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Abstract—The Internet of Things (IoT) is a Distributed System
of cooperating Microservices (µSs). IoT services manage devices
that monitor and control their environments. The interaction of
the IoT with the physical environment creates strong security,
privacy, and safety implications. It makes providing adequate
security for IoT µSs essential. However, the complexity of IoT
services makes detecting anomalous behavior difficult.

We present a machine-learning based approach for modeling
IoT service behavior by only observing inter-service communica-
tion. Our algorithm continuously learns µS models on distributed
IoT nodes within an IoT site. Combining the learned models
within and in-between IoT sites converges our µS models within
short time. Sharing the resulting stable models among compute
nodes enables good anomaly detection.
As one application, firewalling IoT µSs becomes possible. Com-
bining our autonomous µS modeling with firewalling enables
retrofitting security to existing IoT installations. We enable
retrofitting access control to existing non-secure IoT installations.

Our proposed approach is resource efficient, matching the
requirements of the IoT. To evaluate the quality of our proposed
algorithm, we show its behavior for a set of common IoT attacks.
We evaluate how domain knowledge enables us to decorrelate
events on a node, and how adding context features improves the
detection rate.

Index Terms—IoT, security, machine learning, modeling,
anomaly detection

I. INTRODUCTION

The Internet of Things (IoT) is a Distributed Systems of
cooperating Microservices (µSs) [1], [2]. The µSs provide
diverse functionality such as acting as gateways towards
sensors and actuators, reasoning, or orchestration. By com-
posing different µSs, Pervasive Computing scenarios can be
implemented, e.g. for Ambient Assisted Living [3].

Depending on the assumed system architecture those IoT
services can run in a distributed way on local IoT sensing and
actuation devices, on dedicated edge computing devices, or in
the cloud. Our presented solution can run with all topologies.

The IoT is an attractive attack surface [4]. It inherently
processes security-critical data by collecting information about
users or controlling safety-critical machinery. In addition the
amount of IoT devices provides an attractive infrastructure for
attacking other systems. The Mirai botnet [5] showed the risks
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that emerge from insufficiently secured IoT µSs. Therefore
securing IoT services is highly required.

The IoT is a complex distributed system: Diverse vendors
offer a plethora of devices and services. Vendor comprehensive
security is missing.

IoT installations are long-lasting with Building Automation
Systems easily running for 20 years and more. Keeping the
security of the µSs on the devices up to date over their entire
lifetime is challenging.

Furthermore, IoT systems grow and shrink organically:
components are added and removed over time. Adapting
security policies with the change is complex. It can often not
be done due to lacking on-site experts. In addition the task is
complex and therefore error prone even for experts.

As a consequence of the IoT complexity, providing ade-
quate security to IoT systems is hard [6]. The typical lack of
trained administrator personnel and the inherent complexity
require autonomous solutions [7]. Already deployed legacy
IoT systems often do not provide state of the art security [5].
Therefore a brownfield approach with retrofitting security
into existing systems is required.

A key tool for securing IoT services is providing non-
circumventable access control [8]. Such access control requires
knowledge about ongoing communication between services.

We present a novel approach for modeling the communica-
tion behavior of IoT service purely by observing their traffic.
The resulting service-specific communication models can be
used for anomaly detection and firewalling. Such firewalling
effectively protects IoT services.

We especially address the following challenges:
• How to create detailed µS models by just observing their

communication traffic?
• How to create high-confidence models within short time?
• Which features contribute how much to the accuracy of

our communication model?
• How can expected changes such as the adding or removal

of IoT devices be anticipated by the modeling approach?
• How can the solution run on resource-limited IoT De-

vices?
For solving the challenges, within an IoT site we install

distributed monitoring and analysis services on all hosts with
sufficient resources. They continuously observe the service
communication and update their corresponding µS commu-
nication models. Using deep packet inspection and detailed
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knowledge about the used structured IoT communication pro-
tocol enable the creation of feature-rich models.

