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Abstract—Along with many other novel features, the fifth
generation of mobile networks (5G) aims at highly flexible and
dynamic network management, as well as reduced cost for
operators. In order to enable both features, rapid and efficient
adaptation to environmental changes is needed. This requires a
complete knowledge of the characteristics of the user traffic at
all time scales, but state-of-the-art research clearly differentiates
between large-scale and small-scale traffic behavior. In this work,
we propose a traffic model that connects large-scale and small-
scale phenomena. We show that the standard small-scale models
may produce inaccurate results in case of network congestion.
We propose a strategy to mitigate this problem and evaluate it
through simulations.

Index Terms—5G, traffic, model, self-similar

I. INTRODUCTION

Traffic modeling is one of the most important aspects in
communications engineering, as it lays the foundations for
network design and management. Indeed, an accurate model
of the traffic handled by a network is critical for providing a
good service to the users while reducing the costs for network
operators. Nonetheless, when the traffic originates from many
sources or it is related to human behavior, models can be hard
to obtain. In addition, traffic models may become obsolete as
the network evolves. This motivates an everlasting quest for
accurate traffic models.

The modeling of user traffic in 3G and 4G networks has
been extensively tackled by previous research. The motivation
behind this modeling is mostly twofold. On the one hand,
operators want to exploit large-scale patterns to correctly
dimension a mobile network, save energy, or optimize function
placement. On the other hand, analyzing small-scale phe-
nomena is also crucial to improve the service to the users
and prevent failures. The former motivation has attracted the
most attention from the researchers over the recent years,
who have proposed multiple large-scale models [1]–[4]. These
capture daily and weekly patterns of the traffic handled by
the base stations, which implies that the lowest granularity
they consider is usually in the range of tenths of minutes.
Nonetheless, for those cases in which evaluation of shorter
time scales is needed, one can find also small-scale traffic
models for 4G networks. Simple models are often based on
Poisson packet arrivals, which allows for uncomplicated math-
ematical analysis [5], [6]. However, Poisson models are known

to ignore the long-range dependency of the traffic fluctuation
that is present in many communication networks [7]. Models
based on self-similar processes can be used to capture this
long-range dependency, which has been successfully applied
to 4G traffic [8].

In 3G and 4G networks, the distinction between large- and
small-scale models is often enough to operate them efficiently.
Nonetheless, one of the main features of 5G networks is
flexible and dynamic management [9], which implies reacting
to changes in the network to provide better user service and
minimize costs [10]. Examples of this are fast reaction to
network failures, in order to enable ultra reliable low-latency
communication (URLLC), handling of extremely bursty traffic
from massive machine type communications (mMTC), or load
balancing and optimal function placement to respond to the
instantaneous loads for enhanced mobile broadband (eMBB)
[11]. This motivates the construction of full-scale models for
5G traffic so as to combine large- and small-scale effects to
provide a good understanding of the traffic at all times.

A naive approach to produce a full-scale traffic model would
be to simply extrapolate and combine the existent large- and
small-scale models for 4G. One could, for example, foresee
the average load of a base station at some instant from a large-
scale model and use it to generate a self-similar sequence with
a small-scale model. In this paper, we show that combining
large- and small-scale models in such manner may lead to
spurious synergies. Namely, this naive approach would ignore
the evolution of the traffic variance with the average load.
Somewhat counterintuitively, we show that the variance of user
traffic in a mobile network may be actually higher when the
average load is low, which is not captured if large- and small-
scale models are unknowingly combined.

The rest of this paper is organized as follows. Sec. II
introduces our proposed strategy to combine large- and small-
scale models for 5G networks. In Sec. III we present numerical
experiments to back our strategy. Finally, Sec. IV concludes
the paper.

II. USER TRAFFIC MODEL

We model the downlink user traffic handled by a 5G base
station as the discrete random process X(t), whose values are
defined for t ∈ Z, representing the indices of the scheduling
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intervals. Since all data packets within such an interval are
aggregated into a single block by the scheduler, no finer
granularity is needed for 5G traffic. As anticipated in Sec. I,
the behavior of X(t) can be decomposed into large- and small-
scale components. We can model these components by means
of the functions WL(t) and WS(t, µX ,M,H), respectively,
where µX is the average data rate, M is the number of
connected users, and H is the degree of self-similarity of
the traffic. These three parameters change slowly over time,
and thus they can be provided as the output of the multi-
valued function 〈µX ,M,H〉 = WL(t) modeling the large-
scale component. Hence, we can combine both components
as follows:

X(t) ∼WS(t, µX ,M,H) = WS(t,WL(t)), (1)

where ∼ means that both functions have the same distribution
and autocorrelation properties. In the following, we elaborate
on the details of each of these components.

