InFEP — Lightweight Virtualization of Distributed
Control on White-box Networking Hardware

Thomas Kohler, Frank Diirr, Christian Biumlisberger, and Kurt Rothermel
Institute of Parallel and Distributed Systems, University of Stuttgart, Germany
{firstname.lastname } @ipvs.uni-stuttgart.de

Abstract—Recent developments in networking hardware and
software-defined networking have enabled full distribution of
network control to reduce control latency and increase reliability.
However, both, hardware and software of current white-box
networking hardware are highly heterogeneous, which limits the
deployment and operation of switch-local control applications.
Furthermore, switch-local control raises yet unconsidered security
concerns.

In this paper, we present our concept of in-forward-element
processing, which leverages the open access to the control
plane of white-box networking hardware to deploy control logic
directly onto switches. We combine local control applications
with lightweight virtualization to cope with networking hardware
heterogeneity and to achieve required isolation properties and
ease of management. Beyond distributed network control, we
show this scheme is also beneficial for implementing switch-local
virtual network functions (NFV), processing packets. Highlighting
the practicability of the concepts, we provide an overview of the
current white-box networking hardware and software landscape
and their compatibility with lightweight virtualization technolo-
gies. To this end, we perform an empirical evaluation of NOS-
virtualization combinations on such hardware and compare the
results with respect to incurring virtualization overhead.

I. INTRODUCTION

Alongside the proliferation of Software-defined Networking
(SDN), recent years have seen an increasing trend towards
white-box networking. In traditional black-box switches, the
control plane is tightly coupled to the underlying hardware and
is only accessible through proprietary CLIs or APIs and, in
case of SDN support, an interface for remote programmability
of the data plane behavior, e.g., through the popular OpenFlow
protocol. SDN separates the data plane from the control plane,
allowing for control decisions based on a global network view
typically taken remotely in the control plane. Similarly, white-
box networking decouples the data plane, where specialized
hardware (typically ASICs) process packets, from the control
plane, where control-software determines the behavior of this
processing. In white-box networking, the switch hardware is
independent and is not tied to the so-called network operating
system (NOS). Typical white-box networking NOSes consist
of a standard Linux OS and control software running atop,
forming the switch’s control plane. Similar to the transition in
the server market from proprietary server software and hardware
to open operating systems like Linux on commodity off-the
shelf hardware (COTS), or the decoupling from proprietary
hardware (softwarization) of network functions (NFs) in Net-
work Function Virtualization (NFV), white-box networking
offers superior flexibility at greatly reduced capital expenditures.
While white-box switches typically feature the same data
plane processing hardware (switch silicon) as proprietary

978-3-901882-98-2 (©) 2017 IFIP

products, their computing resources on the control plane have
reached a level comparable to small workstations and are
still becoming increasingly powerful. Contrasting black-box
switches, white-box NOSes are completely accessible, allowing
for the execution of arbitrary applications on their control plane.

These properties allow for the exploitation of the switch’s
locality. SDN is based on the paradigm of logically centralized
control of network elements. Well-known from the domain
of Distributed Systems, logical centralization implies hiding
the complexity of a physically distributed system from the
application (distribution transparency). In particular, network
control logic in SDN has a global view on the network and
is implemented by possibly distributed control applications.
In most SDN architectures, any control decision is taken at
a remote SDN controller. For some control decisions, global
knowledge is however not needed, making the involvement
of a centralized remote controller superfluous. Instead, such
decisions can be taken locally at the switch, which we denote
as in-forwarding-element processing (InFEP). InFEP greatly
reduces control latency and thus greatly benefits processing of
time-sensitive traffic, such as real-time or signaling traffic, and
time-critical control mechanisms, such as link-failure recovery.
In previous work [1], we have proposed an architecture
for the centrally coordinated distribution of control whose
implementation is publicly available at zerosdn.github.io/.
Furthermore, we have presented control applications that can
run directly on switches, taking decisions locally, while still
profiting from a global view.

