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Abstract—Anomaly detection remains a challenging task due
to both the ever more complex functions that need to be executed
and the evolution of current networking devices which induces
limitation of computational resources such as the Internet of
Things (IoT). Furthermore, results of anomaly function com-
putations can be repeated gradually over time or executed in
neighboring nodes, thus leading to a waste of such limited
computing resources in constrained nodes. To tackle these issues,
the content-centric paradigm enhanced with computing features
offers a promising solution to reduce the computation resources
and finally improve the scalability of anomaly detection functions.
In this paper, we propose a first step toward a content-oriented
control plane which enables the distribution of the processing
and the sharing of results of anomaly detection functions in
the network. We present the way we leverage NFN to support
Bayesian Network inference to detect anomalies in network
traffic. The relevance and performance of our proposed approach
are demonstrated by considering the Content Poisoning Attack
(CPA) through numerous experiment data.

Index Terms—Distributed anomaly detection, Bayesian Net-
work, Named Function Networking

I. INTRODUCTION

Strong security is a prerequisite for any network today.
With the evolution of technology, usage, and markets, a large
number of types of attacks have emerged. The operational
methods of such attacks have highly gained in sophistication,
making them increasingly difficult to detect. Thanks to the rise
of Machine Learning in recent years, new means for detection
of attacks have been proposed. The deployment and operation
of these functions grow in complexity as well as the number
of metrics used to feed them. Besides, the trend of IoT is
also remarkable, and the security for billions of devices with
limited computational resources remains a challenge increased
by the growing complexity of the processing functions. This
evolution calls for novel approaches to effectively detect
attacks using complex security functions in an environment
of distributed and limited computational resource devices.

In the context of distributed system security, we found
out that current node-centric solutions induce a waste of
computing resources which further enlarge the gap between the
complexity of security functions and the constraint resources
of nodes. Especially, it appears that (1) each node executes
identical security functions over time, especially in a normal
condition without attack or a substantial change, and (2) results
of security functions are likely to have already been calculated
in remote nodes. Hence, the computation of security functions

producing identical results are repeated gradually over time.
We verified this hypothesis by finding out that in a normal
condition of Named Data Networking (NDN) [1], 87% of
computational security operations are repeated.

Inspired by the concept of both active networking and the
content-centric communication model [2], the Named Function
Networking (NFN) architecture has been introduced in [3], [4]
to resolve names to computation functions. NFN also leverages
the in-network caching feature of the content-centric paradigm
which offers a substantial way to reduce the computation
resources of security functions. In this paper we explore the
opportunity of leveraging NFN as an execution environment
for anomaly detection. This stands for a first attempt toward
the design of content-centric control planes. As an anomaly
detection framework, we consider Bayesian Network (BN)
inference since it stands for a representative function that
numerous security components considers. As a use-case, we
have chosen an acknowledged scenario [5] which allows us
to solely address computation issues: the Content Poisoning
Attack (CPA) detection performed in a NDN environment.

The paper is organized as follows. Section II presents some
background and the works related to distributed security func-
tion execution. Afterward, Section III provides background on
Bayesian Networks. Section IV presents our main contribution
which leverages NDN and consists in a naming scheme,
data structures, and the proposal of concent-centric inference
functions. In Section V, we provide numerical results that
demonstrate our approach’s relevance and performance in the
context of CPA detection. Finally, section VI summarizes the
paper and presents our plans for future work.

II. RELATED WORKS

This section surveys the main previous works which are
close to ours. These are distributed anomaly detection and
NFN.

A. Distributed anomaly detection

The authors in [6] propose a novel approach based on a
distributed, cluster-based anomaly detection algorithm. The
proposed approach clusters the sensor measurements and
merges clusters before sending a description of the clusters
to the other nodes to minimize the communication overhead.
Diro et al. in [7] propose a novel approach using deep learning
for cyber-attack detection in IoT using a fog ecosystem. A
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distributed attack detection also proposed and evaluated at fog
level to prove its effectiveness compared to the centralized one.
Palmeri et al. [8] proposed an approach through which net-
work anomaly can be detected by multiple distributed sensors
located throughout the network. Then, they use Independent
Component Analysis to collect necessary components to build
the baseline traffic profiles needed, which are then classified
by machine learning inferred decision trees to detect abnormal
behaviors. In summary, several approaches are proposed in
the research community to resolve the challenge of building
a distributed framework for attack and anomaly detection.
However, none of these proposals leverage the distributed
systems to share the result of the detection function results
and thus avoid computation overlaps.

