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Abstract—In this paper, we propose and implement a dis-
tributed autonomic manager to maintain service level agreements
(SLA) for each application’ scenario. The proposed autonomic
manager seeks to support SLAs by configuring bandwidth ratios
for each application scenario using overlay network before
provisioning more computing resources. The most important
aspect of the proposed autonomic manager is scalability which
allows us to deal with geographically distributed cloud-based
applications and large volume of computation. This can be useful
in look ahead optimization and when using complex models,
such as machine learning. Through experiments on Amazon AWS
cloud, we demonstrate the elasticity of the autonomic manager.

Index Terms—Distributed Planning, Autonomic Systems,
Cloud Resource Management, Machine Learning, Self-Testing

I. INTRODUCTION

Driven by the increasing popularity of information technol-
ogy in our society, the number of distributed heterogeneous
software systems is rapidly growing. A distributed system is
composed of multiple cooperating components that communi-
cate through message passing [1] over a network. Versatility,
flexibility, scalability, and low-cost management are essential
requirements of a distributed system to cope with its increasing
complexity. Distributed systems need to manage their behavior
by exhibiting self-adaptive properties [2] to achieve the desired
run-time qualities. Self-adaptive software systems modify their
behavior in response to changes in operating environments [3].
The mechanism for achieving run-time adaptation is embodied
through feedback loops in the form of Monitor-Analyze-Plan-
Execute (MAPE) architecture [4]. Feedback loops can be
implemented in either a centralized or decentralized manner
depending on the design features and requirements.

Nowadays, more and more applications are deployed on
clouds that facilitate elastic resources to plan and execute
management changes dynamically [5]. It has been shown that
in cloud computing deployments, the performance goals of
applications, such as maintaining service level agreements
(SLA), can be achieved through many different run-time
changes [6]. Most approaches only consider provisioning/de-
provisioning computing resources, and few try to maintain
SLAs using other parameters such as network bandwidth
configuration to reduce the costs. In this paper, we use both
resource provisioning and dynamic bandwidth configuration to

maintain the performance of managed applications. Previously
proposed mechanisms using bandwidth reconfiguration use
a central autonomic manager which measures and monitors
system parameters and applies corrective actions accordingly.
However, a centralized autonomic manager can become a
bottleneck itself, especially when it needs to run complex
planning mechanisms over a look ahead window.

In this paper, we address the following research question:
RQ. How can we design and implement a scalable look
ahead planning mechanism to maintain performance
metrics of cloud applications?
We take advantages of the Actor Model [7] and machine
learning models to design our distributed planning mechanism.
The proposed solution evaluates a domain-specific set of
adaptation options at run-time and examines possible
consequences of each adaptation option in the future, aka
a look ahead window. We use machine learning (ML) to
model and predict both future workloads and application
performance. At high level, our distributed autonomic
manager implements the MAPE-K control loop composed of
Monitor, Analyze, Plan and Execute functions supported by
a Knowledge Base.

The remainder of this paper is organized as follows. We
explore related works in section II. In Section III, we introduce
the purposed method and architecture, including machine
learning models, and adaptation algorithms. Section IV is
devoted to explaining experiment setups and analyzing results.
Finally, section VI concludes achievements and states future
works.

II. RELATED WORK

Various approaches have been proposed so far to deal
with the automatic cloud resource management problem [8],
[9]. The work is motivated by the need to maintain SLAs
in response to continuously changing workloads. Some of
the conventional approaches in auto-scaling mechanisms are
threshold-based rules, reinforcement learning, queuing theory,
control theory, and time-series analysis [10].

Besides approaches that only focus on provisioning new
computing resources in response to changes in workloads,
some studies pay more attention to cost-less options such as
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network bandwidth allocations. For instance, in [11], a hill-
climbing heuristic at run-time has been used to dynamically
adapt bandwidth of application flows to postpone provisioning
virtual machines for as long as possible. The overall perfor-
mance of the autonomic manager has been improved in [12] by
using machine learning models. Authors in both [11] and [12]
introduce a centralized autonomic manager similar to most
other auto-scaling approaches. Considering previous works,
we design a novel distributed autonomic manager taking both
resource provisioning and bandwidth configuration options
into account.