A. Large-scale component

The large-scale component of the user traffic WL(t) in
4G networks has been comprehensively studied by previous
research. As this component is mostly the result of human
behavior, its models can be reused directly for those 5G use
cases dealing mainly with human communication, such as
eMBB. There are three traffic parameters for which large-
scale patterns have been observed: average load µX , number
of connected users M , and the degree of self-similarity H .

The average load E{X(t)} = µX of a typical mobile base
station exhibits a strong daily pattern, with valleys in the night
along with midday and afternoon peaks. Several models have
been proposed to foresee the average hourly load based on
these observed patterns [4], [8]. The shape of this pattern is
similar for most base stations, although different variants exist
for residential, office, transport, or entertainment areas [4]. The
scale of the pattern is nonetheless highly dependent on the
base station, whose peak load typically ranges from 10% to
90% of the total capacity of the cell [2], [3]. Therefore, the
specific model that is suitable for a given base station needs
to be chosen according to the area, population density, etc.

The number of connected users M also follows a daily
pattern. In fact, it has been reported that both µX and M
have the same daily variations, although the average load is
not only the result of the number of connected users, but it
also depends on time-varying traffic oscillations. Nevertheless,
the number of connected users and the average load are highly
correlated. The number of users simultaneously connected to
a 4G base station typically ranges between 70 and 1200 at the
peak hour and between 10 and 800 in the valley hour [4] [8],
depending on the location and size of the base station.

The degree of self-similarity H , also known as Hurst
parameter, measures how much a time-scaled version of
the traffic resembles the original sequence [12]. It is also a
measure of the long-range dependence of the traffic, that is, the
effect of the current situation on much later events. Although
this parameter actually indicates the independence of the traffic

phenomena on the time scale, it has been observed to also vary
according to a daily pattern. In fact, a direct relation between
the average load and the Hurst parameter has been suggested,
as it is observed that mobile traffic is highly self-similar at
the peak hours (H ≈ 0.9), whereas at the valley hours the
self-similarity is less noticeable (H ≈ 0.65) [8].

By using the models cited above, whose complete descrip-
tion is avoided for brevity, we can obtain the slow-varying evo-
lution of the average traffic load µX , the number of connected
users M , and the Hurst parameter H . These parameters are
needed for constructing the small-scale component of X(t),
which is explained in detail in the following subsection.

B. Small-scale component
The small-scale component WS(t, µX ,M,H) of X(t) mod-

els the traffic variation in the order of a few scheduling
intervals, in contrast to the slow evolution of the large-scale
components. Owing to the self-similar nature of the mobile
data traffic [8], we compare two self-similar models for the
small-scale component: a naı̈ve superposition model and our
suggested synthetic model. The superposition model is simple
and intuitively fits the source of the traffic, but it fails at
representing the traffic when combined with the large-scale
component. In order to fix this, we propose a synthetic model
that allows better combination with the large-scale component.

1) Superposition model: The task of the small-scale com-
ponent is to represent a self-similar signal X(t) with mean
µX and Hurst parameter H , as provided by the large-scale
component. A common approach to generate such a signal
is to use a Pareto ON/OFF model [7] [13], in which mul-
tiple Pareto-distributed renewal processes are superposed to
generate a self-similar sequence. Intuitively, we can map each
of these renewal processes to the traffic generated by user
m ∈ {1, ...,M}. In other words, the process Xm(t) ∈ {0, 1}
of user m models whether user m is transmitting a packet
or not. It can be shown that if the holding times for the ON
and OFF states follow a Pareto distribution with parameters
1 < αON < 2 and 1 < αOFF < 2, respectively, the superposition
of all processes when M is large resembles a Gaussian self-
similar signal with Hurst parameter H = 3−αOFF