While appealing due to open access to a powerful control
plane, employing InFEP on white-box networking hardware also
entails challenges. In particular, the current white-box switch
landscape exhibits a high heterogeneity with respect to hardware
and software. A first differentiation is found in the switch-
silicon, which differs in type, e.g. ASIC or NPU, and model.
Considering forwarding performance, flexibility, capability, and
accessibility, the selection of a switch silicon is crucial. A
second differentiation lays in the hardware architecture of the
control plane as one of x86, PowerPC, or ARM. On the software
side, although all currently available NOSes are Linux-based,
they differ in the aspects openness (closed- or open-source),
used kernel, and Linux-distribution. Furthermore, the execution
of local control logic on a switch raises concerns regarding
security and reliability. Adverse behavior of local logic on
a switch’s control plane poses a severe threat to its entire
operation. For instance, excessive resource consumption of
one control application could starve essential control plane
processes, such as the OpenFlow agent, which is the sole
interface to the underlying switch silicon in OF-switches. In
such a case, the control plane would be unable to detect

and thus properly react to data plane events like port state
changes, e.g., in case of link failures. Also, the network’s
administrative domain might differ from the origin of the control
application code. For instance in NFV, the network operator
typically differs from the vendor of a virtualized network
function (VNF), requiring trust in the code issuer and functional
correctness of the VNF. In case of network virtualization, where
tenants are provided logical partitions of network resources,
the origin and behavior of control logic might not even be
known to the network operator. Consequently, fine-grained
control of resources (CPU, RAM, storage) as well as hard
isolation properties have to be implemented. Virtualization
technologies perfectly meet these requirements. Beside resource
control and isolation, management is greatly simplified through
orchestration frameworks. However, with high virtualization
overhead, the benefits of local processing, in particular the
greatly reduced latency, would be put at stake.

This paper presents a concept for network processing
directly on the switches supporting both, distributed control
of SDN networks including switch-local control function
and on-switch processing of virtual network functions. We
leverage the open access to the control plane of white-box
networking hardware for deployment and operation of control
logic. We combine local control applications with lightweight
virtualization to cope with white-box networking heterogeneity
and to achieve required isolation properties. Essential for our
concept of InFEP, we elaborate on our position of defining the
sweet spot where packet processing in a network should happen.
In light of this question, we depict the points of view of SDN,
middleboxing, and NFV, relate these paradigms, and show
benefits of mutual adoption. Highlighting the practicability
of InFEP, we provide an overview of the current white-
box networking hardware and software landscape and the
compatibility with lightweight virtualization technologies. To
this end, we performed an empirical evaluation of NOS-
virtualization combinations on a white-box switch and compare
the results with respect to the introduced virtualization overhead.

The remainder of this paper is structured as follows: We
describe the system model in §II and proceed with the discus-
sion about placement of packet processing and the relationship
of InFEP, middleboxing and NFV in §III. We introduce our
concept of InFEP in §IV and concretize requirements on
lightweight virtualization. In §V we give an overview over
the white-box landscape, and present conducted evaluations in
§VI. We show related work in §VII before we conclude and
give an outlook on future work in §VIIL.

II. SYSTEM MODEL — DISTRIBUTED SDN CONTROLLER

Our system model assumes an event-based distributed SDN
controller architecture as introduced in our previous paper
[1] and depicted in Figure 1. End-hosts (h;, undepicted) and
forwarding elements (FE), interchangeably called switches
(S;), constitute the data plane (DP). The control plane (CP)
is responsible for taking control decisions whose results are
pushed down to the data plane in form of forwarding rules, to
implement the desired network behavior. The control plane can
also be used to directly process data plane packets. Network
control logic is split into lightweight control modules, named
controllets (CM;), running in dedicated processes, possibly on
separate control plane hardware such as COTS servers (H;,
undepicted). The lightweight nature of controllets also allows

Figure 1. System model of an event-based distributed SDN controller archi-
tecture with switch-local (L;) & external controllets (C'M ;), interconnected
by a message bus constituting the control plane and interconnected switches
(S;) in the data plane.

for an execution directly on switches. We denote switch-local
controllets as L;. Overall, CM and L form the control plane.
In this paper, we concentrate on switch-local controllets.

