 core 1

NFV-VIPP
Metrics

VNF
DPDKControl Plane

NFV-VIPP
Metrics DB

PMD

Host
Metrics DB

vhost-vsock

DPDK
PMD
DPDK

Polling Interval
Batching Size

Rx_Queue

Fig. 2. NFV-node internals with NFV-VIPP

VNFs and the remaining one is for the virtual switch. Each
instance has a single monitoring plane thread and they run
on separate CPU cores from data plane (PMD) threads for
performance reasons. The NFV-VIPP instance of the virtual
switch also has roles of both the monitoring plane integrator
and the RESTful API server. We have implemented these
roles (still under development) using a vhost-vsock mechanism
[17] (that realizes socket communications between the host
and the guest) and the C++ REST SDK [18]. We have also
extended PMD threads to acquire CPU-cycle consumption of
inter-receive-polling. Specifically, each invoking interval of an
rte_eth_rx_burst function is recorded using RDTSC.
For Barometer integration, we have added a dedicated plugin
to communicate with NFV-VIPP via RESTful APIs.

VI. LOAD MEASURING

In this section, we examine the intra-metrics acquisition for
estimating system load of DPDK-accelerated NFV-nodes as a
case study of NFV-VIPP usage. Precise understanding of the
system load is a crucial requirement for VNF management in
that it is a key indicator for auto-scaling/migration as well as
troubleshooting of packet losses and processing delays.

A. Problem Statement

The DPDK’s implementation styles, exclusive CPU core
occupation by PMDs for polling-based packet reception, inval-
idate common CPU-usage-based estimation of system load due
to 100%-fixed CPU usage. Memory usage or packet amount
obtained by Barometer could be available for load estimation
(how many packets in processing now is understandable);
however, how much each packet processing costs is obscure.
Heavy packet processing, such as tunnel encapsulation, can
cost multiple times more than simple forwarding, and there-
fore, we are first noticed of overloaded conditions of NFV-
nodes when consecutive packet losses have occurred in realis-
tic situations. Hence, a novel means of precisely understanding
the system load of NFV-nodes is necessary.

Rx Process TxRx TxProcess Rx Process Tx

Time

Packet Processing Loop No Interval

Low Load Packet High Load Packet

Batched Packets

Represent

0 ~ 32 Packets

Fig. 3. Packet Processing Loop Model of DPDK

TABLE I
SPECIFICATIONS OF THE MACHINES

CPU Intel Core i7-6900K 3.2 GHz (8 cores, HT: off)
Memory 64 GB

NIC Intel XXV710-DA2 (25 GbE, 2 ports)
OS CentOS 7.6

DPDK v19.05
Open vSwitch [19] v2.11.1

B. CPU-cycle Consumption in Packet Processing Loop

A required load indicator should react to changes in both
traffic amount and processing cost of each packet. Conven-
tional CPU usage, a ratio of CPU-cycles consumed by a
processor in a given time unit, satisfies this requirement.
We have found an analogous metric in DPDK internal that
switches the notion of meaningful CPU-cycle consumption.
Figure 3 illustrates a common packet processing loop model
of DPDK. PMDs continuously repeat a packet processing
loop, consisting of reception (Rx), main processing (Process),
and transmission (Tx), involving a batch of certain packets
(up to 32). Total CPU-cycles consumed in a single loop
satisfies the above requirement as follows: (i) increase of traffic
rate lengthens the batch size in a loop (resulting in larger
CPU-cycle consumption) (ii) increase of processing load of
each packet involves additional CPU-cycles to be consumed.
Besides, adapting CPU-cycle consumption of each loop as the
indicator can distinguish meaningful packet processing from
idle receive polling that also consumes reasonable CPU-cycles.

C. Estimation of the Load using CPU-cycle Consumption

Catching a sign of pre-overloaded conditions prevents per-
formance issues before they occur. Here, we explain how the
newly introduced load indicator (average CPU-cycle consump-
tion per packet processing loop) is used to grasp the signs.

First we consider a relationship between the CPU-cycle
consumption and input traffic load. There is conceptual equiv-
alence in terms of CPU-cycle consumption between the two
types of loads derived from traffic amount increase and per-
packet processing cost growth. In other words, varying traffic
rate (amount) and varying per-packet processing cost, ranging
from zero to a maximum point where the NFV-node can accept
without causing packet losses, result in similar fluctuation of
CPU-cycle consumption. Therefore, we can understand the
relationship in advance of real operation by examining various
traffic rate with constant per-packet processing cost.



0

2000

4000

6000

8000

10000

12000

14000

16000

18000

0 1 2 3 4 5 6 7 8 9

Av
g.
 C
yc
le
 C
on
su
m
pt
io
n

Input Load [Mpps]

simple forwarding vlan tag insertion

C_drop

C_inf

C_empty

Estimated Range of
Realistic Traffic 

Range of 
ThresholdAlmost the same

C_thr

Red Zone

Yellow Zone

Green Zone

Fig. 4. Input Load vs. Cycles Consumption

Next, we demonstrate the load estimation using CPU-
cycle consumption. The device under test NFV-node hosted a
container-formed VNF (OVS-DPDK) over a baremetal OVS-
DPDK in a P2V2P fashion. The machine specification is
shown in Table I. We periodically varied traffic rate per 1
Mpps ranging from zero to the maximum, and the NFV-VIPP
instances calculated average CPU-cycle consumption values of
a million samples for each rate. In the experiment, the VNF
performs two types of packet processing, simple forwarding
and 802.1Q vlan tag insertion, respectively.