Actor Model [7] is a conceptual model to deal with concur-
rent computations in distributed systems. It minimizes tight-
dependencies between system components by assigning sys-
tem tasks to actors that communicate with each other through
message passing. More resources allocated to a well-designed
scalable distributed autonomic manager leads to more reliable
decisions based on precise foresight. Stated characteristics of
the Actor Model makes it a good fit for the requirements of
our distributed autonomic manager.

One of the key challenges in designing and implementation
of adaptive systems is providing assurances that the princi-
pal goals of self-adaptive systems are maintained when the
autonomic system changes its behavior [13]. Self-testing as a
common approach to providing assurances for self-adaptive
systems is the ability of a self-adaptive system to test its
behavior during and after applying an adaptation [14]. Some
previous works such as [15], [16], and [17] are dedicated to
automatically running Self-Testing mechanisms on change re-
quests at run-time. Although many pieces of research targeted
different Self-testing requirements, and various tools have been
developed so far, our searches failed to find an appropriate
toolset or approach for applying Self-testing in a distributed
system. In our proposed approach, the distributed autonomic
manager implements the replication with validation method
for performance evaluation of available adaptation options at
run-time.

Automated testing mechanisms necessitate Test Data and
Test Oracle to validate test results. Workload and performance
models can be adapted to generate Test Data and create proper
Test Oracle at run-time. Machine learning models have been
widely employed in modeling the performance of different
systems. For instance, Bodik et al. [18] applied curve-fitting
and local regression machine learning approaches to model
the performance model of an Internet data center based on
current workload and system configuration. Li et al. in [19],
Maggio et al. in [20], and Gambi et al. in [21] proposed
other applications of machine learning models in designing
and implementation of elastic cloud environments. Previously
proposed methods take advantage of centralized or distributed
machine learning algorithms to support decisions made by a
centralized autonomic manager. On the contrary, our proposed
autonomic manager applies machine learning models to make
decisions in a distributed manner.

III. METHOD AND ARCHITECTURE

We target web applications hosted in cloud serving different
categories of incoming requests, also known as Scenarios.
Each scenario has an upper bound response time defined by
SLAs. The autonomic manager observes the application per-
formance and plans necessary modifications in the application
resources or configuration parameters to maintain SLAs. To
introduce the distributed planning mechanism, we start with its
conceptual architecture. Afterward, we use an illustrative ex-
ample to demonstrate the original idea. Since we use predictive
machine learning models, a subsection is devoted to explaining
how designated ML models are structured. Later, we take a
more in-depth look into the algorithms used for implementing
the distributed planning mechanism. The complexity level of
the proposed distributed algorithm demands formal verification
to prove that the algorithm is deadlock-free, adaptations are
mutually exclusive, and all planning routines eventually come
up with a decision.

A. Method Overview

Figure 1 illustrates how the proposed distributed look ahead
planning works. The autonomic system is composed of multi-
ple Autonomic Actors illustrated in Fig. 1 with blue color. Each
autonomic actor monitors response times of a specific scenario
and once its SLA is violated initiates the adaptation routine
(red actors). Afterward, the autonomic actors will examine
available adaptation options over a look ahead window by
creating shadow copies of themselves also called as Test
actors. Each adaptation option will be assigned to a separate
test actor (orange actors). This Self-Testing method is called
replication with validation. Essentially, each Test Actor tests
benefits of a specific adaption option in response to the
workload predicted at that point in time (on the horizontal
axis, the orange circles are shown at discrete times). Machine
learning models are employed to generate workloads (Test
Data) and predict application response time (Test Oracle).
An adaptation option or control points vector is a set of
network bandwidth allocation per scenario and the number
of computing resources assigned to the application. At the
very end, an optimal adaptation option is found and applied
(green actors). In other words, the autonomic manager creates
multiple instances of the model for all adaptation options and
solves those models.