By using features of the used IoT protocol our µS models
become site independent. This portability enables federating
node-comprehensive and even IoT site-comprehensive ser-
vice behavior analysis results. The models obtained on the
distributed observation nodes can simply be federated. This
combination step results in faster convergence and a higher
confidence values of the resulting µS communication models.

Our learned models can be used to identify services that
behave unusual, e.g. as they were modified by an attacker.
This anomaly detection can be used to inform site operators
keeping a human in the loop, or our solution can provide an
automated selection of potentially relevant events filtering out
the baseline noise of regular IoT communication. The resulting
system is on the autonomy level “managed”.

The anomaly detection can also be used to configure fire-
walls to block malicious traffic autonomously. Both forms can
be combined, forming an adaptive system where humans set
the high-level goals and the system self-manages them.

Our solution operates external to IoT services. It monitors
the communication from and to services from the outside
and can therefore run with standard services, not requiring
modification of the deployed (legacy) services. This enables
retrofitting it into existing solutions resulting in a brownfield
approach for security-by-design [8].

Our main contributions are:

• A portable human-understandable per-µS communication
model.

• A scalable approach for inter-service communication
monitoring.

• An efficient algorithm for continuously correlating the
observations.

• A feature-dependent accuracy evaluation of the auto-
mated modeling.

• An open test dataset the community is missing.
• An overview on relevant related work in the currently

vital field.

Threat model: Our assumed threat model is that µSs over
time change their behavior in an unwanted way. Reasons
for a behavior change include reconfigurations that could be
caused by attacks as well as updates of the service executables
unfolding unwanted behavior changes. Such an update could
be a firmware update on an IoT device for instance. Concrete
attacks that we consider are system scans, spying, malicious
control, malicious operations, denial of service, data type
probing, and wrong setup.

Sec. II introduces our system for creating site-invariant IoT
µS models, and our efficient algorithm for periodicity mining.
Sec. III describes how our communication models can be used
for detecting anomalies in the µS communication. Sec. IV
introduces our dataset. It can be reused by others to reproduce
our results and compare their performance in the future. Sec. V
evaluates our solution quantitatively regarding various aspects.

II. APPROACH

To illustrate our proposed solution, we developed a proto-
type. This prototype requires a middleware that enables the
mash-up of IoT µSs. With the Virtual State Layer (VSL) a
suitable middleware exists [2].

The VSL is the core of the Distributed Smart Space Orches-
tration System (DS2OS) [9]. The VSL offers service discovery,
coupling, and data management. DS2OS additionally offers
functionality for service deployment and runtime management.

We use DS2OS as representative base system for illustrating
our approach mainly for the reasons:
• DS2OS offers the capability to distribute cooperating µSs

on multiple IoT nodes,
• its VSL middleware introduces and enforces abstract µS

functional interface identifiers (context information). This
context enables correlating findings from different µS
instances within and in-between IoT installations,

• the VSL already channels all inter-service communica-
tion, providing natural traffic observation points signifi-
cantly facilitating the inter-µS communication analysis,

• it uses a REST interface that is representative for IoT
devices, and

• we have detailed knowledge about the DS2OS system
allowing us to focus on the development of the solu-
tion inside a complex real IoT environment taking into
account real world needs and feasibility.

The Virtual State Layer (VSL) middleware implements a
data-centric discovery and coupling of IoT µSs [10]. Data
that is exchanged always carries a unique sender and receiver
identifier. Via the DS2OS service registry this enables looking
up the abstract VSL type identifiers of the services [11].

The VSL couples services via a REST Application Program-
ming Interface (API) with a fixed set of commands: CVSL =
{get, set, subscribe, notify, starttransaction, commit, abort}. All
exchanged data nodes are also typed [12], enabling a detailed
introspection of the inter-service communication.

The classification of communication partners enables the
creation of site-comprehensive portable communication mod-
els. The fixed API enables introspection and classification of
all VSL inter-service communication packets. The structured
data enables creating detailed communication models.

