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Abstract—SDN network hypervisors realize the virtualization
of software-defined networks. They intercept the control path
between tenant controllers and their respective virtual Software-
Defined Networks (SDN). Over-utilizing SDN hypervisor re-
sources (i.e., CPU) can degrade the control plane performance
of the tenants. Although many hypervisor proposals exists, a
detailed performance modeling of SDN hypervisors is missing in
literature. A precise modeling of the required SDN hypervisor re-
sources, however, is crucial for predictable and reliable operation
of virtual software-defined networks. In this paper, we measure
and evaluate how topology abstraction can affect the SDN
hypervisor CPU utilization. We consider two topology abstraction
cases: the (1) transparent and (2) big-switch abstraction. Our
measurements taken from a real testbed indicate that the big-
switch abstraction can reduce the SDN hypervisor CPU utilization
up to ∼ 4×. Further, we evaluate different functions to model
the SDN hypervisor CPU utilization based on our measurement
results. Our evaluations show that a polynomial function provides
the lowest fitting error. Motivated by our measurements, we
conduct a first-step investigation of the impacts of topology
abstraction on the Virtual Network Embedding (VNE) problem.
Our initial simulation-based evaluations indicate that different
topology abstraction procedures impact the results of the VNE
problem.

Index Terms—Network virtualization, Software-Defined Net-
working, Topology abstraction, Virtual network embedding

I. INTRODUCTION

Serving multiple different applications requiring high qual-
ity of service in an isolated manner is a prerequisite for
future communication network architectures [1], [2]. Network
Virtualization (NV) promises isolated sharing of a physical
infrastructure among multiple tenants by slicing the data and
control planes. In Software-Defined Networking (SDN), the
virtualization is typically realized using an additional middle
layer; an SDN hypervisor is situated between tenant SDN
controllers and the physical data plane [3]. SDN hypervisors
translate control plane messages of tenants and ensure full
isolation between the tenants. They also hide the underlying
unused infrastructure as part of slice (topology) abstraction [4].

In this paper, we focus on topology abstraction which
enables tenants to request an arbitrary virtual topology and not
only a subset of the physical network. For instance, a tenant
can request a big-switch abstraction, where the whole physical
topology is represented as one big virtual switch. In the case of
big-switch abstraction, an SDN hypervisor has to take over the
management of the whole physical representation of the Vir-

tual Network (VN), e.g., setting up paths for forwarding data
plane messages between the virtual ports of a big switch. Big
switch abstraction simplifies the network management tasks
for tenants [4], [5]. Besides, hypervisors can gain additional
optimization possibilities, as abstraction allows optimizing the
network resources independent of the tenants. For example,
hypervisors can freely re-route demands between the ports of
a big-switch as long as tenant constraints are fulfilled [6].

However, incorrect provisioning of hypervisor CPU can
severely affect the control/data plane performance of ten-
ants [4], [7]. Overloading SDN hypervisors can increase the
control plane message processing time, which in turn can
increase the flow set-up time of tenants. As the literature does
not investigate deeply the effect of abstraction, we evaluate
whether different abstraction levels might lead to different
CPU performance profiles in this paper. To achieve this,
we measure the effects of two different topology abstraction
policies on the control plane resources, i.e., SDN hypervisor
CPU. Furthermore, we model and evaluate the observed mea-
surements using multiple different fitting functions.

In addition, as future outlook, we show the initial insights of
including different abstraction policies in the Virtual Network
Embedding (VNE) problem. We believe that adding control
plane constraints to the VNE problem renders it to be more
realistic. Moreover, it contributes towards realizing full NV
— integrating SDN to actually provide tenants with full
programmability of their virtual network resources.

II. RELATED WORK

Slice Abstraction: FlowVisor is the first proposed SDN
hypervisor [3] that provides abstraction of physical switch
ports, i.e., only the physical ports containing the tenants hosts
are shown. Since FlowVisor acts like a transparent proxy, it
is unable to abstract the intermediate switches. In contrast
to FlowVisor, OpenVirtex [8] provides arbitrary topology ab-
stractions, with a limitation that one physical switch cannot
be represented as two virtual switches to the same tenant.
Further, in [9], authors presented a virtualization layer (VL)
developed on the ONOS controller platform [10], which also
supports arbitrary topology abstractions. The platform was
evaluated in terms of processing time in [11]. Unlike most
of the hypervisors, CoVisor [5] enables multiple controllers to
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Fig. 1: Measurement setup and scenario.

cooperate on the management of the same data plane traffic
by making use of topology abstractions.