The number of simulation steps is specified by the look
ahead window. During the simulation run, each Test Actor
gathers required audit parameters - such as the total number
of SLA violations or adaptations - for evaluating adaptation
options. When the simulation is over, the autonomic manager
applies a scoring function to estimate the benefits of each
adaptation option. Equation 1 displays generic composition
of a scoring function with ci as effective weight of each
audit parameter Pi. For example, we can utilize the weight of
each parameter to adjust the relative impact of SLA violations



Fig. 1. Look Ahead Distributed Planning

and adaptations in the final decision made by the autonomic
manager.

S = Avg(

n∑
i=1

ci × Pi) (1)

The proposed distributed planning mechanism needs a lim-
ited set of predefined adaptation options. Without limiting
the number of available adaptation options, the state space
explosion problem threatens performance of the autonomic
manager. In practical terms, the type of adaptations available
(bandwidth, virtual machines or container scaling, threads
or other parameters tuning, etc.) is limited by technological
constraints and therefore the state explosion is not a concern.
In addition, experts’ knowledge of application, cloud, and
network management will further limit the adaptation options.

B. Illustrative Example

In order to make the distributed planning more clear,
consider an e-commerce web application with three different
scenarios and their corresponding response time SLAs:
• Browse: Exploring different categories and products

(SLA: 1000 ms)
• Basket: Shopping basket manipulation (SLA: 400 ms)
• Admin: Data entry and order management (SLA: 2000

ms)
SLA definitions come from business needs based on the
priority of each scenario. In this case, three Autonomic Actors
continuously monitor the workload and response time of
specified scenarios. Suppose that the response time of Basket
scenario violates 400 ms SLA while other indicators for
Browse and Admin scenarios are below 500 ms and 1000
ms respectively. As a result, the second Autonomic Actor
(initiator) triggers distributed planning routine and creates
Test Actors for available adaptation options as shown in
Figure 2(a). In this case, available adaptation options are: (1)
decreasing the relative bandwidth allocation of Browse; or (2)
of Admin scenarios to delay processing those requests and
free resources for the Basket scenario; and (3) provisioning
new server nodes.

Fig. 2. Distributed Planning

The next step is shown in Figure 2(b), where the initiator
invites other Autonomic Actors to participate in the distributed
planning routine. Other Autonomic Actors, similar to the
initiator actor, create Test Actors for simulating all available
adaptation options. Afterward, Test Actors handling the same
adaptation option shape networks, similar to what is presented
in Figure 2(c) with different colors. Test Actors utilize two
different machine learning models to predict future workloads
(Test Data) and foretell response times (Test Oracle).

When the simulation is done, Test Actors use a predefined
scoring function (cf. equation (1)) to evaluate each adaptation
option. As presented in Figure 2(d), each Test Actor terminates
itself after sending the calculated score to the initiator Test
Actor in the same network. Figure 2(e) illustrates how the
initiator Test Actors send aggregated scores to their parents
before terminating themselves. The final step is shown in
Figure 2(f) when the initiator Autonomic Actor picks the best
adaptation option and notifies other actors about the decision
made.

C. Machine Learning Models

While networks of Test Actors are testing the performance
of different adaptation options, each Test Actor utilizes two
machine learning models to perform as Test Data generator
and Test Oracle. Although those machine learning models have
to be trained offline initially, Autonomic Actors can continu-
ously improve them serving them new data collected from
the environment. Each Autonomic Actor shares its prepared
machine learning models with newly created Test Actors.

1) Workload Model: The Workload Model supports each
Test Actor in predicting the future workload of its assigned
scenario as Test Data. As shown in Equation 2, the workload
model (W) receives discrete time as input and outputs likely
requests traffic for a specific scenario.