Though basing our solution on DS2OS for the given rea-
sons, the generality of our solution is not limited. In other IoT
systems it would though be necessary to introduce additional
components that infer the information that DS2OS directly
provides. This is possible but introduces additional complexity
that we want to avoid for illustrating our approach. As an
example for adding such functionality to other middleware,
the authors of [13] show a solution for abstract service/ device
type classification. Combining such additional analytics with
other IoT protocols such as COAP or MQTT provides an equal
base for our presented solution. In the evaluation (Sec. V) we
show how the absence of certain context information affects
the accuracy of our approach. This applies to middleware that
does not provide as many features as DS2OS does.
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Fig. 1. Our proposed retrofittable security architecture.

A. System Architecture and Data Collection

We introduce generic monitoring and analysis services that
intercept inter-service communication. In the DS2OS system
each IoT node that is powerful enough runs an analyzer for
analyzing all traffic of the local µSs. These analyzers locally
create communication models for their connected services. In
our prototype we run them on the VSL middleware access
points, the Knowledge Agents (KA) that already manage all
inter-service communication [2].

Within each local IoT site we introduce a central coordina-
tor. It is a VSL µS that correlates the findings of the distributed
monitors and federates them to site-local service models. The
site-local µS models are again correlated to global models in
a global IoT µS store. Figure 1 illustrates this.

Combining information from different sites results in mean-
ingful models. High confidence in the observations can be
gained within short time. By propagating the resulting en-
hanced models back, the different connected IoT sites benefit.
The quality of their models increases due to a higher amount of
observations. Local nodes thereby profit from the distributed
observations of their local peers, and of those of nodes in
other IoT sites. This is possible as VSL services are typed,
enabling the identification of instances of specific services
between different sites [12].

The back propagation significantly improves the accuracy of
the models. However, the IoT with its heterogeneous links may
regularly suffer from connectivity losses that must not decrease
the security. Our loosely-coupled modular design ensures that
the analyzers on the lowest node level can continue their
observation and classification operation even when the upper
analysis modules are not reachable.

Once connectivity to the site-local Model Federaration
Service (fig. 1) is reestablished, the findings made during the
disconnection phase are automatically merged to the site-local
µS models, and the global ones. This is possible due to the
commutative nature of our combination operation.

B. Feature Engineering

For modeling the µS behavior we select characteristic
features. We target creating models that are stable beyond

the current µS instance, and that can adapt with the typical
changes of IoT environments such as adding or removing IoT
devices.

We do not use classic machine learning feature selection
algorithms as they do not consider domain specific knowledge
but instead find features that are correlated and can be removed
without impacting the clustering [14]. As features may change
over the lifetime of a µS such functionality does not fit.

Table I lists our selected VSL communication context
features, their types, and example values. The table starts with
the VSL instance addresses of the source and destination µSs
that communicate. They are instance-specific and therefore not
added to our communication model. The following types are
the abstract identifiers for offered service functionality in the
VSL. The example shows a service providing control to a light
switch. The operation is one element of the set CVSL (Sec. II).
The type of data is the type of the accessed data node within
the data of the target service [12]. The value is the actual value
that gets exchanged. The timestamp is a value that is roughly
synchronized on all participating sites and that monotonically
increases over time.

Feature Type Example values
Address of source µS GUID /../switch943

Address of destination µS GUID /../light435
Type of source µS Categorical ”light switch”

Type of destination µS Categorical ”light”
Operation Categorical ”read”

Type of data Categorical ”number”, ”text”
Value Type-specific ”6.5”, ”sunny”

Timestamp Numerical 1520662399723

TABLE I
THE LIST OF FEATURES REPRESENTING EACH ACCESS.

In our evaluation (Sec. V) we show how the availability or
absence of a feature influences the accuracy of our model (see
Fig. 3).

C. Model Selection for Periodicity Mining

In contrast to regular Internet traffic IoT traffic is more
regular [4], [15]. Therefore we include periodicity of commu-
nication as relevant part of our model. Similarly to [16], [17],
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Fig. 2. Decomposition of the outgoing accesses of a node into communication relationships.

we use inter arrival times of communication packets in our
monitor. Having the type of operation as part of our feature
vector, we can decompose inter-arrival times down to VSL
operation granularity.

