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University of Antwerp - imec, IDLab, Department of Mathematics and Computer Science, Belgium

firstname.lastname@uantwerpen.be

Abstract—The utilization and size of today’s wireless networks
is continuously increasing, as more and more wireless commu-
nication technologies and connected devices are being added.
As the use of multiple communication technologies is supported
by modern devices, efforts have been made to allow these
devices to utilize simultaneously and handover between different
technologies. However, existing management frameworks and
standards lack the intelligence to provide fine-grained network-
wide optimizations. This despite the potential of dramatically
increasing overall network performance (e.g., throughput) and
user experience. To this extent, we present a multi-technology
load balancing approach that can manage devices and steer
traffic across different wireless technologies, in order to maximize
the global throughput. This dynamic approach can be deployed
on top of existing solutions and takes into account the specific
characteristics of wireless networks and the mobility of stations.
We present a mathematical problem formulation of load bal-
ancing traffic and devices across different wireless technologies.
We demonstrate its ability to significantly increase network-wide
throughput and meet the demands of the users.

Index Terms—heterogeneous wireless networks, traffic man-
agement, load balancing

I. INTRODUCTION

Nowadays wireless networks are all around us and have
become the standard for providing Internet connectivity. This
is, among others, the case in Local Area Networks (LANs),
Wide Area Networks (WANs), and backhaul networks (e.g.,
for vehicles). The utilization of these wireless networks is ever-
increasing as a result of the rising number of connected devices
and the expansion of the demands of users and applications
(e.g., high quality live streaming) [1]. With the addition of new
wireless technologies and devices, the heterogeneity and man-
agement burden of wireless networks is rapidly increasing. On
one hand, modern multimedia services have stringent quality
requirements and are very sensitive to network disruptions and
degradations (e.g., high latency, congestion or link failures) On
the other hand, current wireless networks are generally man-
aged in a mostly static manner, unable to automatically react in
a timely fashion to temporary disruptions that cause Quality of
Service (QoS) degradations. This problem is expected to fur-
ther increase as even more communication technologies, such
as IEEE 802.11ay and 802.11ax, and application domains, like
smart cities or autonomous vehicles, become available [2].

As both modern connected devices and wireless networks
are equipped with multiple communication technologies, dy-
namic network and traffic management would allow for
network optimizations. Examples of such optimizations are

multipath routing, load balancing, and dynamic path reconfig-
uration. In order to enable these optimizations, it needs to be
possible to seamlessly switch between or load balance traffic
over different technologies. However, traditional approaches
fail to offer the required dynamic management, as they typi-
cally delegate this to the application layer, or even worse, to
the user. Making it thus impossible to automatically react in a
timely fashion to dynamic network changes (e.g., disruptions
or varying number of devices).

To this extent, dynamic multi-technology frameworks and
standards have been proposed. The most important ones are
Multipath Transmission Control Protocol (MPTCP) [3], LTE-
Wireless Local Area Network Aggregation (LWA) [4], and
ORCHESTRA [5]. MPTCP allows to split a Transmission
Control Protocol (TCP) flow across different paths through
the network, while LWA allows to offload traffic between
an LTE base station and IEEE 802.11 (Wi-Fi) access points
(APs) [3, 4]. ORCHESTRA offers a transparent management
solution by introducing a Virtual MAC (VMAC), arching dif-
ferent technologies per device, and a centralized controller [5].
While these solutions introduce the features needed to enable
dynamic flow rerouting and load balancing, they lack the
intelligence to allow for network-wide optimizations.

Therefore, we present a multi-technology load balancing
approach that can balance devices across different APs and
steer traffic across different paths through the network. It can
make use of the management functions offered by the above
mentioned frameworks. This approach aims to find a global
optimal scheduling configuration for all the traffic flows and
stations in the network, in order to achieve maximum global
throughput. In contrast to existing load balancing approaches,
we do not assume full knowledge over the network and use
real-time monitoring information as inputs. Furthermore, we
also present a general approach that can be used without
dependencies to specific technologies.

