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Abstract—In the context of Network Functions Virtualization
(NFV), telecommunication systems are more and more deployed
on the cloud, using orchestration engines such as OpenStack
Heat. Heat takes as input templates that describe the components
of the target system and automatically performs the deployment.
This prevents consumers of cloud services from handling the
challenges of manual deployment. However, deploying such
systems remains challenging. Indeed, the templates given to
Heat may contain errors that can lead to a failed or a partial
deployment, thus compromising the systems reliability. To handle
this challenge, we propose a formal approach and a tool for
the verification of templates consistency prior to launching their
deployment. A case study is presented to validate the approach.

Index Terms—Formal verification, OpenStack, Heat, NFV

I. INTRODUCTION

Today’s systems, in both IT (e.g., smart buildings and cities)
and Telecommunication (e.g., 5G [1], solutions that rely on
Network Functions Virtualization (NFV) [2] [3]) domains,
consist of many heterogeneous and interacting components.
These systems are more and more deployed using cloud tech-
nologies, especially to increase their performance, scalability,
and accessibility. Examples of cloud management technologies
are Microsoft Azure [4], IBM Cloud [5], OpenNebula [6], and
OpenStack [7]. OpenStack is among the most used technolo-
gies in the NFV context [8] [9]. It is open-source, and has a
modular architecture. It also provides an orchestration engine,
named Heat [10], for the automatic deployment of systems.

Heat takes as input a template that describes the components
of the target system and automatically performs the deploy-
ment. This allows consumers of cloud services to not handle
the challenges of a manual deployment. Indeed, they just
have to provide Heat with the template of the target system.
This template can be hand-written or even generated by a
tool. However, deploying such a system remains challenging.
Indeed, the templates given to Heat may contain errors that, if
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not detected early, can lead to a failed or partial and useless
deployment. This causes waste of resources, and reliability
issues because one may wrongly assume that the deployment
succeeded. In addition, consumers of cloud services may lose
a lot of time when deploying an erroneous template. Indeed,
they launch their deployment and notice after a delay, that can
be long, that the deployment failed. In this case, they have to
manually try to detect the error. This can also take a lot of
time, and may be not trivial especially for large templates.

To solve the challenges of reliable deployments with Heat,
we propose a formal approach for the verification of templates
consistency. This verification is done prior to launching the
deployment and allows the detection of different types of
errors: syntax, type and consistency. Our contributions are:

1) a review of the HOT specification [11] [12] (language
used to design Heat templates) and its formalization;

2) the development of a tool that allows consumers of cloud
services to verify their templates before deployment;

3) a case study in the NFV context to validate our approach.
This paper is structured as follows. Section II first discusses

related work. Then, Section III gives the background notions.
Section IV presents the review of the HOT specification and
its formalization. Section V describes the implemented tool.
Section VI presents a case study in the NFV context. Finally,
Section VII concludes the paper and gives future directions.

II. RELATED WORK

Several approaches, based on formal methods, have been
proposed for the reliability of deployments in the cloud [13].

In [14], the authors target the NFV domain and propose
a solution to both compute VNFs placement and verify if
reachability policies (e.g., isolation, latency) can be met be-
fore deployment. The VNFs placement and the reachability
problem are formally modeled as clauses resolved by a solver.
However, this approach does not enable templates verification.

Heat provides a set of tools for the verification of templates
before deployment. These tools consist of the Heat parser, the
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heat template-validate command, and the dry-run option [15].
These tools perform syntax and type checking on a template.
However, using them requires users to connect to a running
OpenStack platform even if their aim is to just verify the
template without deploying it. Moreover, these tools do not
detect errors that are related to the consistency of templates.

III. BACKGROUND

This section first introduces HOT. Then, it presents Location
Graphs and Alloy which are used in the proposed approach.

A. HOT

HOT [11] is a YAML-based language used by Heat. This
language allows to describe a system as a set of resources
of different types (e.g., virtual machines, physical servers,
networks and ports). These resources are defined in a template.