W(time) =
−−→
WL (2)

2) Performance Model: Test Actors employ the Perfor-
mance Model to estimate performance of the monitored system
in response to varying workloads. According to Equation 3, the
Performance Model (P) is a function of control point values
(CPI), such as the overlay network bandwidth allocation
and amount of provisioned resources, current performance



indicators (PIVc) such as average response time, and current
workload (WL). Outputs of the Performance Model can be
used as Test Oracle to evaluate effectiveness of a specific
adaptation option on maintaining system SLAs.

P(
−−−→
CPV ,

−−→
WL,

−−−→
PIVc) =

−−→
PIV (3)

Having future workload estimated by Equations 2, the au-
tonomic manager can apply search algorithms over the model
described by Equation 3 and determine the proper control point
values and calculate the resulting response time.

Both Workload Model and Performance Model are supposed
to predict numeric data, which makes regression algorithms
good candidates for the implementation. Since workload char-
acteristics and deployment topology may change periodically,
machine learning models need to employ classification algo-
rithms to choose different regression formulas under different
situations. In addition, both models support online learning to
let the autonomic manager improve predictions precision by
feeding monitored metrics at runtime.

D. Distributed Planning Algorithm

When an Autonomic Actor (initiator) detects the need for
adaptation, it executes the sequence of actions presented
in Algorithm 1. Test Actors follow the instructions given
in Algorithm 2. Lines 1 to 7 of Algorithm 1 initiate the
adaptation process, create Test Actors and invite other Adaptive
Actors to participate. When an Adaptive Actor receives such
a message, creates required Test Actors using the message
server implemented in lines 8 to 12 of Algorithm 1. Test
Actors utilize the Workload Model to generate Test Data,
validate results using the Performance Model, calculate score
of the assigned adaptation option, and finally send calculated
score to the leader Test Actor in lines 1 to 8 of Algorithm
2. Lines 9 to 17 of Algorithm 2 illustrate how the leader
Test Actor calculates and sends aggregated score to the parent
Adaptive Actor. Finally, the initiator Adaptive Actor finds the
best adaptation option based on the calculated scores and asks
other Adaptive Actors to apply the selected adaption option as
shown in lines 13 to 29 of Algorithm 1.

IV. EXPERIMENTAL VALIDATION

In this section, we examine the feasibility and effectiveness
of the proposed approach through experiments on AWS EC2.
We chose an E-Commerce application with about 1 million
daily page views [22]. Our experiment examines the feasibility
of the proposed distributed autonomic manager (RQ).

A brief analysis of the load balancer log files clarifies that
more than 93% of incoming requests belong to one of the four
major scenarios listed in Table I.

The application infrastructure is composed of various nodes
hosted on AWS as shown in Figure 31. A virtual switch
manages the overlay network connecting all server nodes. The
Proxy Server routes incoming requests to the Load Balancer

1Experiments setup guides with references to the source codes and Amazon
AMI images are available at:
https://github.com/FarzinZaker/LADP-Experiments-Setup

Algorithm 1 Planning In Autonomic Actors
1: actorsCount← neighbors.length + 1
2: for all option ∈ adaptationOptions do
3: testActor ←

new TestActor(models, option, testActor, actorsCount)
4: for all actor ∈ neighbors do
5: send < option, testActor > to actor
6: end for
7: end for

8: initiator ← null;
9: on message < option, testLeader > do

10: testActor ←
new TestActor(models, option, testLeader, actorsCount)

11: initiator ← sender
12: end message

13: scores←Map < Option, Score >
14: on message < option, score > do
15: scores[option]← score
16: if scores.length = adaptationOptions.length then
17: bestScore←∞
18: bestOption← null
19: for all option ∈ adaptationOptions do
20: if ( thenscores[option] >bestScore)
21: bestScore← scores[option]
22: bestOption← option
23: end if
24: end for
25: for all actor ∈ (neighbors + self ) do
26: send bestOption to actor
27: end for
28: end if
29: end message