Our previous work introduced a load balancing solution for
specific LANs consisting of only stationary devices [6]. The
technologies under consideration were Ethernet and Wi-Fi,
provided by a single AP. In this paper we extend this work in
several ways. First, we shift the focus to the more challenging
environment of wireless networks and take into account the
presence of multiple APs (or base stations). Second, we
specifically take into account the mobility of stations.

The contributions of this paper are twofold: first, we in-
troduce a mathematical model of the load balancing prob-
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lem, for both devices and traffic flows, in heterogeneous
wireless networks. The problem is formulated as a Mixed
Integer Quadratic Program (MIQP), which can be solved
using existing linear programming approaches. Second, we
evaluate the resulting model and the heuristic in a variety of
scenarios, using different network configurations, based on ns-
3 simulations.

The remainder of this paper is structured as follows. We
start by giving an overview of the current state of the art in
Section II. Next, we introduce the mathematical problem for-
mulation and load balancing algorithm in Section III. Finally,
Section IV discusses the simulation results, while conclusions
are provided in Section V.

II. RELATED WORK

In this section we discuss existing work on both the topic
of multi-technology network management and load balancing
in heterogeneous network environments.

A. Multi-technology standards and frameworks

MPTCP is a TCP extension that enables the transmission
and reception of data concurrently over multiple network
interfaces. Multiple regular TCP connections (denoted as
subflows), are offered as one to the application layer, while
under the hood each subflow can follow different paths through
the network [3]. A scheduler can thus divide or duplicate
application data across these sub-flows, based on the ever-
changing network characteristics (e.g., increased RTT), to
attain a higher throughput, or increased reliability [7]. MPTCP
is actively being used, for instance, in consumer devices
like smartphones (e.g., Siri) [8, 9]. While MPTCP aims at
improving QoS and network resource utilization, it focuses
only on the alternative paths between two hosts and not on a
network-wide scale.

The ever-growing bandwidth and traffic speed demands have
urged the 3GPP community to explore the wireless spectrum
outside of the traditional licensed 3G/4G bands. In order to
offload traffic, both the direct usage of LTE in the unlicensed
spectrum (i.e., LTE-LAA/LTE-U) and the combined usage of
LTE in the licensed and Wi-Fi technology in the unlicensed
spectrum (i.e., LWA) have been proposed [10, 4]. While the
first can cause severe performance degradations in coexisting
Wi-Fi systems, the LWA approach clearly introduces less
coexistence issues and no hardware changes are required on
the infrastructure [11, 12]. From a user perspective, both LTE
and Wi-Fi are used seamlessly as mobile traffic flows are
tunneled over the Wi-Fi connection.

More recently, the ORCHESTRA framework has been pro-
posed as the first solution that can be used transparently with
all technologies and communication protocols [5]. The frame-
work consists of a VMAC on the devices and a centralized
or cloud-based controller. The VMAC unifies the underlying
heterogeneous technologies per device, offering a single in-
terface to the upper layers with a single IP address. Based
on packet matching rules, the VMAC forwards packets to the

designated underlying technologies. This allows for packet-
level load balancing, vertical handovers, and duplication. The
rules on the VMAC can be changed by the controller, based
on the real-time monitoring information that is sent from the
different VMACs to the controller.

Summarized, different solutions are proposed that allow for
multi-technology management and features (e.g., handovers or
duplication). In complement, there is a need for algorithms and
intelligence (as the approach presented in this work) that use
these frameworks and standards to optimize the network.

B. Load balancing in heterogeneous networks

Multi-technology load balancing has been mostly addressed
in two different research areas, mainly LANs and WANs
(4G/5G). Macone et al. propose a per-packet load balancing
algorithm for LANs that runs centralized on the gateway and
assumes full instantaneous knowledge of network resources
and conditions [13]. Furthermore, a decentralized load balanc-
ing algorithm specifically for heterogeneous wireless access
networks was proposed by Oddi et al. [14]. The algorithm
is based on the Wardrop equilibrium and does not take into
account the fact that users do not have dedicated network re-
sources when using wireless technologies. In general, Olvera-
Irigoyen et al. have shown that determining the actual available
bandwidth on the links has a big impact on the results of
distributing the flows [15]. Recent load balancing solutions for
LANs focus also on energy optimization [16, 17]. However,
this is done by assuming the energy consumption model is
known in advance, and not by real-time measurements.