Figure 4 shows the result of the experiments. The horizontal
axis represents the input load (incoming traffic rate), and the
other axis represents the average CPU-cycle consumption of
per packet processing loop. When the node keeps idle receive
polling, the system load is 0% (C empty) and likewise, the
system load is 100% (C drop) when the node cannot accept
slightest bit of load further. The figure indicates us the exis-
tence of an inflection point (C inf ) where the consumption
values drastically react to slight increase of input load when
the load exceeds the point. The inflection point allows the
Green/Yellow/Red alarming scheme in the operation of NFV-
nodes. For instance, the SDN controller can assign additional
flows to an NFV-node with a green label, while the controller
should avoid populating further flows to a node with a yellow
label. If a node has a red label, the controller will migrate
some of existing flows to another NFV-node.

From the result, CPU-cycle consumption in case of VLAN
tag insertion more quickly reached its maximum than that
of simple forwarding, but the fluctuation trend of CPU-cycle
consumption and the value of the inflection point (C inf ) are
equivalent. These imply that the threshold value (C thr) of
the simplest packet processing is reasonable even for more
realistic one, and therefore the understanding these key values
by pre-measurement before real operation is possible.

VII. CONCLUSION

Introducing the concept of softwarization has drastically
changed the means of networking. Such a wave is also
affecting network operators by posing programmability of

their network nodes. The combination of server-based NFV-
nodes and DPDK is a practical scenario in various commercial
networks, but the complexity of their structures prevents them
from being easily managed and highly optimized. Nowadays
both network operators and VNF developers need to collabo-
rate each other to tackle the issues in the 5G era.

In this paper, we have proposed a DevOps friendly NFV-
VIPP for seamless understanding of NFV-node internals, and
demonstrated the usefulness of CPU-cycle consumption in the
polling loop to estimate the system load. We are planning to
extend the framework to identify packet loss points within the
node by exploring further promising internal metrics.

ACKNOWLEDGMENT

This work was supported by JSPS KAKENHI Grant Num-
ber JP19K11940.

REFERENCES

[1] “vVIG: virtual VPN Internet Gateway [Online],” (Sep. 30, 2019), https:
//www.sdxcentral.com/articles/news/att-intel-push-pull-strategy-nfv/
2017/08/.

[2] Y. Ohara, H. Shirokura, A. D. Banik, Y. Yamagishi, and K. Kyunghwan,
“Kamuee: An IP Packet Forwarding Engine for Multi-Hundred-Gigabit
Software-based Networks.”

[3] P. Naik, D. K. Shaw, and M. Vutukuru, “NFVPerf: Online Performance
Monitoring and Bottleneck Detection for NFV,” in Proc. IEEE Confer-
ence on Network Function Virtualization and Software Defined Networks
(NFV-SDN), Palo Alto, CA, USA, Nov 2016, pp. 154–160.

[4] “Barometer [Online],” (Sep. 30, 2019), https://wiki.opnfv.org/display/
fastpath/Barometer+Home.

[5] “DPDK: Data Plane Development Kit [Online],” (Sep. 30, 2019), https:
//dpdk.org.

[6] M.Dodare, Y. Taguchi, R. Kawashima, H. Nakayama, T. Hayashi, and
H. Matsuo, “Visualizing the NFV Node Conditions based on DPDK’
s Processing Model -A Case Study of Load Measurement-,” IEICE
Technical Report, vol. 118, no. 303, pp. 33–38, Nov 2018, (in Japanese).

[7] “OpenStack [Online],” https://www.openstack.org/.
[8] D. Cotroneo, R. Natella, and S. Rosiello, “NFV-Throttle: An Overload

Control Framework for Network Function Virtualization,” IEEE Trans-
actions on Network and Service Management, vol. 14, no. 4, pp. 949–
963, Dec 2017.

[9] G. Liu and T. Wood, “Cloud-Scale Application Performance Monitoring
with SDN and NFV,” in 2015 IEEE International Conference on Cloud
Engineering. IEEE, 2015, pp. 440–445.

[10] A. Shatnawi, M. Orrù, M. Mobilio, O. Riganelli, and L. Mariani,
“CloudHealth: A Model-Driven Approach to Watch the Health of Cloud
Services,” in 2018 IEEE/ACM 1st International Workshop on Software
Health (SoHeal). IEEE, 2018, pp. 40–47.

[11] F. Moradi, C. Flinta, A. Johnsson, and C. Meirosu, “ConMon: an
Automated Container Based Network Performance Monitoring System,”
in Proc. 2017 IFIP/IEEE Symposium on Integrated Network and Service
Management (IM), Lisbon, Portugal, May 2017, pp. 54–62.

[12] “collectd [Online],” https://collectd.org/.
[13] J. Xie, M. Miao, F. Ren, W. Cheng, R. Shu, and T. Zhang, “Overload

Detecting in High Performance Network I/O Frameworks,” in Proc. 2016
IEEE 18th International Conference on High Performance Computing
and Communications; IEEE 14th International Conference on Smart
City; IEEE 2nd International Conference on Data Science and Systems
(HPCC/SmartCity/DSS), Sydney, Australia, Dec 2016, pp. 999–1006.

[14] J. D. Case, M. Fedor, M. L. Schoffstall, and J. Davin, “Simple network
management protocol (snmp),” Tech. Rep., 1990.

[15] “Telemetry [Online],” (Sep. 30, 2019), https://tools.ietf.org/html/
draft-song-opsawg-ntf-03.

[16] “ZABBIX [Online],” https://www.zabbix.com/features.
[17] S. Hajnoczi, “virtio-vsock: Zero-configuration host/guest communica-

tion,” in KVM Forum, 2015.
[18] “The C++ REST SDK [Online],” (Sep. 30, 2019), https://microsoft.

github.io/cpprestsdk/index.html.
[19] “Open vSwitch [Online],” http://openvswitch.org/.