B. Named Function Networking

In recent years, researches have been interested in the
content-centric communication model. Among them, content
centric networks (CCNs) [2] is a proposal which received
much attention from the community. In CCN, requests for
content are routed by name instead of requiring the use of
host IP address. The content can also be cached in intermediate
nodes on the path from the content producer to its consumer
in order to fasten subsequent requests sharing part of this
path. The Named Function Networking (NFN) architecture,
introduced in [3], [4], further extends this concept to resolve
names to computation functions. In NFN, instead of requesting
data, a client sends an Interest with the function expression to
request the result of a function. The data returned to clients
are the computed results, which also can be cached as a
Data packet. The functional programs are expressed in λ-
calculus [9], encoded in hierarchical CCN names that can
be aggregated and carried in Interest packets. A λ-calculus
expression resolution engine is integrated into each NFN node,
and optionally an application processing or the compute server
can also be hosted in an NFN node. The routers use the
longest-match name lookup to forward Interests. If an NFN
node hosts a compute server, its named function is published
as a λ-calculus expression in the network, and Interests can
be forwarded to the function host. If a copy of a function result
is cached at an intermediate node, it will be returned to the
requesting user along the reverse path. Otherwise, one of the
NFN nodes, which has received the Interest on the path to
the data source, will attempt to compute the result based on
the policies and the available processing resources.

A typical use of NFN consists in performing data processing
in the network. In [10], [11], the authors use NFN for the
orchestration of treatments on multimedia content and for the
processing of data streams in the network. NFN has also been
proposed as a query language [12] to improve the naming
scheme for content in Information-Centric Networking (ICN).
An In-Network Access Control for NDN is proposed in [13],
[14] which also utilizes NFN as Data Processing Unit (DPU)
between clients and providers.

NFN has also found its application in an Edge/Fog comput-
ing context. The function program can be stored in cache of

nodes and migrated to the network according to the request of
the users [15]. A study on NFN as an architecture for Mobile
Edge Computing (MEC) systems is proposed in [16]. It shows
how to identify network resources and to support the execution
of their functions [17]. The authors in [18] have also explored
the possibilities of an augmented reality network using NDN
with NFN as an associated processing mechanism. In [19],
authors propose another ICN-based service platform at the
edge of the network with NFN as a protocol for managing
service interactions.

In the context of the Internet of Things, several solutions
have been proposed to exploit the mechanisms of NFN. The
authors of [20] propose a management of computing services
to assign and schedule computational tasks in an IoT network.
In [21], the authors also use NFN in an IoT network where
sensor data and processing functions are stored. In [22], the
authors also propose an architecture and a naming scheme to
cache data and processing within an IoT network. The authors
of [23] also use NFN as the DPU for the IoT coupled to NDN.
In [24], Lenord et al. use NFN in an IoT gateway to propose
a new routing strategy in NDN.

In brief, NFN has drawn much attention from the research
community in recent years, with different use-cases, in the
context of NDN, IoT, and Fog computing and in the following,
we explore the opportunity to consider it in a security context,
for anomaly detection. We especially consider Bayesian Net-
work inference which is commonly used as a substrate.

III. BACKGROUND ON BAYESIAN NETWORKS

To ease the understanding of the methods integrated in our
solution, we present in this section the necessary elements
related to Bayesian Networks, classifiers and inference.

A. Terminology

We first explain definitions of terms used in the inference
algorithm presented subsquently.

1) Variable: A random variable, called Xi, is a set of
possible values of a random phenomenon. In the following,
we only consider discrete ones. In the context of anomaly
detection, a random variable can be an observed metric or an
anomaly detection result.

2) Evidence: An evidence E = e is a subset E =
(Xe1 , . . . , Xem) of random variables, where m is denoted
as the number of variables in the evidence, standing for the
observed phenomenon and an instantiation e = (xe1 , . . . , xem)
of these variables is an occurrence of these observed data.