In WANs, most research proposes technology-specific so-
lutions that are capable of load balancing across only two
of these technologies (e.g., LTE and Wi-Fi or Wi-Fi and
WiMAX) [18]. Load balancing policies are generally based
on the number of connected devices to a base station, and
different decision strategies have been proposed, using among
others utility functions, multiple attributes decision making,
Markov chains, and game theory [18, 19]. These strategies
take only a limited number of parameters into account, with
Received Signal Strength Indicator (RSSI) and Signal To
Noise Ratio (SNR) being the most popular ones [20, 21]. Open
issues include, for instance, the development of more generic
solutions, better support for mobility, the use of multi-criteria
decision functions, supporting different QoS classes and the
increase of QoS during or after handovers [20].

Summarized, most existing work on load balancing in
heterogeneous networks makes use of theoretical models that
assume, unrealistically, full knowledge over the detailed state
of the network. Furthermore, the specific nature of wireless
networks is ignored and approaches are technology dependent.
In contrast, the proposed approach is technology independent
and focuses on wireless networks (taking into account the
specifics), while using only real-time monitored information.



III. MULTI-TECHNOLOGY LOAD BALANCING PROBLEM
FORMULATION

This section presents the proposed multi-technology load
balancing model. We distinguish from our previous work as we
created a novel formulation targeting heterogeneous wireless
networks by taking into account specific elements such as
station mobility and presence of multiple APs [6].

A. Network model

A heterogeneous wireless network is modeled as a multi-
graph defined as a tuple (S,T,B) where:

• S is the set of stations {s1, s2, ..., sn}. These stations
represent all kinds of connected devices, depending on the
modeled network (e.g., smartphones, sensors, vehicles).

• T is the set of technologies {t1, t2, ..., tn}. This can, for
instance, be IEEE 802.11ac, IEEE 802.11ad, or LTE.

• B is the set of all Basic Service Sets (BSSs)
{b1, b2, ..., bn}. A BSS is defined as a set of stations
{s1, s2, ..., sn} that are connected to an AP or base
station using a certain technology. In other words, a BSS
encapsulates all the stations that can interfere with each
other since they share the capacity of a technology. We
assume no interference between BSS that are in range of
each other (i.e., use of different channels).

Furthermore, we define the following sets and elements:

• ∀s ∈ S : Ts : defines for each station the set of all
technologies t ∈ T that are supported by the station.

• ∀b ∈ B : Bt : is the set of BSS for a certain technology
t ∈ T .

• ∀s ∈ S : Bs set of BSSs to which s ∈ S can belong. In
other words these are all the BSS of which the AP are
in range of the station (for a supported technology).

• Finally, we define ds,b and bs,b to be, respectively, the
data rate (depending on the MCS) and bit error rate of the
station s ∈ S for a specific BSS b ∈ B. Note that these
values depend on the mobility and position of stations
and can change over time.

In addition to the network topology, traffic flows going
through the network also need to be modeled. Therefore,
we define F as the set of all flows. A flow f ∈ F is a
triple < sf , r

in
f , r

out
f > with sf ∈ S the station within the

network that is the source or destination of the flow within the
network, rinf the incoming desired rate of f ∈ R+ and routf the
outgoing desired rate of f ∈ R+. Note that we do assume that
the gateway is always one of the two endpoints of the flow,
while the other is denoted by sf . Furthermore, we separate the
desired rate of the flow between the incoming and outgoing
rate. This allows us to more precisely schedule all flows across
the different paths, as incoming and outgoing packets of a flow
can be assigned a different route. To clarify, for a TCP flow
originating from some web server, the incoming rate is the
rate of the data traffic, while the outgoing rate is the one of
the ACKs.