Controllets consist of two components: a so-called micro-
kernel (1K) that just provides basic functions for interaction
with other controllets, and the actual control logic, e.g., network
topology management or routing. They communicate through
messages over a unified message bus, spanning the control
network. The message bus offers rich communication paradigms
such as publish/subscribe, broadcast, or direct peer-to-peer
communication. Furthermore, the message bus is responsible
for guarantees on message delivery, such as “exactly once” or
“at least once”. Controllets subscribe to events in the data plane,
such as packet ingress or state changes of ports, and to control
events, such as notifications of joining or leaving controllets
or changes in the global view of the network.

III. BACKGROUND & DISCUSSION

Many network functions (NF), such as load-balancing or fire-
walling, depend on exerting fine-grained control over network
traffic and ultimately boil down to providing connectivity—or
deliberately not providing connectivity—and thus to forwarding
behavior which nowadays SDN is able to flexibly control.
Although enabling powerful NFs, the middleboxing model,
which also network function virtualization (NFV) follows,
comes with inherent disadvantages, which we describe in the
following by discussing the questions: Where should packet
processing ideally happen and how powerful is in-forwarding-
element processing these days?

To discuss the placement of packet processing, we consider
two criteria on an entity that implements a NF by performing
packet processing (packet processor): 1) expressiveness and 2)
performance, i.e., processing latency and throughput. Latency
is directly affected by processing power and by the processing
distance (d), which we informally define as the number of
hops between the traffic (source, sink and path) and the packet
processor affecting this traffic. We differentiate between in-situ
processing, where packets are processed by network elements
(NE) that are within their unmodified, typically shortest path
between source and sink, and ex-situ processing, where traffic
has to be artificially steered through remote packet processors.
We consider the following placements, sorted by processing
distance ascendingly.

1) End-hosts have been recently proposed to process pack-
ets directly at their source/sink [2]. While this in-situ approach
in fact has the shortest distance (d = 0), it logically extends

the control plane to end-hosts thus adding another level of
complexity to network management. End-hosts should prioritize
hosting applications and providing them access to network
services over implementing these network services. Thus, access
and performance should be isolated. Two implementations of
this model, commonly referred to as SmartNICs, are Microsoft’s
FPGA-based pre-NIC processors' and programmable NICs,
such as the popular Netronome platform. However, hardware-
near programming is tedious and typically lacks generalizability.

2) FEs (switches) are the first type of NEs traffic encounters
on its path from source to sink and thus have the shortest
processing distance (d = 1) of end-host external placements. In
the FE data plane, packets are processed on highly optimized
hardware providing line-rate processing with low latency and
jitter. Due to in-sifu processing, no additional communication
latency occurs. We thus argue, in-line with the proactive SDN
control scheme, that FEs are the optimal place for packet
processing. We present our approach InFEP in detail in §IV-A.

A traditional, non-SDN example in traffic engineering is
Equal-cost Multipath Routing (ECMP), where link redundancy
is exploited by switch-local forwarding? without external
control enabled by integrating hashing capabilities in switch
silicon. The expressiveness of FE’s data plane processing
depends on its programmability, which is limited though,
such that not all NFs can be implemented directly in the FE
data plane. OpenFlow-enabled switches employ match-action
processing semantic, where matching enables fine-grained
classification of traffic (flows) on which actions including
modification of packet headers and switch-port output are
applied. This semantic is however powerful enough to cover im-
plementation of stateless firewalls, load balancing, monitoring,
etc. Even complex appliances, such as content-based routing
in the domain of communication middleware can be entirely
substituted by employing match-action processing within FEs,
providing line-rate throughput [3] and eliminating the need
for a remote middlebox (“broker”). Recent advances in the
field of data plane programmability like programmable network
processors (NPUs) or FPGA-based switches in combination
with software frameworks exploiting the advanced processing
capabilities, like the popular P4 [4] initiative, further push this
frontier. Despite its potential of being a disruptive technology,
it has not yet been widely adopted, though.