3) Factor: To quantify the affinity of two random variables,
a general-purpose function called a factor is considered. Let
(X1 . . . Xn) be a set of random variables, a factor φ is
defined as a function from V al(X1, . . . , Xn) to R. The set
of variables (X1, . . . , Xn) is called the scope of the factor
and denoted Scope[φ] [25]. An entry is a set of values of
each variable and the related value of φ, which represents
the affinity between values. The higher the value of φ, the
more compatible these values are. A Conditional Probabilities



TABLE I
A FACTOR EXAMPLE

A B C φ(A,B,C)
1 1 1 0.25
1 1 2 0.35
1 2 1 0.08
1 2 2 0.16
2 1 1 0.05
2 1 2 0.07
2 2 1 0
2 2 2 0
3 1 1 0.15
3 1 2 0.21
3 2 1 0.09
3 2 2 0.18

Distribution (CPD) can be considered as a sort of factor
which is normalized.

Table I illustrates an example of a factor. The first three
columns describe the overall joint distributions of three ran-
dom variables A, B and C, while the last column holds
the values of φ which correspond to each entry in the joint
distribution of the factor. Each line in Table I represents an
entry of the factor φ(A,B,C), while the value of a factor is
the affinity between values in the entry. φ(A = 1, B = 2, C =
2) = 0.16 while φ(A = 1, B = 2, C = 1) = 0.08 means that
A = 1, B = 2, C = 2 is likely to be twice as compatible in
comparison to the case where A = 1, B = 2, C = 1.

B. Core Principles

A Bayesian Network (BN) [25] is a probabilistic graphical
model that consists of nodes and directed edges. Each node
represents a random variable Xi and an edge from node Xi

to node Xj represents a statistical conditional dependence
between the corresponding variables. As such, Xi is called
a parent of Xj (i.e. Xi ∈ Pa(Xj)) and Xj is called a child of
Xi. The relationship between variables is defined by the CPDs
P[Xj |Xi] and the prior distribution of parent Xj . A Bayesian
Network Classifier (BNC) is a BN used to classify one of its
nodes in a finite set of values. In other words, BNC is a BN
with a set of discrete random variables X = (X1, . . . , Xn) and
a set of observed data E = e called evidence, a query variable
Xq , where one needs to calculate the conditional probability of
P (Xq|E = e). This means that the conditional probability of
P (Xq|E = e) is the sum of all possible combinations of values
of the other variables Xi ∈ X − Xq of the joint probability
of all values X , knowing E = e.

C. Bayesian Inference

The inference designates an algorithm which consists in
calculating, for each value xq ∈ V al(Xq), the joint distri-
bution probability P (X1, ..., Xn) and then to sum out the
instantiations that are consistent with Xq = xq:

P (Xq) =
∑
X1

. . .
∑

Xi 6=Xq

. . .
∑
Xn

P (X1, . . . , Xn) (1)

Thanks to Bayes’ rule, the joint probability distribution can
be expressed as follows:

P (X1, ..., Xn) =

n∏
i=1

P (Xi|Pa(Xi)) (2)

which can be expressed in form of factors:

P (X1, ..., Xn) =
1

Z

n∏
i=1

φi(Xi, Pa(Xi)) (3)

where Z =
∑

X1,...,Xn

n∏
i=1

φi(Xi, Pa(Xi)) (4)

Φ is denoted as the set of factors in a given BN. Hence,
from (1) and (3), the goal of the inference algorithm is to
compute:

P (Xq) =
1

Z

∑
Xn

φq · (. . . (
∑
X2

φ3 · (
∑
X1

φ2 · φ1))) (5)

As we can see, the key of the inference algorithm is to
compute the following expression

∑∏
φ∈Φ φ. This operation

is called the sum-product procedure. Calculating this expres-
sion requires significant computational resources. Therefore,
to calculate it effectively, we must perform the product in a
subset of factors.

D. Variable Elimination Algorithm

There are various algorithms able to perform the infer-
ence of a BN. The Variable Elimination (VE) algorithm,
as illustrated in pseudo-code 1, which calculates some sub-
expressions and caches the result of intermediate computations
to avoid generating an exponentially high number of compu-
tation steps, is the most basic one. We use this algorithm to
demonstrate the benefit of caching and distribution of results in
NFN. More specifically, the input to the VE algorithm consists
of two parts: the factors and the evidence. The factors are
established by CPDs and are not changed when the algorithm
performs the inference at different times, while the evidence
E = e is retrieved after each iteration of the execution. The
output is the conditional probability P (Xq|E = e).