B. MIQP formulation

The load balancing problem considered in this paper is
modeled as an MIQP, which consists of the necessary in-
puts, decision variables, an objective function, and a set of
constraints. The inputs of the presented MIQP consist of the
previously described network and flow model. Additionally,
we need one more input: we define χb to be a linear function
that approximates the capacity of the different BSSs, taking
into account the number of stations and the particular technol-
ogy [6]:

χb(α, β) = α · (
∑
f∈F

λinf,b + λoutf,b ) + β

The parameters α and β are technology specific and account
for the impact of contention and collisions under an increasing
number of stations. They can be experimentally determined.

Next, we define the following decision variables:

• τ inf ∈
[
0, rinf

]
; this variable defines the total incoming

rate assigned to a flow f ∈ F .
• τoutf ∈

[
0, routf

]
; this variable defines the total outgoing

rate assigned to a flow f ∈ F .
• λinf,b ∈ {0, 1}; this variable represents the path for the

incoming traffic of a flow. If the incoming traffic of flow
f ∈ F is scheduled over BSS b ∈ Bsf then λinf,b = 1,
otherwise it equals 0.

• λoutf,b ∈ {0, 1}; this variable represents the path for the
outgoing traffic of a flow. If the outgoing traffic of flow
f ∈ F is scheduled over BSS b ∈ Bsf then λoutf,b = 1,
otherwise it equals 0.

• γs,t,b ∈ {0, 1}; this variable represents the connection
between a station and an AP. It is equal to 1 if a station
s ∈ S on technology t ∈ St is part of the BSS b ∈
Bs∩Bt, otherwise it equals 0. In other words, we assume
that per technology a station can only be connected to one
AP or base station.

• δ ∈ [0, 1]: represents the maximal load over all BSS.
As an objective function, the model maximizes the total rate

(bandwidth) of the network-wide traffic, both incoming and
outgoing, while minimizing the relative maximal load over all
BSS:

max(ω · (
∑
f∈F

τ inf + τoutf ) + (1− ω) · (−δ) · (
∑
b∈B

χb))

This objective function consists of two weighted subfunc-
tions that need to be optimized (with the weight denoted by
ω). The first subfunction represents the total assigned rate over
all flows (which needs to be maximized). The second part
represents the division of load across all available BSSs. The
idea is to minimize the maximal relative load, denoted by δ,
across all BSSs [22]. As many mathematical solvers do not
allow the usage of maximization or minimization functions
within the objective function, δ is bounded by the final
constraint. Note that the multiplication of δ with

∑
b∈B χb

is only needed for normalization.



Finally, we define the following constraints: we first define
a constraint that guarantees that the capacity of BSSs and their
underlying technologies is not exceeded:
• ∀b ∈ B :

∑
f∈F λ

in
f,b · τ inf + λoutf,b · τoutf 6 χb

Next, we define a constraint that limits the total rate over all
traffic flows on a station, going over a certain BSS, by the
maximal rate supported by the configuration of that station:
• ∀s ∈ S,∀b ∈ Bs :

∑
f∈Fs

λinf,b · τ inf + λoutf,b · τoutf 6
dsf ,b · bsf ,b

Furthermore, we define two constraints that guarantee the
conservation of flows in the network (i.e., the right endpoints):
• ∀f ∈ F :

∑
b∈Bsf

λinf,b = 1

• ∀f ∈ F :
∑

b∈Bsf
λoutf,b = 1

We also need to make sure that a device can be connected to
only one BSS per technology:
• ∀s ∈ S, ∀t ∈ Ts :

∑
b ∈ Bs ∩Btγs,t,b = 1

• ∀s ∈ S,∀t ∈ Ts,∀b ∈ Bs ∩Bt,∀f ∈ Fs : λ
in
f,b 6 γs,t,b

• ∀s ∈ S,∀t ∈ Ts,∀b ∈ Bs ∩Bt,∀f ∈ Fs : λ
out
f,b 6 γs,t,b

Finally, we define the constraint that bounds the maximum
value of δ for balancing the load across BSSs:
• ∀b ∈ B :