Our algorithm uses two types of clustering algorithms,
first a grid-based algorithm and then k-means. We use a
sliding window for analyzing the inter-service communication
streams. The size of the window determines the resource usage
and the time it takes until irregularities are detected.

Storing the last 200 inter-arrival times turned out to be a
good compromise between having enough history and being
able to react fast. With periodic communication, groups of
similar inter arrival times appear. They are clustered based on
their density. Fig. 2 illustrates this. The top part shows the
observed traffic, the lower part shows the periodicity clusters
decomposed by communication partner type, and operation.

We discretize the inter-arrival times into p intervals of
similar length. Each interval contains the number of data points
that fall into it. The first interval begins at the minimum inter-
arrival duration and the last ends at the maximum inter-arrival
duration. Clusters are built using intervals that contain at least
as many points as the density threshold τ .

The choices of p and τ determine which periodicity can be
found. Their determination is the most challenging part of this
method [14]. Using our assumption to have periodic traffic, we
use a p of 100. As a side effect this simplifies the mapping to
a percentage in our model. We use a τ = 5 for a window of
100 data points, corresponding to a cluster containing 1

6 of the
points spread over 3 intervals. We consider such clusters to be
the limit of a periodic traffic. These p and τ have empirically
proven to be efficient.

If neighboring intervals in the discretized data have a density
higher than τ they are identified as a cluster. For each cluster
a cluster center is placed within the intervals. Once all the
clusters are identified, we run one iteration of k-means to
center the cluster center and get the support of each cluster.

The main advantage of this clustering method is that we can

easily find out the number of clusters. If the analyzed commu-
nication is not periodic no clusters are found. Otherwise the
centers of the clusters correspond to the periods.

Figure 2 shows on top the traffic of one µS. Using the VSL
types of the respective communication partners, this traffic
can be decorrelated into distinct communication flows. Such
decorrelation is straight forward with the VSL as all service
communication happens only between a service and its node-
local KA interface. The VSL overlay then uses its own data
routing mechanisms to serve the data requests [2].

Having decorrelated communication flows, the described pe-
riodicity mining reveals the periodicities shown at the bottom
of fig. 2. As can be seen, the non-periodic composed traffic
on top can be decorrelated into many periodic communication
flows. This is typical for the IoT where Things get monitored
and controlled on a periodic basis.

D. Modeling: The Communication Model

By monitoring the running service instance’s traffic we
create a communication model per site-independent VSL
µS type. It describes the behavior of the µS towards other
site-independent communication partner types. The instance
addresses from table I are only used to distinguish concrete
connections, e.g. when multiple services of the same type run
on a node. Table II gives an overview on a µS model.

Partner type (P) ”light” (.6) ”radiator” (1)
# partner type (P) 2.3 (.6) 3.9 (.99)
Same location (P) yes (.95) no (.91)

Periods “read” [25; 2037] [1020; 1652; 5012]
Periods . . . [. . . ] [. . . ]

Operation types (P) ”read” (.96) ”read” (.38), ”write” (.59)
Data Type ”text” (.98) ”number” (1)

TABLE II
AN EXAMPLE COMMUNICATION MODEL FOR A µS TYPE.

Most entries contain the actual value and its probability. For
each operation a set of inter-arrival distances is given. Behind
each table entry a cluster of values is stored. This allows us to



know the support of this value and the variance. The clusters
can take different forms as detailed in section III.

We use modified BIRCH clusters [18] to save the values.
BIRCH clusters are particularly useful in data stream scenarios
as they are additive and require low storage for representing
large amounts of data points.

Via the additivity, BIRCH clusters match the previously de-
scribed behavior of enabling autonomous local model creation
and refinement and global combination of findings at any time.
Providing a method inherent compression of measurement
value sets, they are optimal for use on resource limited IoT
nodes as they require low storage and arew fast to process.

Analog to the proposal of the CluStream algorithm [19]
we save the sum of timestamps, and the sum of square of
the timestamps additional to the original BIRCH clustering
algorithm [18].