Given the observed data (evidence) E = e, we perform a
factor reduction to reduce the complexity of each factor in
the set of factors Φ by removing the joint distributions that
are not matching up the evidence (line 1-3). Several variables
remain in the query probability after the factor reduction as
we may observe only a subset of variables E ⊂ X . These
variables will be eliminated by the sum-out procedure. For this
purpose, the next step consists in eliminating these variables
according to an Elimination Order (line 4). For each variable
in the Elimination Order, we first multiply all the factors that
include this variable, generating a product factor (line 6-10).
Then, we sum up the value of the variable and eliminate it out
of this combined factor, generating a new factor that we en-
ter into our set of factors to be processed (line 11). Afterward,
when all variables have been eliminated, the only variable
which remains is the query variable Xq . At this moment, we



perform once again a factor product to get the final factor
over the distribution of Xq (line 13-15). Finally, we normalize
the factor by dividing each value by their sum (line 16-17).

Input: initial factors (Φ) and evidence (E=e)
Output: Conditional probability P (Xq|E = e)

1 foreach φi ∈ Φ do
2 φi ← φi(E = e) // Factor reduction
3 end
4 Select Elimination Order (σ);
5 foreach xi ∈ σ do
6 foreach φj ∈ Φ do
7 if xi ∈ Scope[φj ] then
8 ψi ← ψi ∗ φj // Factor product
9 end

10 end
11 φi ←

∑
Xi
ψi // Factor marginalization

12 end
13 foreach φ ∈ Φ do
14 ϕ← ϕ ∗ φ // Factor product
15 end
16 Z ←

∑
X1...Xn

ϕ
17 P ← ϕ/Z // Factor normalization

Algorithm 1: Variable Elimination algorithm

IV. A CONTENT-CENTRIC BAYESIAN INFERENCE
ALGORITHM

The application of a Bayesian inference algorithm can be re-
source consuming. Several research initiatives propose various
ways to accelerate it. Lu et al. [26] propose a parallel Message
passing approach which distributes the computation of each
message passing in the inference algorithm and accelerates
the algorithm using GPU. Yinglong et al in [27] propose
an exact inference algorithm by decomposing and merging
junction trees and distributing the subset of junction trees in
the network. These works both demonstrate the possibility to
distribute the computation effort of BNC inference but they do
not build on a content-centric approach which can substantially
reduce it. In this section, we explain how we leverage NFN to
support BNC; more specifically, we propose the data structure,
naming scheme, and transformation of BNC functions into λ-
calculus.

A. Naming scheme and data structure

As depicted in the VE algorithm, the factor is the core of
the inference algorithm. A factor is not only the input but also
the output of functions. Besides, the evidence parameter can
also be used to calculate the factor reduction. A variable is also
a parameter in the VE algorithm but it does not carry additional
information except its name. As such, we deliberately do not
name the variable and use it as a string. The structures for
factor and evidence, their naming schemes and the naming
scheme of functions are described in the following section.

1) Factor: The factor packet includes three parts: the list
of the names of random variables, their dimensions and the
list of all values of φ. The two first parts refer to the meta-data
of the packet, while the third part is the actual data. The list

of all values is sorted in the order of a factor. In other words,
the third part of the data structure is a serialization of values
of φ when the factor is expressed in form of a table. Figure
1 illustrates this structure.

More specifically, our proposed data structures include two
types of factors: initial factors and temporary factors.

The initial factors, which are established by CPDs, are
named as follows: /data/fac/initial/<name of variables>. As
an example, /data/fac/initial/AzBzC, with ”z” being the separa-
tor character, is the name for the factor shown in Table I. This
naming scheme is not the sole alternative but it is the simplest
one. One can choose to name each entry of a factor as a
data. Nonetheless, since a factor operation uses all factor’s
entries, this means that a large number of parameters will be
required to feed the operation, thus making the approach more
complex.

Besides, factors are also the outputs of operations in the
inference algorithm and then the inputs for subsequent ones.
Therefore, temporary factors are used to distribute the compu-
tation between nodes in an NFN network. These factors are
named using their hash: /data/fac/temporary/<hash(factor)>.
An alternative for naming a temporary factor consists in
using its values as its name, however, when it is complex,
the name may become too large to be stored in an NFN
packet. Besides, another choice consists in generating the
name of the temporary factor randomly or incrementally.
However, if we name the factors in each NFN node randomly
or incrementally, when a node asks others to compute an
operation while another node already uses this name for a
different factor, the result will be inexact. Hash functions
avoid such a collusion since the same hash means that the
same data is stored in the cache.