∑
f∈F λ

in
f,b · τ inf + λoutf,b · τoutf 6 δ · χb

C. Network interaction and parameter estimation

In Section II-A we listed a number of existing multi-
technology frameworks and standards that could be used to
configure the network. While our load balancing approach can
be deployed on all of these solutions, ORCHESTRA is the
most suitable as it offers centralized control and monitoring,
while also offering seamless handovers. These central control
and monitoring features are important as real-time information
on the network state is required as inputs of our load balancing
approach and the calculated configuration needs to be rolled-
out. Moreover, this monitoring information is also used to
trigger the execution of the algorithm when dynamic changes
to the network are detected (e.g., a variation in one of the flow
rates of at least x %). While this repetitive execution allows to
react to station mobility or changed traffic demands, this also
requires a limited execution time of the algorithm.

Some of the gathered monitoring information, like station
and traffic information, can be used directly without the need
for further processing. Similarly, flow rates can be estimated
by simply using the monitored rates [6]. However, this is not
for all inputs the case: first, to avoid the use of complex
theoretical models, we defined the approximation function χb

to estimate the capacity of the wireless technologies [6]. The
technology specific parameters α and β can be experimentally
determined to capture the specifics of the wireless network
under consideration. Second, a similar approach can be taken
to determine the data rate (depending on the Modulation
and Coding Scheme (MCS)) and bit error rate of the station
s ∈ S for a specific configuration, respectively denoted by
ds,b and bs,b. For the first parameter a mapping from measured
RSSI values to MCS values (and theoretical data rate) can be
constructed. A second linear function can map the measured

TABLE I: Overview of the devices, and the supported flow
rates, used in the scenarios

Device type Rate boundaries per flow type
(and mobility) Download Video stream Conference call
Laptop (mobile) 10–30 Mbps 8–20 Mbps 4–10 Mbps
HD Television 5–25 Mbps 10–20 Mbps 5–10 Mbps
4K Television 5–25 Mbps 15–25 Mbps 7.5–12.5 Mbps
Tablet (mobile) 1–8 Mbps 2.4–9 Mbps 1.2–4.5 Mbps
Smartphone (mobile) 1–8 Mbps 2.4–9 Mbps 1.2–4.5 Mbps

RSSI values to packet loss, in order to correct the theoretical
achievable data rate. Both functions can be experimentally
determined by using the well-known fingerprinting approach to
record MCS and packet loss values at different distances (and
thus different RSSI values) in the network environment. This
method can be applied to each heterogeneous environment
to capture the specific characteristics and can be rapidly re-
executed if needed.

IV. RESULTS AND DISCUSSION

In this section, we evaluate the proposed load balancing
approach, using simulation results obtained from the ns-3
event-based network simulator [23]. First, the evaluation setup
and scenario are discussed. Second, the performance of the
approach, in terms of achieved throughput and execution time,
is evaluated in a number of scenarios. For every scenario, we
provide a comparison to a fully distributed baseline, where
each device decides for itself to which AP to connect, based on
the best RSSI values. In other words, the baseline corresponds
to the current state of the art, where one of the discussed
multi-technology management solutions (Section II-A) is in
place, without the centralized intelligence, but with seamless
handovers.

A. Evaluation setup

All simulations are conducted using the ns-3.27 network
simulator, while the Gurobi Optimizer (7.5.2) is used to solve
the MIQP formulation. The experiments take place using a
single core of an Intel R© Xeon R© E5-2680 Processor running
at 2.8 GHz and with 8 GB RAM. In the ns-3.27 simulator,
we implemented the entire ORCHESTRA framework [5]
and the MIQP approach. Furthermore, we also extended
the basic ns-3.27 implementation to allow for multi-channel
Wi-Fi networks. During all of our experiments, we assume
two technologies present: IEEE 802.11n and IEEE 802.11ac
(respectively, 2.4 GHz and 5 GHz Wi-Fi). Every scenario has
at least two APs that support both technologies. Dynamic
rate adaptation for all devices is made possible through the
Minstrel rate adaptation algorithm.