Algorithm 2 Planning In Test Actors
1: for i← 0 to simulatedIterations do
2: Simulate system execution using models
3: end for
4: score← scoringFunction()
5: send score to leader
6: if self <>leader then
7: terminate
8: end if

9: scores← List < Score >
10: on message score do
11: scores.add(score)
12: if scores.length = actorsCount then
13: averageScore← average(scores)
14: send < option, averageScore > to parent
15: terminate
16: end if
17: end message

via an overlay network. In Addition, the Proxy Server runs
the autonomic manager to adjust bandwidth allocations and
control number of web servers in the Application Tier. We
employ Akka framework [23] to implement the Proxy Server
on top of the Actor Model. Nginx plays the load balancer role
and is configured to dispatch requests between available web
servers on a round robin basis. All web servers connect to the
same database server. MySQL server stores the whole website
data, whereas MongoDB is partially in sync with MySQL
server data and provides fast responses to product filtering
queries. Technical specification of each node is provided in
Table II.

We implement required machine learning models using the
IBK2 algorithm available in Weka Library [24]. IBK2 is a non-
parametric online learning method for classification and re-
gression designed based on the k-nearest neighbors algorithm



Scenario Processing Type Response Time SLA
Browse Large database queries 1.2 secs
Product Single database record fetch 0.8 secs
Basket Database updates 0.5 secs
Static Read and render files 1.0 secs

TABLE I
CHARACTERISTICS OF EACH SCENARIO

Fig. 3. Deployment View of The E-Commerce Website

(k-NN) and fits the requirements explained in section III-C.
Both Workload and Response Time models have been trained
using access logs of three randomly chosen dates. During the
training phase, a total number of 2,871,544 requests were
served, and their arrival rates and response times were fed
into the prediction models. Our initial experiments show that
the IBK2 algorithm predicts arrival rate and response time with
approximately 96% precision.

During the following experiments, Autonomic Actors initiate
the distributed planning routine in case of two subsequent
SLA violations. The distributed planning mechanism inves-
tigates the possibility of maintaining SLAs by modifying the
bandwidth rate of each scenario. The assumption is that the
application has a total bandwidth that can be dynamically re-
allocated among scenarios in fractions of: [2.5, 0.5, 0.75, 1.0]
before provisioning new resources. The scoring function des-
ignated for evaluating the performance of adaptation options
is specified in equation 4. Nv is the number of SLA violations
and Na is the number of required adaptations during the look
ahead window. cv and ca are constant weighting factors. The
autonomic manager chooses the adaptation option with the
lowest S.

S = Avg(cv ×Nv + ca ×Na), cv = 10, ca = 1 (4)

According to the log files, the understudy website is expe-
riencing most of its traffic between 8:00 am and 8:00 pm in
the local timezone. We use available access logs for the same
period on random dates in the experiments.

A. Qualitative Analysis

During this experiment run, the total number of 543,105
requests were fed into the system. The autonomic manager
is configured to simulate the next 100 iterations (look ahead
window) of serving incoming requests. Figure 4 illustrates
the distribution of incoming requests. Horizontal axis labels
in figure 4 show the number of iterations passed from the

Node Hardware Software Count
Proxy Server t2.medium Tomcat + Akka ≥ 1

Load Balancer t2.medium Nginx 1
Web Server(s) m4.large Tomcat ≥ 1

Database m4.large MySQL + MongoDB 1
Virtual Switch t2.medium Open vSwitch 1

TABLE II
E-COMMERCE WEBSITE DEPLOYMENT NODES

beginning of the experiment. Red dots show the points of
time that the autonomic manager starts to determine the best
adaptation option.

Fig. 4. Distribution of incoming requests in testing phase

In order to interpret experiment results, we present aver-
age response times, response time SLAs, and configuration
changes in Figure 5. Configuration changes may combine any
modification in bandwidth limits of each scenario (dashed
lines) and any change in the number of web servers of the
Application Tier (solid line). Figure 6 shows average CPU
utilization of web servers during each iteration. Adaptation
points are highlighted in both Figure 5 and Figure 6.