The communication models from the analyzers are collected
at the Federation Service (fig. 1). Consequently it stores a
communication model for each µS type available in the IoT
site. Our learning algorithm is online (Sec. II-E), updating the
communication models continuously.

An advantage of our communication model is that it can
run with any subset of the presented features. This makes our
solution compatible with IoT middleware that does not provide
all context information the VSL does.

Another advantage of our communication model is that it
is meaningful for humans. In contrast to the machine learning
modeling approaches typically used today, the resulting fea-
tures (parameters) of our approach can be understood. This is
relevant for taking humans into the loop.

An example application for the sketched human interaction
is asking users if a newly observed and as anomalous classified
communication should be allowed. With our features, such a
query can become, “Should the climate control service be able
to talk to the radiator?” [20]. We expect the accuracy of our
approach to increase by adding this expert input step. The
human understandable model will be the key of this activity.

E. Online Learning Communication Models

Our approach to learn communication models is inspired by
the CluStream algorithm [19] for clustering in data streams.
Similarly to [19] we use modified BIRCH clusters with the
sum of timestamps and their squares to allow discarding stale
clusters. [19]

In our evaluation (Sec. V) the Federation Service (see
fig. 1) updates the communication models once a minute. It
uses the input communication descriptors from the distributed
analyzers. A new BIRCH cluster is created for every feature.
The categorical attributes are transformed into vectors using
binarization [14]. As the output of the periodicity mining
is a list of clusters, we create a list of BIRCH clusters to
describe the discovered frequencies. Finally it back propagates
the updated model that contains input from all site-local µS
instances.

Updating the communication model consists of the opera-
tion to merge data from the analyzer with the existing BIRCH

cluster in the communication model. With BIRCH clusters this
results in simply adding up the clustering features [18].

As proposed in [19], all clusters that have their centers
within 3 times the standard deviation are merged. All other
clusters remain unchanged. Clusters containing only one point
have no standard deviation. In this case we only consider the
standard deviation of the other merge candidate.

The behavior of a µS can change over time. Clusters can
become stale. To notice such state, timestamps are used. To
save storage space, we only store an aggregated value of the
timestamps. As proposed in [19] the aggregates still allow to
compute the staleness of clusters.

The same procedure is repeated on the top level of our
hierarchical communication modeling system The µS store-
based Federation Service also obtains the communication
models of the connected IoT sites periodically. It combines the
contained BIRCH clusters by adding the values and propagates
the updated models back to the connected sites. See fig. 1.

III. EXECUTION: DETECT ANOMALOUS µS BEHAVIOR

The µS type-specific communication models can be used
to detect anomalies of µS instances. An anomaly value is
computed for each communication message. It is composed
of three parts, SoM, SoR, and SoA that are introduced next.

The Support of the Model (SoM) represents how much we
can rely on the values saved in the communication model.
It depends on the number of contributing communication
descriptors (modelWeight) and the observation time:

SoM =
modelWeight

maxModelWeight

As the model is updated every minute, the number of
descriptors is proportional to the number of µS instances and
the monitoring duration. The support is low at the creation
of a new model. This represents the fact that in this case we
cannot draw meaningful conclusions yet.

We have to limit the growth of the support to enable
updates to the model. Such updates reflect when µSs shift
their behavior gradually, e.g. when a light sensor that detects
sunrise and sunset is used as input for a blind controller and
the periodicity of the activities gradually changes with the
seasons. At the same time the support has to be big enough to
prevent learning anomalous behavior as normal. This problem
is known as the stability-plasticity dilemma [21].

We propose a solution using a maxModelWeight. This
value represents the maximum value of the modelWeight.
The higher the maxModelWeight the longer it takes to adapt
to changed µS behaviors. The lower this value the quicker new
behavior becomes part of the µS communication model.

Our hierarchical model update process brings the advantage
that even if an attacker manages to take control of all services
of one type within a single or few sites, the incoming updates
from the other sites still outnumber wrongly learned models
on one site. Through the back propagating updates, sites
automatically heal their models in that case and will detect
the anomalies again.