2) Evidence: Similarly, a packet of evidence encompasses
three parts: the name of variables, their dimensions, and values
of the evidence. The data structure of evidence is designed
through the following ideas. Firstly, the evidence of a variable
Xe = xe shows that the value of the variable Xe is known
(xe). As a consequence, entries that encompass values Xe 6=
xe will be dropped while introducing the evidence. For this
purpose, the value of the evidence for a variable in a packet
consists of a chain of 0’s and 1’s. Value 0 signifies that the
corresponding entry will be dropped while value 1 means that
the entry will remain while introducing the evidence. As an
illustration of the evidence A = 2, the value in the evidence
packet is 010.

Secondly, an evidence is composed of a multitude of vari-
ables. Consequently, the data of the evidence is the merging of
the values of each variable in the evidence. As an illustration
of the evidence A = 2, C = 1, the value in the evidence
packet is 010z10.

Finally, an evidence is designed to be computed with a
factor. Some variables belong to E and other variables belong
to factor. They both should be present in the value of the
evidence. The values of these variables are still unknown. This
means that they will remain while introducing the evidence,
hence, they are marked at a chain of values 1. For example,



Fig. 1. Data structure of a factor

TABLE II
LIST OF HELPER FUNCTIONS

Function Description
serialize Serializes an array of factor’s

values to a string
deserialize Deserializes a string to an

the array of factor’s values
productEviVal Multiplies values of evidence of two variables

verifyValidIndex Verifies the index of values of product
of two factors is valid

mergeVarDim Merges the set of random variables
and their dimensions of two factors

removeVar Removes a variable from the set of random variables
in case of factor reduce or factor marginalization

getVarDimFac Retrieves the set of random variables
and their dimensions of a factor as a string

getVarDimEvi Retrieves the set of random variables
and their dimensions of evidence as a string

getValFac Retrieves the values of a factor as a string
getValEvi Retrieves the values of evidence as a string
listIdxFac Generates the list of index for values of a factor

the value of the evidence A = 2, C = 1 in the context of the
factor φ(A,B,C) is 010z11z10.

On the other hand, the meta-data encompasses only names
and dimensions of variables which belongs to the evidence
E. As an example, for the evidence A = 2, C = 1 in context
of the factor φ(A,B,C), the meta-data of this evidence
is AzCw3z2, while the full packet of the evidence is
AzCw3z2w010z11z10, with ”w” and ”z” being the separator
characters.

In the proposed approach, an evidence is named using the
list of names of variables and the value of the evidence:
/data/evi/<name of variables>/<values of evidence>. As the
evidence should be customized to be operated with factor,
we also deliberately list the variables in the factor that are
still unknown and marked as ”NaN”. For example, /data/e-
vi/AzBzC/2zNaNz1 is the name for the evidence A = 2, C =
1, which is compatible with factor φ(A,B,C).

3) Function: Finally, prefixes /func/<name of functions>/
are reserved for NFN functions. These functions are identified
by their names and parameters (where a parameter can be a
string, integer or a data name). For instance, the functions of
the VE algorithms are:
• /func/reduce/(/data/fac/...,/data/evi/...)
• /func/product/(/data/fac/...,/data/fac/...)
• /func/marginalize/(/data/fac/...,variable)
• /func/normalize/(/data/fac/...)

B. Transformation of functions into λ-calculus

As a λ-calculus expression resolution engine is integrated
into each NFN node, to adapt the inference algorithm in

NFN, we transform the functions of the VE algorithm into λ-
calculus, hosted in the NFN processing server. To conduct the
inference, various functions are needed but, only the four main
ones of the VE algorithm are named in the NFN forwarder.
Other functions, called helper functions, listed in table II,
are also transformed into λ-calculus and added in the NFN
compute server but they are not named using the previously
defined naming scheme.

These functions demand significant resources to be exe-
cuted. In the following sections, we will explain in detail how
we transform these functions into λ-calculus, and then how
we leverage NFN.

1) Factor reduction: Let φ(X) be a factor, and an
evidence E = e. We define the reduction of the factor φ to the
context E = e, denoted φ[E = e], to be a factor over scope
X−E, such that: φ′[E = e](X−E) = φ(X−E,E = e)[25]

Now, we only need to consider how we introduce the
evidence. The factor reduction function is built on the idea
of erasing invalid entries that conflict with the introduced
evidence. For example, given the evidence Xe = xe, and a
factor φ(X1 . . . , Xn), the new factor φ(X1, . . . Xe−1, Xe =
xe, Xe+1, . . . , Xn) is constructed by removing entries which
include Xe 6= xe.