2 , assuming
αOFF < αON [14]. As a consequence, we can decompose X(t)
as

X(t) =

M∑
m=1

γmXm(t), (2)

where γm is the data rate achieved by user m, which is
determined by the channel quality. This approach is attractive
to model and generate self-similar traffic, as each process
Xm(t) can be regarded as the contribution of user m to the
total traffic, thus offering an intuitive explanation of its self-
similarity [7]. In that case, the mean of the self-similar signal
would be:

µX = Mγ̄pON = Mγ̄

αON
αON−1

αON
αON−1 + αOFF

αOFF−1
, (3)

where γ̄ is the mean of {γm} ∀m and pON is the probability
of being in the ON state. The value of αON can be chosen
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Fig. 1. Illustration of how the user traffic is trimmed when R = 100 Mb/s
and the average load is X̄ = 0.8R. Note that the variance of the actual user
traffic is lower than that of the ideal traffic provided by the superposition
model.

to match the value of µX specified by the large-scale model
given the expected M , whereas αOFF is selected to obtain the
desired H . This implies that the signal X(t) is completely
characterized by µX , M , and H , and therefore we can express
also its variance as a function of these parameters:

Var{X(t)} = σ2
X = M(σ2

γ + γ̄2)pON(1− pON) (4)

= M(σ2
γ + γ̄2)

2TON(2H2 − 5H + 3)

(2H(TON + 1)− 3− 2TON)2
, (5)

where σ2
γ is the variance of {γm} ∀m and TON = αON

αON−1 .
The identity Var{X(t)} = MpON(1 − pON) comes from the
fact that the marginal distribution of X(t) is equivalent to the
superposition of M Bernoulli experiments with parameter pON,
resulting in a binomial distribution. When M is large, this is
equivalent to a Gaussian distribution.

Although this model is simple and intuitively matches the
origin of the traffic, it ignores the fact that not all instantaneous
traffic can be achieved. That is, the limited capacity R of the
air interface forces that X(t) ≤ R, effectively trimming the
higher peaks of X(t) (see Fig. 1). If the average cell load is
low enough, this limitation is negligible and the superposition
model accurately matches the mean, variance, and degree of
self-similarity of the actual mobile traffic. Conversely, with
high average loads, the probability that some traffic needs to
be buffered increases, which decreases the variance. Thus, the
variance foreseen in (5) does not match anymore the variance
of the real traffic.

A possible solution to this problem would be to modify
X(t) after it is created to prevent peaks higher than R
and match the buffering of a real base station. This can be
accomplished by applying a min-plus convolution between the
cumulative traffic Y (t) =

∑t
i=0X(i) and the service curve

of the base station [15]. However, as it is shown in Sec. III,
this process destroys the self-similarity of the signal, therefore
compromising the accuracy of the model.

2) Synthetic model: To overcome the shortcomings of the
superposition model, we propose a synthetic method that
decouples self-similarity from mean and variance of the traffic.
That is, we independently generate a synthetic signal with the
desired degree of self similarity and then shift and scale it to
match the expected mean and variance of a real traffic process.

The mean of X(t) is provided by the large-scale component
of the model, but its variance has to be computed separately.
The exact variance is analytically cumbersome, as it has to
reflect the buffering behavior of the base station. Nonetheless,
we can obtain a good approximation from the truncated
distribution W (t) = min(Z(t, µX ,M,H), R), where Z(t)
represents a self-similar sequence of average µX , Hurst param-
eter H , and constructed after combining M Pareto ON/OFF
renewal processes. As a consequence, the variance σ2

Z of
Z(t, µX ,M,H) can be derived from (5). The variance σ2

W

of W (t) can be obtained after applying the law of the total
variance:

σ2
W = Var{Z(t)|Z(t) ≤ R}Φ(β)+

+ (E{Z(t)|Z(t) ≤ R} −R)
2 · Φ(β)(1− Φ(β)) (6)

where β = R−µ
σZ

, Φ(·) is the cumulative distribution function
of a standard normal random variable,

E{Z(t)|Z(t) ≤ R} = µ− σZ
φ(β)

Φ(β)
, (7)

and

Var{Z(t)|Z(t) ≤ R} = σ2
Z

(
1− β φ(β)

Φ(β)
−
(
φ(β)

Φ(β)

)2
)
,

(8)
where φ(·) is the probability distribution function of a standard
normal random variable.