3) Remote hardware is used for NF implementation in both
middleboxing (proprietary appliances on closed hardware) and
NFV (general-purpose hardware running virtualized software
NF-implementations). On the one hand, packet processing in
software running on general-purpose hardware has become
remarkably fast. Furthermore, the NFV-infrastructure (NFVI)
provides powerful abstractions allowing for unified management
and orchestration of virtualized network functions (VNFs). On
the other hand, ex-situ packet processing inherently requires
to re-steer the traffic to traverse additional hardware entities—
hence the name middle-boxes. While dedicated middleboxes
are placed on or at least close to the path, virtualization
hosts providing VNFs are typically remote, i.e., off the path.
Furthermore, in modern networking, traffic typically has to
traverse multiple (V)NFs (service chaining). Thus, d > 1 + n,
where n is the chain length. Although NFV may mitigate

Thttp://conferences.sigcomm.org/sigcomm/2015/pdf/papers/keynote.pdf
2Incorporating local SDN control, static ECMP can be made much more
dynamic, adapting to changing link-utilization [1].

white-box
j switch
------------------------------------- \ FTCP
: HYPERVISOR!
]]
E i
: il NFVI
d i MANO
i Fadd/mod. forward L
H RV flow packet]
] Control
[} | TCP
| H H
e s fr oo
© PKT_IN OF_Agent FLoW MOD@ PKT oUT @
- 4 ; I
o / -
a o J»PCI E
1 path
Q
g() _ pO fast-path 3 J
o o
Figure 2. Hardware and software architecture of a typical ASIC-based

OpenFlow-enabled white-box switch (S;), depicting exemplary control flow
and data flow and the integration of a virtualized local controllet (L;) in InFEP.

chaining costs through consolidation of multiple VNFs into a
single physical host, the traffic still has to traverse multiple
software components (virtual switches, hypervisors, virtual
NICs). Overall, significant latencies accrue depending on
physical or logical distance of (V)NFs and chain lengths. For
WAN scenarios, incurred latency can easily reach an order of
tens to hundreds of milliseconds. Furthermore, the probability
of failures increases with increasing n.

Enabled by SDN and white-box-networking, middleboxes
or VNFs can be partially replaced or augmented by increasingly
powerful InFEP—in particular network-centric NFs (cf. [5]).

IV. IN-FORWARDING-ELEMENT PROCESSING (INFEP)

In this section, we introduce our concept of in-forwarding-
element processing (InFEP), its lightweight virtualization, and
discuss mutual benefits with NFV.

A. FE-local Control Logic & Packet Processing

InFEP’s meaning of “in” is twofold. Regarding the place-
ment of packet processing (a), we argue to process traffic
in SDN-enabled FEs, rather than in dedicated (virtualized)
middleboxes, if possible. Regarding the role of FEs in the
SDN paradigm (b), we argue to employ controllets directly on
them, effectively using the FE’s control plane as such, i.e., for
local control decision making, rather than as a mere interface
to a (centralized) remote controller, thus minimizing d, i.e.,
pushing controllets closer to the traffic they are affecting. Both
aspects are illustrated in Figure 2 which shows a virtualized
local controllet L; on a typical ASIC-based, OpenFlow-enabled
white-box switch S;.

Aspect (a) implies that traffic is processed mainly in S;’s
data plane (blue bottom-part) by the high-performance special-
purpose hardware processor (here: ASIC), based on rules
defined by the control plane ®. Hence, this is called “fast-
path” 0—@—0—@. Ideally, all InNFEP happens here.