The value of the evidence in our approach is designed
to mark that the entry should be dropped in the factor.
To identify the entry which should be dropped, we use
value 0, and for the entry that should be retained after the
operation, value 1. As shown, the third part of the factor is a
serialization of values of a factor in the right order. However,
the value evidence is just a fusion of evidence from different
variables. Therefore, a function is constructed that allows
merging the evidence of variables to an intermediate data that
is compatible with the dimension and the right order of the
factor to reduce. Function productEviVal allows merging of
evidence from all the random variables in the factor and
providing new data that is compatible with the factor. The
idea of the algorithm is that we realize the product between
values in the evidence of two variables (line 2). In particular,
if the value in one of the variables is already marked to be
dropped (0) it also means that the entry consisting of this value
with all values of other variables will be marked 0, and will
also be dropped.
1 Function productEviVal(evi1,evi2)
2 return reduce(lambda x,y:x+y,[[i*j for i in evi1] for j

in evi2])
The following algorithm enables the introduction of an

evidence into a factor. Firstly, function getVarDim allows
merging names of variables and their dimensions of factors
and evidence into one, which is the meta-data of the new



Fig. 2. Example of function factor reduction

factor (line 2). Secondly, values in the factor and evidence
are calculated to establish the data of the new factor. If the
value of the evidence is 0, this means that the entry of the
factor will be dropped (line 4). The result will be marked
-1, as a value of a valid factor is always positive, and this
entry will be dropped later. By contrast, if the value of the
evidence is 1, which means that the entry is still valid, the
value in the new factor is retained by multiplying it with 1
(line 4). Finally, all of the invalid values in the factor, i.e.
those which are negative, are removed to finally obtain a valid
factor (line 3). Figure 2 illustrates this process.
1 Function reduceFactor(fac,evi)
2 return getVarDim(fac,getVarDimEvi(evi)) +

SEPARATOR CHAR
3 serialize(filter(lambda x:x >-1,
4 map(lambda x,y: -1 if y == 0 else x*y,
5 deserialize(fac), reduce(lambda x,y:

productEviVal(x,y),getValEvi(evi)))))
2) Factor product: The next function that is transformed

into a λ-calculus function is the factor product. The function
is defined as follows: let X ,Y and Z be three disjoint sets of
variables, and let φ1(X,Y ) and φ2(Y,Z) be two factors.
We define the factor product φ1 · φ2 to be a factor ψ:
V al(X,Y, Z) → R as follows: ψ(X,Y, Z) = φ1(X,Y ) ·
φ2(Y, Z) [25].

The goal of this operation is to multiply the values of two
factors together. The joint distribution of the resulting factor
is the merging of two scopes. However, several merging entries
are not valid. For example φ(X = 1, Y = 1) · φ(Y =
2, Z = 1) is an invalid entry as Y = 1 and Y = 2 are
in conflict and should be dropped. From this, our proposed
approach consists in using the function verifyValidIndex to
mark 1 if the entry is valid and 0 if it is not (line 6).
Finally, we multiply the values of this function with the
values of a factor if it is positive and mark -1 if it is zero
(line 4). Following the same methodology with the function
factor reduction, entries with values -1 are considered as
invalid entries and are dropped in the final factor (line 3).
1 Function productFactor(f1,f2)
2 return getVarDimFac(mergeVarDim(f1,f2)) +

SEPARATOR CHAR
3 serialize(list(filter(lambda x:x >-1,
4 map(lambda x,y: -1 if y == 0 else x*y,
5 productValFac(f1,f2),
6 verifyValidIndex(f1,f2)))))

3) Factor marginalization: To achieve the sum-product
operation, a factor marginalization is needed. This function

is defined as follows: let X be a set of variables, and Y /∈ X
a variable. Let φ(X,Y ) be a factor. We define the factor
marginalization of Y in φ, denoted

∑
Y , to be a factor ψ

over X such that: ψ(X) =
∑
Y φ(X,Y ) [25].