As shown in Figure 5 and Figure 6, total number of 7
adaption actions take place during 720 iterations. The first
adaptation occurs at 12th iteration when two subsequent SLA
violations occur in serving the Browse scenario. The band-
width allocations changes to increase the relative bandwidth of
the Browse scenario compared to other scenarios. As a result,
the average response time of the Browse scenario drops at
14th iteration. At 55th iteration, another adaptation starts in
response to another couple of SLA violations in the Browse
scenario. In order to maintain SLAs, the autonomic manager
decides to add a web server to the Application tier beside
modifying the bandwidth configuration, which decreases the
average CPU utilization of web servers in next iterations.
Although the autonomic manager detects two subsequent SLA
violations at 79th iteration in the Static scenario, decides to
keep the system configuration unchanged. The next adaptation
action takes place at 138th iteration in response to another
couple of SLA violations in the Static scenario. This time,
re-configuring bandwidth allocation does not help. Instead,
adding a new server to the Application tier causes a drop
in average CPU utilization of web servers. The autonomic
manager finds out that even by shutting down one of the
servers at 378th, it is possible to maintain SLAs. Since SLA of



(a) Response Times

(b) Configuration Changes

Fig. 5. Configuration Changes and Effects on Response Times

Fig. 6. CPU Utilization of Web Servers

the Static scenario is violated two times before 502th iteration,
another adaptation unfolds changes the system configuration.
Finally, the last adaptation occurs at 643th iteration, without
any SLA violation to shut down another not needed web
server.

This experiment confirms the feasibility and applicability of
the proposed distributed autonomic manager (RQ). It applied
seven adaptations in total to maintain SLAs in response
to changes in workloads while serving 543,105 incoming
requests.

B. Scalability

Since the autonomic manager is hosted on proxy servers,
we monitor the number and utilization of proxy servers during
the first experiment. When the autonomic manager starts the
distributed planning phase, it may scale up automatically the
number of proxy server nodes by adding new slave nodes
according to the current workload and the look ahead window
size. When there is no need for a slave node in the next

Fig. 7. CPU Utilization of Proxy Servers

adaptation planning, the autonomic manager automatically
scales down the proxy server nodes.

As recorded in Figure 7, the autonomic manager scales up
itself by adding a new slave node at iterations 138 and 378.
During other adaptations, it determines that there is no need for
additional resources. Since the incoming traffic can rise to any
number of concurrent users, auto-scaling capability enables the
proxy server to deal with the even massive incoming traffic
(RQ).

V. THREATS TO VALIDITY

We provide the autonomic manager with a predefined set of
adaptation options. Moreover, the autonomic manager needs a
well-defined scoring function to rank available options at run-
time. However, applying a different scoring function or set of
adaptation options may cause different outputs.

Although Text Actors are lightweight pieces of code, run-
ning multiple instances of Test Actors needs computing re-
sources that may not be available in all distributed systems. In
such cases, we need additional servers to run simulations and
send planning decisions back to Autonomic Actors. This will
impose negative effects on the performance and effectiveness
of the algorithms.

VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed a look ahead distributed mech-
anism for autonomic cloud resource planning. Scalability is
the essential characteristic of the proposed approach, which
empowers the autonomic manager to deal with a large volume
of computations. The proposed approach is designed based on
the discrete Actor Model in order to minimize the coupling
level of implemented components. Available adaptation op-
tions are being evaluated through replication with validation
Self-Testing. Machine learning models are responsible to gen-
erate Test Data and the Test Oracle to validate test results.
We examined the feasibility, and scalability of the proposed
planning mechanism.

Although the proposed approach in this paper is on resource
planning for cloud applications, we believe that it is feasible to
apply a similar approach to a broader range of problems. For
instance, we are going to use lessons learned in this research
for an end to end delay management in another solution using
the Fog-based IoT architecture.
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