By setting σ2
X ≈ σ2

W we can estimate the variance of X(t)
as a function of µX and H so as to prevent the incorrect
variance evolution that is obtained with the superposition
model. In summary, using the synthetic model to generate a
signal representing X(t) includes the following steps:

1) Obtain 〈µX ,M,H〉 = WL(t) from the large-scale
model.

2) Generate an independent self-similar Gaussian sequence
Z ′(t,H) with mean µZ′ = 0, σ2

Z′ = 1, and Hurst param-
eter H . This can be accomplished by superposing Pareto
ON/OFF processes or by more efficient algorithms, such
as [16].

3) Calculate σ2
Z as in (5) and σ2

W as in (6).
4) Set X(t) = µX + Z ′(t) · σZ .

III. NUMERICAL RESULTS

In this section we present the evaluation of the two presented
models for 5G traffic: the superposition and the synthetic
model. In order to compare the predictions of the models with
actual mobile traffic, a MATLAB simulator is constructed to
produce large- and small-scale traffic for a 5G base station.
The incoming traffic to the base station is a self-similar
Gaussian sequence produced by the superposition of the traffic
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Fig. 2. Standard deviation σ of the user traffic for a simulation with R = 1
Gb/s and M = 500 users and its corresponding superposition model and
synthetic model.

of M = 500 users. The traffic of each user follows a Pareto
ON/OFF model of mean pON that is varied to accomplish the
desired average load µX . The average data rate per user is set
to γ̄ = 100 Mb/s. In order to emulate the effect of a scheduler,
the incoming traffic is forwarded to a leaky bucket, which can
transmit up to 100 Mb every 1 ms, thus resulting in a cell
capacity of R = 1 Gb/s.

In Fig. 2, we can see the evolution of the standard deviation,
i.e., the square root of the variance, of the generated traffic as
the average load increases. The blue line represents the result
of the simulation after 10 000 runs, whereas the red and yellow
lines represent the behavior foreseen by the superposition
and the synthetic models, respectively. We observe that the
standard deviation of the simulated traffic increases at first as
the average cell load increases, but after a relative load of
µX = 0.7R the standard deviation decreases. This is due to
the limited capacity R of the air interface, which trims the
high values of the traffic as a consequence of buffering and
scheduling process. As foreseen in the theoretical analysis,
the superposition model is not able to capture this change in
the growing trend, and thus it becomes inaccurate for average
loads higher than µX = 0.7R. Conversely, the standard
deviation predicted by the synthetic model resembles closely
that of the simulated traffic, as its standard deviation also
decreases for µX > 0.7R. The match between the synthetic
model and the simulation is not exact, however, due to the
neglected buffering effects.

In Fig. 3, we can observe how closely the two proposed
models approach the desired Hurst parameter H , provided by
the large-scale component. The blue line shows the evolution
of H with the average load µX , as observed in previous
research [8]. We depict an inverted exponential increase of
H as µX increases, in order to feed the models with a smooth
trend. The red line represents the Hurst parameter achieved
after applying a min-plus convolution to the result of the
superposition model, in order to include the effect of the
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Fig. 3. Hurst parameter of the user traffic achieved by the superposition model
and the synthetic model for different average loads. A capacity of R = 1 Gb/s
and M = 500 users are used.

scheduler. After the convolution, the superposition model is
able to provide better estimates of the variance at the prize of
inaccurate Hurst parameter, as shown in this figure. Finally,
the yellow line depicts the Hurst parameter that the synthetic
model attains as a function of the cell load. It is clear that this
model achieves again superior results than the superposition
model.

IV. CONCLUSION

Accurate traffic modeling in 5G networks is a crucial aspect
to enable flexible and dynamic network management. Previous
research focused separately on the large- and small-scale
behavior of the mobile traffic. In this work, we describe a
full-scale 5G traffic model that combines previously developed
large- and small-scale components. We describe the connection
between the two components and provide two alternatives
for the small-scale modeling. We observe that the standard
superposition model cannot capture the decrease in traffic
variance when it is connected to a large-scale model predicting
a high average load. In order to remedy that, we present a
synthetic model in which the small-scale traffic is generated
as an independent sequence that is then corrected to the right
parameters. We show through simulations that the synthetic
model performs better at predicting the traffic variance when
the cell is congested without damaging the self similarity of
the traffic.
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