SDN Hypervisor CPU Estimation. Data plane perfor-
mance in software-defined networks can be influenced by
the control plane performance of SDN controllers [7]: e.g.,
increased delay in the control plane channel can increase
flow setup time. Accordingly, offline benchmarks of SDN
hypervisor are performed in order to correlate the number of
OF messages and SDN hypervisor CPU utilization [3], [8]. To
avoid long offline benchmarks, online machine learning algo-
rithms were proposed in [12]. The algorithms were extended
in [13] to support environments with varying CPU resources.
However, how topology abstraction affects the SDN hypervisor
resources has not yet been discussed in literature.

Virtual Network Embedding. The realization of virtualiza-
tion in SDN provides demands to consider a new dimension:
the control plane resources such as SDN hypervisor CPU. This
renders new challenges to the Virtual Network Embedding
(VNE) problem [14], [15]. To the best of our knowledge, the
impact of different SDN hypervisor functions on the VNE
problem has not yet been explored.

III. TOPOLOGY ABSTRACTION MEASUREMENTS

In this section, we measure and model the impact of
two topology abstraction cases on the SDN hypervisor CPU
utilization. The goal of our measurement is to answer the
following question: Does topology abstraction produce an
impact on the SDN hypervisor CPU utilization?

A. Setup

Fig. 1a illustrates the measurement setup. We use three PCs
to run an SDN controller, an SDN hypervisor, and the data
plane network. PC1 emulates the SDN controller by using the
SDN benchmarking tool perfbench [16], in order to generate
OF_FlowModAdd messages with a variable rate. PC2 hosts
a Virtual Machine (VM) that runs the SDN hypervisor Open-
VirteX [8]. OpenVirteX enables tenants to request arbitrary
topologies. However, a limitation is that one physical switch
cannot be represented as two virtual switches to one tenant.
A CPU monitored on the VM reports on the CPU utilization
of OpenVirteX. Finally, PC3 emulates the data plane network
with Mininet [17].

B. Scenario

In order to investigate if there is any impact of topology
abstraction, we construct a simple data plane topology with
two hosts H-1 and H-2 connected as a line topology, with k
switches between them (See Fig. 1b). The VN is established
between the two hosts and spans all the corresponding physical
switches and links as in Fig. 1b. Fig. 1c shows an example
of a transparent operation (i.e., no abstraction), while Fig. 1d
gives an example of the big-switch abstraction.

Process: In OpenFlow (OF) [18], the OF_FlowModAdd
message is used to add forwarding rules to switches. Thus,
in order to establish one traffic flow between the two data
plane hosts H1 and H2, each switch on the path has to
receive at least one OF_FlowModAdd message. Hence, in
total, k OF_FlowModAdd messages are sent by the SDN
hypervisor on the southbound interface (SBI) for both abstrac-
tion cases. However, the situation on the northbound interface
(NBI) differs based on the topology abstraction. In case of
transparent abstraction (Fig. 1c), the SDN controller has to
generate k OF_FlowModAdd messages towards each switch,
while the SDN hypervisor has to forward the messages to
the corresponding physical switches. Thus, OF_FlowModAdd
message rates on the SDN hypervisor NBI λA and SBI λB
are the same (i.e., in Fig. 1a, λA = λB). On the other hand,
in the big-switch abstraction case (Fig. 1d), the whole data
plane network is abstracted, thus, the SDN controller has to
generate only one OF_FlowModAdd message to establish the
same traffic flow. In this case, the SDN hypervisor has to find
a physical route between the virtual ports, and to translate
one northbound OF_FlowModAdd into k OF_FlowModAdd
southbound messages towards each switch on the physical path
(thus, in Fig. 1a, λB/λA = k).

Parameter Settings: We compare the CPU utilization of
OpenVirteX for both topology abstraction cases. We vary the
number of switches between the hosts, k = {2...10}, and
the data plane flow request rates between the two hosts,
f = {10...100}. The length of one measurement instance
is 90 seconds, where perfbench generates OF_FlowModAdd
messages, corresponding to the data plane flow rate request.
The CPU monitor gathers CPU utilization samples of the VM
hosting the OpenVirteX instance every 0.5 seconds. The sam-
ples are represented as in percentages of the cores used; e.g.,
200% corresponds to two cores are being utilized. Notably,
we discard the first 5 seconds and the last 5 seconds of each
measurement run due to avoid effects from transient phases.