The control logic @ of a local controllet L; that defines
the rules for (a) and is the main aspect of (b) runs in S;’s
control plane (yellow top-part) and is isolated by a virtualization

hypervisor (c.f. §IV-B). It is invoked @ either by data plane
events (e.g., ® PACKET_IN due to lack of a matching
rule @) or control plane events L; has subscribed for @
(e.g., topology changes or joining/leaving controllets). Control
logic® possibly involves consultation of remote controllets ®
(at neighbor switches L; or CM}) or querying/modification
of the local cache, which stores data of local scope as
well as cached/aggregated data of more global scope that is
relevant for local decision making (e.g., topology information
or global policies such as ACLs). Possible outcomes are rule
changes @, accompanied by packet egress @ if triggered by a
PACKET_IN event, the delegation of the triggering event for
remote processing ®, or firing of a control plane event ® (e.g.,
a change in topology due to a local link failure event).
Reconsidering the question of how powerful InFEP is,
our architecture in principle allows for the implementation of
arbitrarily complex NF by sending every packet to virtualized
FE-local controllets in the control plane. This would however
involve the traversal of two interfaces each adding latency:
ASIC+CPU, typically interconnected by a PCI-Express bus
using DMA [6] and OF-Agent<+ L; using OpenFlow over TCP
over a local loop-back network interface. Although the PCI-E
interface would provide sufficiently high throughput and low
latency, for protection of the control plane, which is also a main
motivation for using virtualization in InFEP in the first place,
switch vendors intentionally limit the packet throughput (rate
control) and latency on this interface. Hence, this is called
the “slow-path”. Furthermore, throughput of control plane
packet processing is limited due to limited, yet increasing

computing resources on a white-box switch’s control plane.

InFEPs rationale is on the one hand to mitigate the usage
of control plane resources by pushing as much processing as
possible to the fast-path, but on the other hand to protect the
control plane (cf. §IV-B) when the processing of packets or
events cannot happen in the data plane. In WAN scenarios with
high ds, i.e., high propagation latencies, this control scheme

still pays off for rather low-volume but time-sensitive traffic.

For data center networking we argue to restrict this scheme to
events of rather low frequency that invoke control decisions
rather than employing massive packet processing in the control
plane. Connection setup for long-lived flows (elephant flows)
and handling of link-failures or link-utilization change events
in fast-failover and adaptive link load balancing, respectively,
are major citizens for InFEP and described in [1].

B. Lightweight Virtualization

In our scheme, control logic is not as well-known and

thus not as predictable as in the black-box switch model.

Furthermore, increasing switch control plane power allows for
more compute-intensive or parallel controllets, which even if
triggered by rate-limited traffic may consume many resources,
possibly starving other processes. Thus, control over local

control logic has to be considered a crucial security aspect.

Control here consists of two aspects: a) implementing isolation
properties, to ensure data integrity by preventing access among
controllets, and b) enacting prioritization and fine-grained
resource control, to protect operation of individual controllets
and other essential control plane processes (Quality of Service).

In traditional virtualization, the emulation of resources

3 Abstracted from here. Detailed concrete examples can be found in [1].

provides isolation while their allocation to a VM depicts re-
source control. Two ways to counter virtualization costs (image
size, memory footprint, and boot time) have been evolving: 1)
stripping down the guest OS to a bare minimum, i.e., providing
just the functionality the virtualized application needs for its
operation (library OS / Unikernel) and 2) abandoning hardware
emulation and full OS virtualization in favor of using isolation
features of a shared kernel, providing multiple isolated user-
space instances (Container). NVF traditionally relies on VMs
(full virtualization or unikernels) but has started looking into
containers recently [7].

Unikernels thus naturally lend themselves to cloud comput-
ing and NFV where they have been gaining importance in the
recent years, as for instance with ClickOS [8], a “minimalistic,
virtualized operating system for network processing”. They
have a single address-space. Kernel and application are a single,
unified process. This eliminates the need for context-switches,
but also prevents usage of multi-processing, signals, dynamic
libraries, and virtual memory. Furthermore, application logic
has to be ported to a particular Unikernel framework. However,
Rump kernel [9] uses NetBSD’s kernel and libc. Thus, POSIX-
compliant applications obeying these restrictions are supported
without modifications. We show the performance of a state-of-
the-art SDN controller running as a rump kernel in Section VL.