The Support of the Relationship (SoR) represents how
relevant a communication relationship is compared to the
model. A relationship that was in every descriptor used to build
a model is more relevant than another that was observed only
a few times. In our current approach we consider infrequent
relationships as anomalous:

SoR =
modelWeight

relationshipWeight

The relationshipWeight is the number of descriptors in
which this relationship was present. Here again, to allow
updates, both values have a maximum of maxModelWeight.

The Support of Access (SOA) represents the difference
between the current access and previous accesses in a com-
munication relationship. It is computed for each feature of
table II:

SoA =
dist(center, newV alue)

3 ∗ standardDeviation
∗ relationshipWeight

centerWeight

center, standardDeviation and centerWeight are the
center, the standard deviation and the weight of the nearest
BIRCH cluster. newV alue is the value of the current feature
for the access operation being evaluated. This value is near
or equal to zero if the new access is in line with the normal
behavior according to this feature due to the resulting small
distance between the two values.

We combine these values to obtain the Anomaly Value (AV)
as follows:

AV = SoM ∗max(SoR, SoA)

We use the maximum here as for an anomalous access either
the connection is itself anomalous, or the access is anomalous
within the connection. An example for an anomalous connec-
tion is a light control µS accessing the door lock. In this case
the SoR will be high. An example for an anomalous access
within a connection is a light control µS writing the movement
value of a movement detection instead of reading it. In this
case the SoA will be high. In both cases, the value is weighted
with the SoM to express the trust into the regarded value.

High anomaly values obtained by the comparison with
a newly created communication model feature may come
from normal accesses. For practical reasons, not to block all
accesses, we assume that new behavior is normal for newly
created communication models. This enables our approach
to automatically create models for services that do not have
communication models yet, which is especially helpful for the
IoT where new services can be expected to emerge frequently.

A. Denial of Service Detection

One of our considered attack scenarios from table III
remains undetected by the previous method. Denial of Service
(DoS) attacks on allowed relationships that have one period-
icity around zero.

In a DoS a high number of accesses happens with high
frequency. If for such a communication relationship a period-
icity with a very low value has been learned, the single packets

of the DoS attack are seen as normal. To detect such group
anomalies we compare the list of periodicity clusters on the
descriptor with the one of the communication model to obtain
an anomaly value:

SoA =∑
clustera∈model

dist(centera,centerb)∗(weighta+weightb)
3∗standardDeviationa

Here clusterb is the nearest cluster to clustera in the
descriptor frequency list. In the case of a DoS attack a cluster
with a very high support will form around 1 or 0. This will
cause this modified SoA to be high.

System-inherently, the first packets of a DoS attack will
remain undetected. See fig. 4.

IV. DATASET

To the best of our knowledge there is no public standard IoT
network traces. Consequently for our evaluation we created our
own datasets.

We monitored connections between 7 different VSL ser-
vice types that connect Light controllers, movement sensors,
thermostats, solar batteries, washing machines, door locks, and
user smart phones [22]. We captured the traffic of four different
emulated IoT sites over 24 hours.

With our first dataset we optimized the parameters of our
algorithms such as the duration between two updates of the
communication model, or the size of the sliding window. With
our second dataset we evaluated the quality of our detection
algorithm.

We created two separated datasets to evaluate the sole
periodicity mining algorithm containing only one connection.
It is generated by two loops in a VSL µS. The two loops
perform the same access with different periodicities. We added
accesses at anomalous timestamps in the first dataset and three
DoS attacks in the second dataset 1

Table III gives an overview of the attack scenarios that can
be found in our provided datasets.

V. EVALUATION

In the following we evaluate different properties of our
solution and compare the results to state of the art where
possible.

A. Performance and Robustness

The hierarchical design makes our solution scale. A node-
local detection takes 0.24ms average per VSL message. The
independence of the analysis layers and the additive property
of the BIRCH clusters make it resilient to temporal link-
failures.

The modified BIRCH clustering makes our approach ef-
ficient regarding storage and CPU usage. These properties
are critical for IoT environments that are typically resource
limited. Adding a new point to the dataset of size n and

1For enabling the reproducibility of our research we published the three
datasets online at www.kaggle.com/francoisxa/ds2ostraffictraces.