C. Results

CPU utilization measurements for k = 5 and k = 10
number of switches are shown in Fig. 2a and 2b, respectively.
Two box plot samples are shown for each flow rate value
(values on x-axis). In each figure, the left box-plots represent
the transparent abstraction corner case, while the right ones
represent the big-switch case.

For both abstraction cases, increasing the data plane flow
rate increases the SDN hypervisor CPU utilization. This is
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Fig. 2: CPU utilization with respect to the flow rate between
two hosts when there are k number of switches between them.
Left column of each box plot represents the case when VN
is transparently embedded, while the right column box plots
represents if the VN is embedded using big-switch, fitted with
3rd order polynomial function.

TABLE I: Values of Modeling Parameters

Model Linear Quadric 3rd Order Polynomial
c0 5.8956 7.5945 5.4317
c1 0.0665 0.0345 0.0418
c2 0.0215 4.568 ×10−5 1.8250 ×10−5

c3 - 0.0251 2.1590 ×10−8

c4 - -9.0565 ×10−6 0.0497
c5 - - -7.2677 ×10−5

c6 - - 4.2753 ×10−8

Error 12.29% 10.87% 10.22%
Error30 7.55% 5.78% 4.49%

due to the fact that the number of messages on NBI and
SBI are increased, thus, OpenVirteX has to process a higher
number of messages. Furthermore, it can be observed that
the increase of CPU utilization for the transparent case is
much more pronounced. Since the message rate on the SBI is
the same for both abstraction cases, it can be concluded that
forwarding k×f messages in the transparent abstraction case
requires more CPU resources than calculating physical routes
and translating f messages in the big-switch abstraction case.

Moreover, according to the big-switch abstraction case for
k = 5 (the blue line in Fig. 2a) and k = 10 (the blue line
in Fig. 2b), it can be seen that the CPU utilization difference
is not drastic. Since the messages rates on the NBI in both
abstraction cases are the same, it can be concluded that the
number of messages on the SBI produces a smaller impact on
the CPU utilization, comparing to the number of messages on
the NBI.

D. Modeling

Based on our measurements, we suspect that the CPU
utilization depends either linearly or polynomially on the
required data plane flow rate f , the number of switches on
the path k, and the requested abstraction level l. Thus, we
formulate linear, quadratic and 3rd order polynomial functions
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Fig. 3: Mean measured CPU utilization for the transparent case
with k = 10 switches in the data plane and the corresponding
estimation models.
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(b) Big-switch

Fig. 4: Estimation of CPU utilization based on the presented
model for both abstraction cases, i.e., the transparent (no)
abstraction and the big-switch abstraction.

to fit the CPU utilization, as follows:

glin(f, k, l) = clin0 + clin1 fkl + clin2 fk (1)

gqua(f, k, l) = cq0 + cq1fkl + cq2(fkl)
2 + cq3fk + cq4(fk)

2

(2)

gpol(f, k, l) = cp0 + cp1fkl + cp2(fkl)
2

+ cp3(fkl)
3 + cp4(fk) + cp5(fk)

2 + cp6(fk)
3 (3)

where c represents coefficients in the equations. The parameter
l is the requested abstraction level which represents the ratio
of virtual switches on the virtual path and physical switches on
the corresponding physical path. For the big-switch abstraction
case, there are one virtual switch and k physical ones, hence
l = 1/k. In the transparent case, l = k/k = 1. Therefore, the
multiplications fkl and fk actually represent the NBI and the
SBI OF_FlowModAdd message rates, respectively.