In our scheme, the main goal of virtualization is to
protect the control plane from unintentional adverse behavior
of controllets which justifies to lessen isolation. Containers
allow for fine-grained control over the scope of isolation with
almost no additional overhead. They rely on namespaces, a
feature of the Linux kernel that isolates system resources,
e.g., user and process IDs, IPC, filesystems and networking,
of a set of processes whose resources are accounted using
the control groups (cgroups) kernel feature. Two well-known
implementations of containers are LXC and Docker. Beside
the kernel, which is necessarily shared among all containers, a
container configuration can share or isolate any combination of
namespaces. For instance, in the evaluations we show the impact
on performance of employing network namespace isolation.

C. Symbiosis of SDN & NFV

We have argued that InFEP can augment NFV. Reciprocitly,
we now briefly sketch how InFEP could benefit from an
integration into an NFVI, leaving the concrete implementation
for future work. Just like VNFs, InFEP containers or unikernels
have to be deployed (but onto switches) and being scaled as
needed. The NFVI offers efficient and holistic management
of the underlying virtualization infrastructure, VNF instance
management, and their orchestration. White-box switches
can be integrated into the NFVI as compute-virtualization
resources. Thus, also NFVI’s management and orchestration
(mano) functionality would be extended to switch-local network
logic. On the switch, a small NFVI adapter has to implement
corresponding NFVI reference points (Nf-Vi, Ve-Vnfin).

V. WHITE-BOX NETWORKING LANDSCAPE

Beside the aforementioned heterogeneity of white-box
hardware w.r.t. switch silicon (ASIC, NPU, FPGA) and control
plane architecture (x86, PowerPC, ARM), also the software
components exhibit function-critical heterogeneity. In this
section, we give a short introduction to the landscape of white-
box software and describe its implications on compatibility

with OpenFlow-based local control logic, requiring open
control plane access and OpenFlow support, as well as with
virtualization technologies, requiring a hypervisor (Unikernel,
VM) and namespaces/cgroups kernel support (container).

A typical white-box network operating system (NOS)
comprises the following components: 1) A base OS, typically
Debian with a Linux-kernel. 2) Components for accessing
platform hardware including the switch silicon, fans, LEDs, etc.
Access to the switch silicon is provided through drivers, which
are built against a typically proprietary silicon SDK. The top
layer of the driver offers an abstracted API for configuration of
the switch silicon hardware pipeline. The most relevant APIs
are Broadcom’s Open Network Switch Library (OpenNSL) and
OpenFlow Data Plane Abstraction (OF-DPA) as well as the
generic switch abstraction interface (SAI). 3) A forwarding
agent that interfaces with the driver to program the data
plane. Most prominent are: Indigo OpenFlow Agent (OF-DPA),
SnapRoute (OpenNSL, SAI), Facebook FBOSS (OpenNSL).

Prominent NOSes include a) Open Network Linux (ONL):
open-source (part of the Open Compute Project), broad selection
of silicon drivers and forwarding agents, b) Pica8 PicOS:
proprietary, based on Open vSwitch (OVS), and ¢) Cumulus
Linux: proprietary. All named have open control plane access,
however, just ONL and PicOS feature OpenFlow forwarding
agents. Although InFEP is not generally tied to a specific SDN
southbound protocol, we use OpenFlow in our implementation.
We thus focus on ONL and PicOS for the remainder of this
paper. On ONL we are able to run LXC, Docker, and gemu
with KVM-acceleration, whereas on PicOS, we are able to run
only gemu-KVM (which is officially supported).