The idea of this algorithm is that we have a joint distribution
and we want to get a new distribution that eliminates a
random variable. Then, we compute the sums in the margin
over the distribution of the variable being eliminated. For
example, in the case of the factor illustrated in Table I,
we want to eliminate variable C. We will sum-up values of
φ(A = 1, B = 1, C = 1) and φ(A = 1, B = 1, C = 2) to get
values for the new factor φ′(A = 1, B = 1). To perform this,
we construct the function listIdxFac, which lists all entries of
variables in the factor but not the variable to eliminate (line
5). For example, let f be the factor in table I:

listIdxFac(f,"C")=["A1B1","A1B2","A1B1",
"A1B2","A2B1","A2B2","A2B1","A2B2",
"A3B1","A3B2","A3B1","A3B2"]

Thanks to the listIdxFac function, we list all unique entries
of random variables of the new factor (line 6):

listIdxFac(getVarDimFac(removeVar(f,"C"))
,"C")=["A1B1","A1B2","A2B1","A2B2",
"A3B1","A3B2"]

Then, for each value in the list of unique entries, we locate
the positions of duplicated entries and mark them as 1 (line
5). This step allows us to know the positions of values that
belong to the same entry in the new factor, to sum up these
values. Finally, the value of φ in the new factor is calculated
from the sum of duplicated entries where their positions are
marked as 1.

1 Function marginalizeFactor(f,v)
2 return getVarDimFac(removeVar(f,v)) +

SEPARATOR CHAR
3 serialize(
4 map(lambda z:reduce(lambda x,y:x+y,
5 map(lambda x,y:x*y, getValFac(f),map(lambda

x:1 if z in x else 0,listIdxFac(f,v))))
6 ,listIdxFac(getVarDimFac(removeVar(f,v)),v)))

4) Factor Normalization: Factor normalization is the sim-
plest of all the functions described. Here, we divide all the
values of the factor (line 5-6) by their sum to normalize
the factor (line 3) and finally obtain a conditional prob-
ability: P (Xq|E = e) = 1

Z

∏n
i=1 φ

′
i(Xi)[25] where Z =∑n

i=1 φ
′
i(Xi).

1 Function normalizeFactor(fac)
2 return getVarDimFac(fac) +SEPARATOR CHAR
3 serialize(map(lambda x,y:x/y,
4 deserialize(getValFac(fac)),
5 [reduce(lambda x ,y : x+y ,
6 deserialize(getValFac(fac)))]
7 *len(list(deserialize(getValFac(fac))))))
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Fig. 3. Performance of the proposed approach over time: (a) Snapshot of computational time over time; (b) Evolution of proportion of requests over time;
(c) Snapshot of computational time before and during attack

Fig. 4. Experiment topology

V. NUMERICAL RESULTS

A. Use case: the Content Poisoning Attack

To evaluate the performance of our approach, the Content
Poisoning Attack (CPA) is considered as a use-case. The
detection of this attack is achieved through a dedicated detector
presented in [28]. The considered topology, containing three
NDN routers with both a NFN forwarder and a NFN compute
server, is depicted in Figure 4. Each node integrates all
functions, data, and exchange results. A legitimate producer
of NDN content is connected to R1 while a malicious one is
connected to R2. R2 is connected to both a legitimate user
and an attacker whose purpose consists in corrupting the data
hosted in all network caches to prevent the legitimate user from
accessing the desired and correct content. This attack is one of
the major threats by the NDN community. A BN is proposed
in [29] as an anomaly detection framework. It consists in
19 discrete nodes: an Anomaly node, and 18 metrics. An
MMT monitoring probe is coupled with each router to extract
and collect data concerning the 18 metrics every 5 seconds.
However, to demonstrate and evaluate all functions in the
VE algorithm, we consider one of the metrics as unknown;
otherwise, the factor marginalization function would not be
used as there would be no variable to eliminate.

The proposed approach is implemented using PiCN [30],
which is the newest version of NFN, written in python. It
is compared with a standard Bayesian Network inference

algorithm leveraging an open-source library named pgmpy
[31] also written in python.

B. Evaluation

We evaluate the performance under different conditions to
find out how anomaly detection can be improved by NFN.

1) Performance over time: To assess the performance of
our approach, we simulate normal traffic during 10-minute
intervals and we measure the processing time evolution, cache
hit, local computation and requests to other nodes. As shown
in Figure 3.a, the cache is, as expected, almost empty at the
beginning. This explains the higher processing time of our
approach as compared to the standard one. The effectiveness
of our solution is shown when the cache is fed with results
from previous executions or from neighbor nodes propagation.
In this case, the computational time is lower than that of
the standard approach. This is confirmed by the result of
Figure 3.b, which shows that the average percentage of local
computation and requests to other nodes are the highest at
the beginning. Furthermore, we note that the portion of the
cache hits initially increases over time, then stabilizes since
the cache reaches its limit. The percentage of the cache hits
after 10 minutes is 80%. This shows the effectiveness of our
approach.