1 h e a t t e m p l a t e v e r s i o n : s t e i n
r e s o u r c e s :

3 a a a v n f :
t y p e : OS: : Nova: : S e r v e r

5 p r o p e r t i e s :
n e t w o r k s :

7 − p o r t : { g e t r e s o u r c e : a a a v n f s e c u r e p o r t }
# o t h e r r e q u i r e d p r o p e r t i e s

9 h s s v n f :
t y p e : OS: : Nova: : S e r v e r

11 p r o p e r t i e s :
n e t w o r k s :

13 − p o r t : { g e t r e s o u r c e : h s s v n f s e c u r e p o r t }
# o t h e r r e q u i r e d p r o p e r t i e s

15 s e c u r e :
t y p e : OS: : N e u t r o n : : Ne t

Listing 1. Example of Heat template

Listing 1 presents an example of Heat template. This
template is written with the latest version of HOT (stein).
It describes a system that consists of two virtual machines
(aaa vnf, hss vnf ), and one network (secure). Each machine
has a port that connects it to the network (cf. lines 7 and 13).

HOT relies on a specification that defines its core con-
cepts [11] and the supported resource types [12]. This spec-
ification allows consumers of cloud services to know how
to design templates that can be automatically deployed with
Heat. However this specification is mostly written in natural
language and is therefore, possibly ambiguous, inconsistent,
and error-prone. Hence, based on this specification, users may
design erroneous and inconsistent Heat templates. To prevent
this, we decide to review and formalize the HOT specification.

B. Location Graphs

Location Graphs (LG) [16] [17] is a formal framework
for modeling heterogeneous and distributed component-based
systems. It provides us with a reference meta-model for the
formal modeling of cloud configuration languages. In this
paper, LG is used to formally model the HOT specification.

A Location Graph is a set of Locations. Each
Location is a locus of concurrent computations as in process
calculi with localities such as the distributed π-calculus [18] or
kell calculi [19]. From a software engineering point of view,
a Location can be seen as a component or as a connec-
tor, as in component-based models [20]. Each Location
has a Name for its identification, a Sort and a Process
respectively for its encapsulation and its behavior, as well as
a set of required and provided Roles. Roles correspond to

the points of attachment of a Location, in order to enable
its interaction with other Locations. Location Names,
Sorts, Processes, and Roles are all instances of Value.

A Location Graph has four invariants: (1) Locations
are uniquely named, (2) the required and provided Roles of
a Location are disjoint, (3) a Role is provided by a single
Location, (4) a Role is required by a single Location.
The Location Graphs concepts are implemented in Alloy.

C. Alloy

Alloy [21] provides a lightweight formal language and an
automated analyzer to specify and verify systems. It is chosen
because it is widely known, in the formal methods community,
open source, and accessible as its language has few concepts.

The Alloy language is based on a first order relational
logic [22]. Its concepts include signature with fields for
describing the components of the target system and their
interactions, and fact for defining a set of invariants of the
system. It also provides commands for validating the system.

An example of such command is run. When executed,
this command triggers the Alloy Analyzer which finds one or
several instances of the system, as a constraint satisfaction
problem resolved by a solver, if its model is consistent (i.e.
all constraints are satisfiable). When the model is inconsistent,
the analyzer highlights the set of constraints that cannot be
satisfied. When an instance is found, it can be visualized
graphically and/or analyzed in order to verify its properties.
module L o c a t i o n G r a p h s

2
s i g L o c a t i o n G r a p h{

4l o c a t i o n s : s e t L o c a t i o n }

6s i g L o c a t i o n{
name: one Name,

8p r o c e s s : one P r o c e s s ,
s o r t : one S o r t ,

10p r o v i d e d : s e t Role ,
r e q u i r e d : s e t R o l e }

12
f a c t Unique lyNamedLoca t ion {

14a l l l g : L o c a t i o n G r a p h | no d i s j l 1 , l 2 : l g . l o c a t i o n s | l 1 . name = l 2 . name }

16/ / o t h e r s i g n a t u r e s and f a c t s o f L o c a t i o n g r a p h s

18r u n Model {} e x p e c t 1

Listing 2. Alloy implementation of Location graphs

Listing 2 shows the implementation of Location Graphs
as a module in Alloy. A LocationGraph is a sig-
nature (sig) with a set of Locations (lines 3-4). A
Location is a signature with one mandatory Name,
Process, and Sort (lines 7-9). A Location also has
provided and required Roles (lines 10-11). Lines 13-14
show the UniquelyNamedLocation invariant specifying
that distinct Locations of a LocationGraph must have
different Names. This module has a run command to verify
LocationGraph and find instances, if there is at least one.