Type Number Feature Description
of packets used

Network 1559 type & A µS accesses a range of
scan number other µSs.

Spying 532 type & A µS reads values a few
operation other µSs.

Malicious 889 type & A µS tries to take
control operation control over another.

Malicious 805 operation A µS performs another
operation type operation as it should.
Denial of 5780 frequency A µS performs accesses
Service with a very high frequency.

Data types 342 data A µS writes
probing type anomalous data types.
Wrong 120 location A µS accesses a µS
set up in the wrong room.
Total 10027 Corresponds to 3%

of the dataset.

TABLE III
ATTACK SCENARIOS IN THE DATASET, INSPIRED BY [23].

dimensionality d requires to iterate though the k existing
clusters and then merge it to the corresponding cluster. The
complexity of the first operation is the same for k-means and
our algorithm: O(k). However updating the cluster position
in k-means requires O(n ∗ d). Whereas it only requires O(d)
with BIRCH clusters [14].

For d-dimensional data points our modified BIRCH clusters
only require (2∗d+3) saved values, independent of the number
of points in the cluster. For comparison, using a list for keeping
track of all the k points in the cluster would require k∗(d+1)
saved values: one value for per dimension plus the timestamp
for each data point.

Without using BIRCH clusters and node-local detection,
sending the entire traffic log to the coordinator module at each
request for getting a detecion result would require on average
169 Bytes per access. Our method only requires to send
one descriptor to the coordinator module every minute. The
average descriptor size is 96 Bytes. Our descriptor is smaller.
More important its size does not increase if the monitored
traffic increases.

B. Periodicity Mining Accuracy

In our dataset (section IV), for the detection of single
anomalous packets we obtain a detection rate of 93% and false
positive rate of 0.3%. With the DoS attacks in the dataset we
achieve a detection rate of 95%, an accuracy of 97% and a
false positive rate of 1%.

C. Anomaly Detection Accuracy

On the test dataset we achieve a detection accuracy of
99% and a false positive rate of 0.2%. We obtain an overall
detection rate of 96.3%. This is caused by the fact that we
do not start with communication models but learn them from
scratch when a new service appears. Attacks are therefore only
detected after this initial phase. When communication models
are available and provided by the µS store from the start this
factor disappears.
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Fig. 3. Comparison of the ROC curves under different circumstances.

Fig. 3 shows the performance of the detection by comparing
the detection rate and the false positive rate at different
thresholds. The figure also shows the effects of the different
features in the communication model on the performance.
Even with a reduced feature set the system remains able to
detect anomalies at lower accuracy. Figure 3 also shows the
positive effect of each feature on the classification accuracy.
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Fig. 4. Classification errors over a day of capture.

Figure 4 shows the classification errors over the day of
capture in our dataset. During the capture of the dataset the
light controller µSs were updated. Directly after the update,
the new accesses are labeled as anomalous. The resulting peak
of false positives can be seen at 11 hours. However the model
was able to learn this new normal behavior, which allowed
a correct classification again. The second and the third small
bursts of false negatives correspond to few accesses that are not
detected correctly at the beginning of DoS attacks. However,
these accesses represent at most 1% of the attack.

In comparison, the authors of [24] obtain an average accu-
racy of 98%, a detection rate of 96% and a false positive rate
of 6%. We obtain better accuracy and false positive rate.

VI. RELATED WORK

Creating models for anomaly detection is a standard tech-
nique in the Internet. Recent approaches use machine learning
and data mining for implementing Intrusion Detection Systems
(IDS) [25]. BotMiner [26] mines similarities in host behavior



within one network to identify participants in a botnet. Though
having a different focus, similar to our work the authors
perform online clustering of node traffic characteristics for
modeling service behavior. The authors of [27] present the
benefits of combining models from distributed sites for having
significant insights within short time. We employ this principle
on the site-local and global Federation Services.