In order to generate representative network topologies and
conditions, several types of devices are defined, each with
different mobility and traffic rates. This information is depicted
in Table I. The exact number of devices, the assigned flow
type, and the rate of the flow are chosen uniformly at random
between an upper and lower bound, based on the involved
device and depending on the scenario. Each mobile device
(all except for the televisions) moves around according to



TABLE II: Setup for static scenarios

Device Home SME Flows
(20x10 m) (25x10 m)

APs 2 3 N/A
Laptop 2 9 Download/Conf. call
HD TV 0 1 Video stream
4k TV 1 0 Video stream
Tablet 2 1 All types of flows
Smartphone 3 5 All types of flows
Total 10 19

the Random Waypoint Model within a certain area, with a
random start position and a uniformly random chosen speed
between 0.3-0.7 m

s . The size of the area and the wait times at
the waypoints are depending on the scenario. Moreover, in the
static scenarios the flow rates do not change over time, while
in the other scenarios the download flows will consume as
much bandwidth as possible (reflecting their actual behavior).
Assuming a static flow rate for the first part of the evaluations
allows us to better estimate the impact of only the mobility
aspect. The size of the download is uniformly at random
chosen between 10 MB and 10 GB. We assign one flow per
device and as such do not assume the concurrent usage of both
Wi-Fi interfaces, as this is generally not supported by current
hardware. Note, that the flow rates were selected based on
representative figures from literature of existing applications
and that we use only TCP traffic flows, as current Internet
traffic is dominated by TCP [24].

For every described scenario, results are averaged over 20
different randomly generated flow and topology configura-
tions. For the fully distributed baseline, we assume that when
the RSSI of the current connection drops below a threshold of
-75, a better connection is selected (if present). The execution
of the algorithm is triggered by the real-time monitoring
component when dynamic changes to the network have been
detected (e.g., a variation in one of the flow rates of at least
25 %) or when it has been 10 s since the last execution. To
avoid oscillations in the decision making, there should be at
least 2 s between two consecutive executions. Furthermore, a
time limit of 900 s is set for solving the MIQP. This time limit
ensures the continuation of the experiments, while still being a
magnitude larger then required for reactive real-time optimiza-
tions. Finally, the following parameters were experimentally
determined: for the function χb, α and β are respectively,
for 2.4 GHz Wi-Fi -1.74 and 57.58, and for 5 GHz Wi-Fi -
3.21 and 112.99. These values are experimentally determined
using the method described in our previous work [6]. For the
objective function a weight of 0.91 is used. Different values
were compared but the value of 0.91 showed the best average
result across a number of experiments.

B. Static scenarios

In order to get a first impression of the performance of
the different approaches we created two basic scenarios with
varying topologies. As depicted in Table II, these scenarios
slightly differ in size and density. The results for the two
scenarios are shown in Figure 1. The graphs compare the
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Fig. 1: Throughput as a function of time for different scenarios,
comparing the MIQP formulation and the baseline

baseline and MIQP formulation to the sum of the desired
flow rates (known as we use fixed flow rates here). Across
both graphs we clearly see a significant improvement by our
approach in comparison to the distributed baseline.

For the Home scenario, we can report the following rates (±
the standard error), respectively for the baseline and MIQP:
81.61 Mbps (±2.62) and 90.15 Mbps (±2.36). Their is thus
an improvement of, respectively 10.46 % compared to the
baseline. As the total desired rate is 90.40 Mbps (±2.35), it
is clear that our approach succeeds in providing the optimal
network configuration. Similarly for the SME scenario, the
following average rates are achieved: 131.46 Mbps (±3.73)
and 193.90 Mbps (±3.76) for respectively, the baseline and
MIQP. The increases towards the baseline is larger than for
the Home scenario: 47.50 %. The same can be said for meeting
the requirements of the flows as the total desired rate is
195.21 Mbps (±3.46).