Fig. 1 shows an instance of LocationGraph found
by the Alloy Analyzer, after the execution of the run
command (line 18 in Listing 2). This instance has two
Locations, two Names, one Process, and one Sort.
Note that the Locations have distinct Names to satisfy the
UniquelyNamedLocation invariant. Processes and
Sorts could be shared between Locations, as in Fig. 1.



Fig. 1. LocationGraph instance found by Alloy Analyzer

IV. REVIEW AND FORMALIZATION OF THE HOT
SPECIFICATION

This section first describes the HOT specification. Then, it
shows how this specification is reviewed and then formalized.

A. Description of the HOT Specification

The paper targets the latest HOT specification (stein). The
HOT core specification states that a template has 7 sections:

• heat template version: defines the version of HOT that
is used to design the template. This section is mandatory;

• description: is an optional string to explain the template;
• parameters: optionally defines the input parameters that

have to be provided at deployment time. This allows to
customize the template and reuse it in different contexts.

• parameter groups: specifies how the input parameters
are grouped. For example, parameters related to network
(e.g., IP addresses, CIDR) can belong to the same group;

• resources: defines a set of resource types to be deployed;
• outputs: optionally defines the outputs to give a feedback

to users after the deployment (e.g. dynamic IP address);
• conditions: optionally defines a set of conditions, to be

evaluated, based on the values of the input parameters.
The HOT types specification [12] is also written in natural

language but its YAML version can be retrieved from a run-
ning OpenStack platform. This YAML version is readable by
machines and can, therefore, be used for generation purposes.
This specification defines the supported resource types. These
types are provided by the OpenStack services and are grouped
in domains (e.g., computing, networking). For instance, the
Nova service provides computing resource types. An example
of these types is OS::Nova::Server (virtual machine). The
Neutron service provides networking resource types such as
OS::Neutron::Net and OS::Neutron::Port. Each resource type
has a support status, a set of properties, and a set of attributes.

B. Review and Formalization of the HOT Specification

The aim of reviewing the HOT specification is to verify
its consistency and its correctness. To perform the review,
we (1) formally model the HOT specification with Location
Graphs and Alloy, (2) find instances of the obtained model
with the Alloy Analyzer and analyze the instances. This
allows us to detect about 63 errors in the HOT specification.
These errors are related to missing invariants that
prevent inconsistent behaviors. In the following,
the modeling of the HOT specification is first presented. Then,

two examples of errors are given. Finally, the formalization of
the HOT specification, to correct the detected errors, is shown.

1) Modeling the HOT specification: the HOT core is first
modeled by writing, systematically from the specification, an
Alloy module named HOT.als. This is done by defining an
inheritance relationship and a mapping between the HOT core
concepts and those of Location Graphs. A Template inherits
from LocationGraph as both can be seen as a component-
based system. Resource inherits from Location, both can
be seen as a system component. Parameter group, Parameter,
Output, and Condition inherit from Value. A run command
is written to find Template instances. Then, the model of the
HOT types specification is generated by a dedicated Python
script. It takes as input the YAML version of the HOT
types specification and generates an Alloy module named
HOT types.als. This module includes, for each resource type,
a set of signatures, and a run command to find its instances.

2) Examples of detected errors: let us consider, in Fig. 2,
an instance of HOT template found by the Alloy Analyzer.
In this instance, a network has two subnets with the same
address (10.0.0.0/24). This behavior is inconsistent. However,
this instance is found by the analyzer. The reason is that there
is, in the HOT specification, no invariant that prevents this.

Fig. 2. Two subnets with the same address in the same network

Fig. 3 shows another instance found by the analyzer. This
instance consists of 2 virtual machines and 1 port attached to
both machines (the port has 2 provided roles and each of them
is attached to one of the virtual machines). This behavior is
inconsistent and, thus, it must be avoided through an invariant.

Fig. 3. Two virtual machines with the same port

3) Formalizing the HOT specification: the aim is to correct
the errors detected in the HOT specification, by taking into
account the missing invariants. This formalization is done by
writing in Alloy a fact for each detected error. These facts are
added in the HOT.als (resp. HOT types.als) module for the
errors related to HOT core (resp. supported resource types).