2) Impact of normal and abnormal traffic: Another evo-
lution of the computational time, illustrated in Figure 3.c, is
evaluated in the case of an attack, where we simulate normal
traffic during 5 minutes, and then the CPA attack during 5
minutes. The vertical blue line marks the time at which the
attack starts. As we can see, after the attack, the computational
time increases. Since the metrics during an attack are abnormal
in comparison to normal traffic, the detection function cannot
be found in the cache and it requires additional time to
compute operations in the inference algorithm. To conclude,
NFN is efficient in normal traffic but, when the attack occurs,
the proportion of repeated computational operations decreases,
so the computation time with NFN increases.

3) Impact of available CPU resources: The result shown in
Figure 5.a proves that the computational time in our approach
is lower than that of the standard approach when the compu-
tation capacity of hosting node is limited. When the available
CPU resource of the router is smaller than 0.4, the proposed
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Fig. 5. Impacts on computational time (semi-log scale): (a) Available CPU resources; (b) Number of nodes in BN; (c) Number of relations in BN

approach performs better. The reason is that when the router
has sufficient computational resources, it will consume all
of the resources to execute the operations of the inference
algorithm. Therefore, a standard approach can consume all the
resources and perform computational operation rapidly. On the
other hand, when it reaches its computation limit (in case of
limited resources), the use of the cache helps to better execute
the computational operations than with the standard approach.
It reduces the computational time from 10% to 30%. Figure 6
also illustrates the usage of CPU during these experiments. We
can here conclude from Figure 5.a and 6 that we can benefit
from NFN when the computational capacity is limited, which
is the case in IoT-type networks.

0.2 0.4 0.6 0.8 1
Available CPU resources (nCPU)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
PU

 u
se

d 
(n

C
PU

)

CPU usage vs Available CPU resources

Standard library
Proposed algorithm

Fig. 6. Impact of available CPU resources on CPU usage

4) Impact of the BN complexity: To evaluate the perfor-
mance of our approach according to the complexity of BN,
the number of nodes in our BN and the number of relations
is considered. As shown in Figure 5.b and 5.c, when the BN
is simple, thus counting a small number of nodes (less than
10) or relations (less than 21), the computational time in the
standard approach is undoubtedly better than in our approach.
The reason is that the number of computational operations is
ordinary, which means that it does not need the help of a cache
or other nodes to perform the computations. However, when
the BN becomes complex, the performance of our approach is
substantially better than the standard method. In this case, our
approach calculates 4 to 8 times faster than the standard one.
In fact, in this case, the number of computation operations
is huge and exceeds the computational capacity of the node.
As a consequence, the use of a cache and the help of other
nodes become extremely important. The results show that we
benefit from the NFN infrastructure when the BN is complex
and needs a significant amount of operations.

5) Impact of latency between nodes: The impact of latency
between nodes finally needs to be considered. When the
latency increases, the computational time increases as well
because the latency presumably has an impact on the com-
munications between the nodes to execute the computational
operations. However, this latency is too high (greater than
100ms) and we can see that the computational time does not
increase noticeably. By contrast, it is smaller than in the case
where the latency is 20ms. At the beginning, the NFN router
sends requests to neighbors but it does not receive any result.
When the timeout is triggered several times the router does not
send requests to the other nodes, and it decides to calculate the
operations locally. As a consequence, the following operations
are executed faster than in case of 20ms of delay, in which
the routers always wait for the response from their neighbors.
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Fig. 7. Impact of delay on computational time

VI. CONCLUSION AND FUTURE WORK

Anomaly detection is a critical and complex task which
can be supported by NFN. In this paper, we have defined
the core elements for the design and implementation of an
NFN-supported Bayesian Network inference algorithm. To
that aim, we have shown that the VE algorithm in BN can be
transformed to λ-calculus functions and then, thanks to NFN,
cache and share results between nodes. In the context of CPA
detection, we have demonstrated that an NFN-supported BN
performs better not only in the case of limited computational
resources but also when the BN is complex, thus proving
the benefit of this approach for complex anomaly detection
function operated in the context of IoT, for instance.

Our future work will focus on further developing the
content-oriented control plane by extending the current ap-
proach to integrate other methods for anomaly detection.
Moreover, other attacks will also be considered to demonstrate
the applicability and generality of the proposed approach.
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