Similar to our Deep Packet Inspection, the authors of [28]
analyze REST calls to websites. They try to learn valid com-
munication patterns also using a blackbox analysis approach.
Their used methodology is different from our’s with symbolic
automata in their case and periodicity mining for pattern
recognition in our case. We plan to extend our solution with
automata to obtain even more detailed models.

Comparing IoT traffic to Internet traffic, the authors of [4]
conclude that the IoT has more regular traffic patterns. This
motivates the usefulness of the proposed periodicity mining.
Our work answers several of the challenges they identified
including autonomous adaptation to expected changes in be-
havior, and building trust by correlating findings from diverse
observation points rather than from just one.

For responding to the problem that on-site trained experts
are often missing in the IoT, [7] propose to have distributed
monitoring points and a central component that does advanced
reasoning about the monitored data. In contrast we propose
that the monitoring points on the IoT devices perform message
analysis on their own. This is more suitable for the IoT as it
does not depend on reliable network links, and it enables fast
local execution even with high latency IoT links.

Different IDS applications use periodicity mining to detect
botnets [16], [17], [29]. Similar to [16], [17], we use inter
arrival times. However, these techniques detect periodicity as
an anomaly. On the contrary, for the IoT we mine periodicity
in order to detect packets that are irregular.

The authors of [30] use operating System Call Frequency
Monitoring to model normal behavior and detect anomalies.
By counting the amounts of system calls per application run
they can detect behavior changes. This is similar to our inter-
service traffic monitoring. Our observations are more detailed
as we add the dimension time. In contrast to us they do not
correlate the analysis results from distributed hosts and sites.
They do not adapt to expected changes.

The authors of [31] follow a similar approach to us in
another domain, industrial control networks. Like us they
employ domain specific protocol knowledge for periodicity
mining. They analyze more complex periodicity taking event
series in to account. We plan to include event series to our
approach as well in the future. Different from us they do not
online-update their models, making their solution more static
than ours. They also do not correlate findings from distributed
monitors.

The authors of [32] use machine learning to fingerprint
device types. Their approach can be used to obtain missing
context information when applying our solution to IoT systems
that do not offer such rich context out of the box like DS2OS.

The authors of [6] also use feature-based clustering in IoT

networks to detect anomalous device to device connections.
Different from our work their analysis is less detailed as
they focus on general network properties instead of protocol
specifics. Their models do not contain periodicity and are not
human-understandable.

VII. CONCLUSION

In this paper we introduced our system for creating site-
invariant IoT µS models and our novel, highly efficient al-
gorithm for periodicity mining. Our current approach is still
limited in modeling complex service behavior. However, the
chosen examples with periodic machine to machine traffic
are representative for man of today’s IoT applications, e.g.
automated climate control in smart buildings.

As next step we want to mine more complex periodicity,
and we want to integrate an interface that enables improving
the accuracy of the communication models via infrequent user
interaction.

Another promising direction that emerges from our ap-
proach is analyzing the exchanged values as the charac-
terize the concrete control operations. Including them into
the communication models could prevent accidental or on-
purpose unexpected commands that may result in security or
safety risks, e.g. driving a motor for a long time outside its
specification.

Our work is an important contribution towards making IoT
installations more secure. The fact that many IoT installations
are insecure today, and the lack of trained administrator
personnel on-site make solutions like ours highly necessary
for protecting user security, safety, and privacy. With the long
lifetime of IoT installations it is likely that even the few
systems that provide adequate security today might be broken
tomorrow. Our solution shows a path towards making security-
by-design retrofittable into existing IoT installations.

Our solution differs from existing work by operating at
µS operation level granularity, and by employing domain
knowledge about the used communication protocol. The do-
main knowledge allows decorrelating observed communication
events better. It also allows to create portable µS models
that are valid beyond a concrete service instance. Though
using machine learning for our analysis, our models remain
meaningful for humans to enable keeping users such as site-
owners in the loop.

The IoT inherently interacts with our physical ambiance
making security risks a much bigger threat than in pure soft-
ware systems. Examples are Industrial IoT systems controlling
heavy machinery, or home IoT services that control security
critical systems such as door locks. With our contribution we
hope to make the IoT more secure in the future.
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