Using the scipy Python library, we take the main workload
CPU utilization values and find the best fitting coefficients
in Eqs. (1,2,3). Table I contains all of the corresponding
coefficient values. It shows the average relative errors for all
CPU values and the average relative errors for the samples
with CPU utilization higher than 30% (Error30). Fig. 3 shows
the measured CPU utilization and all of the corresponding
models for the transparent case with k = 10 switches between
the end hosts. As it can be seen in Fig. 3 and Table I, among
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Fig. 5: Required SDN hypervisor resources based on topology
abstraction.

all functions, the 3rd order polynomial fits the best, but the
error is not significantly lower compared to the other models.
Therefore, Fig. 2 used the 3rd order polynomial model for
fitting the CPU. From Table I and Fig. 3, it can generally be
seen that the models actually perform worse for the lower
CPU utilization. Fig. 4 depicts the 3rd order polynomial
estimation model. It can be observed that increasing either
the number of switches or the required flow rate increases the
CPU utilization.

IV. FUTURE OUTLOOK

A. VNE and SDN hypervisor provisioning

As future outlook, and as a motivation for the measure-
ments of different SDN hypervisor functions, we provide
some initial insights on VNE optimization and control plane
resource provisioning in SDN. For this, we extend the VNE
problem formulation and definitions from [19] to include
the SDN hypervisor control plane resource constraints. In
our simulations, we use three different standard topologies:
Abilene [20], Internet2 [21], and Germany50 [22]. We present
our observations for the VNE problem with the objective to
maximize the acceptance ratio.

1) SDN Hypervisor CPU Provisioning: In this part, we sim-
ulate the embedding of 100 Virtual Network Requests (VNR)
with the same data plane requirements. The VNs use either
the transparent abstraction or the big-switch abstraction in the
three topologies for 10 times. Fig. 5a shows the required SDN
hypervisor CPU resources for each of the topologies. It can
be observed that the big-switch topology abstraction requires
much lower amount of CPU resources in all topologies. The
biggest difference is observed for Internet2 topology, where
the big-switch abstraction case requires 50% less resources
than the transparent one. It can also be seen that the Abiline
topology requires the least amount of CPU resources, as it is
the smallest network. Thus, the paths are typically shorter and
require fewer number of control plane messages in order to
be established.

2) Impact of Topology Abstraction on Objective Function:
We vary the total available SDN hypervisor CPU resources
from 1 to 30 cores. Fig. 5b depicts the values of objective
function for two cases: with and without including the topol-

ogy abstraction effects in the Internet2 topology. The observed
results for the other two topologies follow the same trend;
hence, we omit the corresponding figures.

According to Fig. 5b, if the SDN hypervisor resources are
overprovisioned (e.g., there are more than 25 available cores),
the control plane constraints do not affect the embedding
as there are enough control plane resources to accommodate
all of the VNRs. Here, the data plane becomes a bottleneck
and constraints the embedding of VNs. However, if the SDN
hypervisor resources are low (less than 25 cores), the data
plane constraints do not affect the embedding. As a conse-
quence, the embedding is mainly affected by the control plane
constraints. Here, an incorrect estimation of required SDN
hypervisor resources could produce high relative errors in the
provisioning process — as a result, tenants might perceive
VNs with unpredictable control.

B. Discussion of Initial Topology Abstraction Measurement

In this paper, we focus only on evaluation of topology
abstraction effects on a line topology. As a future direction,
we plan to investigate more complex topologies in order to
fully understand the topology abstraction behavior.

V. CONCLUSION

In this paper, we showed how the correlation between
the data plane requirements and the topology abstraction
affects the SDN hypervisor CPU utilization. Firstly, in our
testbed, we measured the SDN hypervisor CPU utilization for
two topology abstraction cases, (1) transparent (no topology
abstraction), and (2) big-switch on a line topology. Our mea-
surements indicated the impact of abstraction, as embedding of
VNs with big-switch abstraction actually requires less control
plane resources than embedding the ones with the transparent
abstraction. This effect comes from the difference in the OF
message rates on the SDN hypervisor’s NBI (which scales with
the number of switches on the path). For instance, transparent
abstraction of the path with 10 switches requires around
4× more CPU resources than the big-switch abstraction. We
further showed that the corresponding SDN hypervisor CPU
measurements can be modeled with 3rd order polynomial
function with the average relative error of around 10%.

We also presented a future outlook containing the initial
analysis of topology abstraction impacts on the VNE opti-
mization and control plane provisioning in SDN. Initial results
indicate that including the topology abstraction in the VNE
problem can improve the acceptance ratio up to ∼ 20%.
Therefore, the effects of SDN hypervisor functions should not
be neglected when provisioning the control plane resources
and solving the VNE problem.
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