Furthermore, finding the optimal solution took, on average,
16.38 s (±4.28) and 736.58 s (±39.71), respectively for the
home ans SME scenario. This is execution times are rather
high and are significantly above the minimal interval (of
2 s) between two consecutive runs of the algorithm. We will



TABLE III: Impact of mobility on throughput

Wait times Baseline MIQP

Home
0-10 s 83.16 Mbps (±3.31) 89.67 Mbps (±2.35)
5-15 s 81.61 Mbps (±2.62) 90.15 Mbps (±2.36)
10-20 s 80.32 Mbps (±2.88) 90.24 Mbps (±2.29)

SME
0-10 s 157.19 Mbps (±4.70) 189.03 Mbps (±4.80)
5-15 s 131.46 Mbps (±3.73) 193.90 Mbps (±3.76)
10-20 s 135.46 Mbps (±3.98) 194.32 Mbps (±3.35)

TABLE IV: The execution time for the MIQP under increasing
network load

Load Flows Exec. time MIQP
10 6 8.17 s (± 1.08)
15 8 12.14 s (± 2.69)
20 10 29.75 s (± 6.84)
25 12 87.52 s (± 9.39)
30 14 478.36 s (± 36.39)

discuss the scalability the MIQP in more detail in the next
section.

Finally, we considered the impact of mobility on the overall
throughput. Therefore, we varied the waypoint wait times for
both scenarios by additional experiments for times between
0-10 s and 10-20 s. The results, listed in Table III, show that
the algorithm always significantly outperforms the baseline.
However, for the case with the highest mobility (and lowest
wait times) the baseline performs significantly better, than in
the other cases. We believe this to be due the higher number
of handovers, triggered by the mobility.

C. Impact of network load

To investigate the scalability of the algorithm in terms of
traffic and execution time, the following scenario was created:
a set of devices was randomly generated, each with a uniform
randomly assigned flow with a randomly chosen type and
rate. The total desired rate of all flows equals a certain
percentage of total theoretical network capacity. Experiments
were performed for loads of 10, 15, 20, 25, and 30 % of the
theoretical network capacity. Moreover, the presence of 3 APs
was assumed in a space of 20 by 15 m with a waypoint wait
time of 5-15 s.

From Figure 2 it is clear that our load balancing approach
offers a significant improvement towards the baseline. This
improvement grows when the percentage of network traffic
increases. For instance, for a load of 30 % there is an increase
from 113.68 Mbps (±4.36) for the baseline to 151.42 Mbps
(±0.51) for the MIQP. This is an increase of 33.20 %. More
importantly, we see that the MIQP allows to satisfy the traffic
demands of all flows. For instance, at a load of 30 % there is
only a negligible difference of 0.10 Mbps or 0.06 % between
the desired rates and the achieved throughput.

Furthermore, we measured the time it takes to calculate the
optimal solution. Table IV shows the averages of the measured
values across the different network loads. It is clear that
the computation time for the MIQP scales exponentially. For
instance, for only 14 flows (i.e., load of 30 %) it takes already
478.36 s (±36.39) to compute the configuration. Furthermore
it showed to be infeasible to calculate a solution for higher
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Fig. 2: Throughput as a function of network load, error bars
depict the standard error

loads within the time limit of 900 s. This clearly indicates that
the MIQP solution can not be used in very dynamic real-life
wireless networks. Finding a scalable near-optimal solution
will be our prime focus in future work.

V. CONCLUSIONS

This article addresses the need for intelligent management
of heterogeneous wireless networks. We introduce a multi-
technology load balancing approach that can balance devices
across different APs and steer traffic across different paths
through the network, on top of existing management frame-
works and standards (like MPTCP). Our approach focuses
on the dynamic and challenging environment of wireless
networks and takes into account specific parameters such
as mobility of users and coexistence of multiple APs. This
allows us to optimize the performance of the network in
terms of network-wide throughput. We present a mathematical
problem formulation, through a MIQP, that can calculate the
optimal network configuration. In our evaluation we show that
the presented approach offers a significant improvement in
terms of throughput. The scalability of this approach will be
improved in future research.
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