VI. EVALUATION

In this section, we present the evaluation of InFEP. We
want to provide an overall impression of the performance of
control plane processing and control logic on a white-box switch
compared to remote controllers (typical SDN) and measure the
overhead imposed by virtualization technologies specifically
on white-box switches. Furthermore, we compare NOSes and
their underlying forwarding agents. Due to space constraints
we restrict the evaluation to control plane processing (InFEP
aspect (b)), while referring to evaluations of SDN data plane
performance (InFEP aspect (a)), specifically to [3] for the SDN-
based pub/sub middleware appliance.

The device under test is a typical top-of-rack white-box
switch Edge-Core AS5712-54X, whose hardware specification
is publicly available under the Open Compute Project. Its
control plane comprises an x86 Intel Atom CPU with 4 cores

AS5712-54X
8E 2s CONTROLLER I
2is BT Torec \ |
[o i EEEES 3 Trrrrrrrrrreres Corrrrro e =
-L) PKT{V prr_ouT QVS / OF-DPA exr_In P1$OUT
o
al | L | E’f J

t5 7x] l trx
HW Timestamping HW Timestamping
J | S—

Trrr Sender Reflector T,

Ho H;

Figure 3. Evaluation setup of measuring control plane processing latency
(Tproc) on a white-box switch using hardware-timestamping on end-hosts.

at 2.4 GHz, 8 GB RAM, and a 1 GbE NIC. Atop we run ONL
2.0 with a 3.16.39-LTS kernel and PicOS 2.8 with a 3.16.7
kernel. On the data plane, it features a Broadcom Trident II
ASIC with 48 x 10 GbE and 6 x 40 GbE ports.

We evaluate a set of SDN (OpenFlow 1.3) controllers:
NOX (noxI3oflib), our “Autonomous Forwarding Controllet”
(ZSDN) [1], both written in C++, and the Python-based Ryu.
While ZSDN is a full InFEP implementation (forwarding and
ACL), we use the other controllers to emulate the forwarding NF
through switch-local execution of a learning switch controller
module. We evaluate virtualization overhead of Docker as
well as rump kernels (rumprun) and full VMs (KVM), both
running on QEMU with KVM-acceleration enabled by the
Atom’s VT-x support. The baseline is bare-metal execution
(none). We omit LXC since it is technically equivalent to
Docker. Since NOX and ZSDN are relying on Digital Shared
Objects (DSO), we were not able to port them to rumprun.
Replacing DSOs would have been too intrusive.

Our methodology, illustrated in Figure 3, is as follows. We
run a combination of NOS, virtualization and controller on
the switch’s control plane. For the evaluation, we provoke that
every ingress packet in the data plane is processed in the control
plane. To this end, the controllers run learning switches, but do
not install flows. In the data plane, we connect two end-hosts
(Hy, Hy) with 10GbE links to the switch. H is sending packets
to H; where they are reflected back. Packet identity is ensured
through unique sequence numbers attached to the packets (as
sole payload). Both, egress (t7x) and ingress (fgy) times are
captured using hardware-timestamping. Thus we can calculate
the RTT at the sender (Trrr = t5rx —ts1x) and the time spent
for reflection at the reflector (T'ey = t,7x — t;zx) With high
precision. We acquire the (one-way) switch processing latency
as Tproc = /2% (T'rrr — Trepn). Transmission and propagation
delay are negligible.

As expected, packet throughput is limited. ONL caps at
lkpps with a low peak CPU utilization of the OF-DPA daemon
of 50% of one core. This shows that the rate limit is clearly
not caused by a CPU bottleneck. PicOS behaves differently.
For switch-ingress rates > 20kpps, we measure an egress-rate
of about 7kpps, while the OVS daemon consumes two cores.

For evaluating switch control plane processing latency
(Figure 4), we send with a rate of 100pps for 50s. Through
reflection, the effective packet rate (ingress rate at the switch) is
doubled. We begin with a comparison of controllers running
bare-metal on ONL or remotely (Xeon E5-1650v3, 6 cores at
3.50GHz, connected over 1GbE). Since the figures of nox13oflib
are within 3% of ZSDN, we combine them henceforth. Overall,
the python-based Ryu is expectedly performing worse than
its C++ counterparts. With 330 &= 75us, they are considerably
faster and deviate far less than Ryu with 17954-225us. Remote
execution is about 1.8 times slower with NOX/ZSDN, whereas
remote Ryu execution is surprisingly about 20% faster.