For instance, Listing 3 shows the Alloy fact written to cor-
rect the error presented in Fig. 3. This fact states that distinct
resources of type OS::Nova::Server must have different ports.
f a c t n o d i s t i n c t s e r v e r s w i t h t h e s a m e p o r t {

a l l d i s j s1 , s 2 : OS Nova Server| # ( s 1 . p r o p e r t y n e t w o r k s p o r t . ˜ p r o v i d e d &
s 2 . p r o p e r t y n e t w o r k s p o r t . ˜ p r o v i d e d ) =0}

Listing 3. Fact for OS::Nova::Server and OS::Neutron::Port

V. IMPLEMENTED TEMPLATES VERIFICATION TOOL

This tool takes as input a Heat template with its environment
file, if there is one. This file defines the external resources that
are used in the template and gives values to the parameters.

The tool is based on the formalized HOT specification
and on the Alloy Analyzer. It consists of (1) a parser that
performs syntax and type checking, and (2) a generator that
translates the template and its environment file into a formal
Alloy model. This model consists of a signature, a fact,
and a run command. The signature declares the parameters,
parameter groups, resources, outputs and conditions sections
of the template. The fact affects values to the fields of the
sections. The run command is executed by the Alloy Analyzer,
to check if the template is compliant with the formalized HOT
specification (i.e. the template does not contain errors and can
be deployed). If the template is deployable, an instance of it
is found. Otherwise, its list of errors is returned to the user.

VI. CASE STUDY

To validate our approach, we target a virtual network service
developed by the IRT b<>com. This network service (cf.
Fig. 4), called Unifier Gateway (UGW) [23], is a convergent
access control solution based on NFV technologies. It consists
of a user and a control planes. The latter is made up of 6 VNFs:

• AAA: Authentication, Authorisation & Accounting;
• DHCP: Dynamic Host Control Protocol;
• HSS: Home Subscriber Server;
• MME: Mobility Management Entity;
• S/PGW-C: Serving & PDN Gateway Control plane;
• GW-U: SDN Controller (SDN-Ctlr) of the user plane.

Fig. 4. UGW network service

For the UGW rolling up, b<>com provides a Heat template
in order to deploy the control plane on an OpenStack platform.

A. Heat Template of the UGW

This template defines 5 private networks (e.g., secure, lte
control) and 1 public network. It also defines 7 Virtual Ma-
chines (VM) on which specific services are installed. There is
one VM for each VNF and another one called Internal switch
for routing the network traffic by applying specific rules. Each

VM is connected to a set of private networks through ports.
An extract of this template is the example given in Listing 1.

B. Verification of the UGW Template
We give the UGW template, and its environment file, to

our tool for its verification. Then, the Alloy Analyzer is able
to find a UGW instance. This means that there is no error in
the template. We expected this result because the template has
been used to deploy, on several sites, an operational UGW.

Therefore, to better illustrate our approach, we introduce an
error in the UGW template (cf. Listing 1) by changing the port
of the aaa vnf, on the secure network, to hss vnf secure port.
After this, hss vnf secure port is attached to both machines.

Then, we deploy the new template. Heat does not detect
the error and starts the deployment which takes 5 minutes
to end. When checking the deployment state, we notice that
it is partially done (cf. Fig. 5). Indeed, hss vnf secure port
cannot be attached to both machines. For a larger system, the
deployment may take a longer time without being successful.

Fig. 5. Deployment of the modified UGW template

Finally, we verify the modified template with our tool to
see its behavior. In this case, as shown in Fig. 6, the error is
detected, in 876 ms, before starting the deployment. Indeed, no
instance of UGW is found and the tool highlights the fact that
it cannot satisfy. This fact is the example given in Listing 3.

Fig. 6. Formal verification the modified UGW template

VII. CONCLUSION

This paper has proposed a formal approach to improve the
reliability of HOT templates deployment through the Heat
engine. This is done by (1) reviewing the HOT specification
and identifying a set of errors it contains (missing invariants
to prevent inconsistent behaviors), (2) formalizing the HOT
specification to correct these errors, and (3) implementing a
tool that verifies templates consistency, based on the formal-
ized HOT specification, prior to launching their deployment.

A first perspective of this work is to consider more types
of resources. Indeed, in the current status, only 36 types are
considered. Another perspective is to ensure the evolution of
this approach, as well as the implemented verification tool, in
order to support the future versions of HOT. Finally, a major
perspective is to generalize this approach to other orchestration
languages such as Cloudify [24], and Docker Compose [25].
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