We find that Docker has the lowest virtualization overhead.
With full isolation of all but the network namespace, Docker
imposes almost no overhead for NOX/ZSDN. Latency and
its deviation, are within 1us to bare-metal execution. For
Ryu, about 80us are added to latency. Isolating the network
namespace (undepicted) incurs 110us additional latency.

Next, we measure the combined overhead of the hypervisor
and the guest OS of virtualization variants. Full virtualization
(KVM) adds large overhead. On average, 410us (factor 1.5)
incur for ONL and 820us (factor 1.8) for PicOS, both slower

c ZSDN / nox13oflib Ryu

o

5 o] ++._._. i ‘“*—'*E;— g| B

3 rumprun - o = ‘ remote
s KM e —— = : ‘ Docker
% none -—— 5 B -

5 rDeOn;E;er) -) g $ rumprun
2" ==Y il 2] B
> 250 500 750 1000 1250 1500 1000 1500 2000 2500 3000 3500 4000 4500

switch CP packet processing latency [us]

Figure 4. Processing latencies (x-axes: medians (bars), averages (diamonds)) of controllers (grid horizontal) running locally on network operating systems (grid
vertical) with varying isolation mechanisms (y-axis). Bare-metal (none) and remote execution are given as baselines. Whiskers enclose 95% of measured values.

than remote execution. Standard deviations are larger by factors
2 and 2.2, respectively. As guest network device, we are using
virtio, a pseudo-paravirtualized driver that runs within KVM.
Userspace network emulation (SLiRP) adds additional 410us.

Ryu as a Unikernel (rumprun) is showing much better
results. Compared to a full VM, latencies and deviations are
greatly reduced by 220us and 285us for ONL, and 310us and
190ps for PicOS. This is the result of the minimal guest OS and
hence reduced OS overhead. Compared to bare-metal/Docker,
factors of 1.2 and 1.5 for latency on ONL and PicOS are
promising. We find that the standard Linux bridge in use at least
partially accounts for the larger overhead. By using optimized
software bridges, like macvlan, VALE or OVS in combination
with SR-IOV (paravirtualization), latencies as small as 45us
[8] can be achieved—on server hardware, though.

Lastly, we evaluate the difference between the NOSes.
For all measurements, compared to ONL, PicOS adds quite
consistent latency of 200us on average for bare-metal and
remote, 420pus for NOX/ZSDN, and as high as 950us for
KVM and rumprun. Especially for higher packet rates, we
have observed instability of QEMU on PicOS. One source
of the discrepancy may lay in the forwarding agent. While
OF-DPA (used in ONL) tightly reflects the underlying switch
silicon hardware pipeline, which is quite restrictive, OVS (used
in PicOS) offers an abstracted and unrestricted multi-table
pipeline as per the OpenFlow 1.3 specification. Implementing
this mapping surely causes additional latency. It can be assumed
that this would account for a rather static offset, though.

We can conclude that containers provide isolation as needed
at minimal cost. We could verify and quantify the benefit of
reduced latency to be almost halved with containerized local
control logic, despite isolation. Note, that our scenario of a one-
hop switched 1GbE control network, is almost ideal, providing
a lower bound for switch control plane processing latency. For
larger distances or WAN scenarios, remote control latencies
are expected to be orders of magnitudes higher, even compared
to local yet sub-optimal virtualization variants.

VII. RELATED WORK

We now describe related work other than already mentioned.

OpenBox [5], an SDN-based framework for NFs supports
aspect (a) of InFEP, to employ SDN-switches as packet
processors in favor of middleboxes, however not its other aspect
(b), since OpenBox assumes a centralized controller.

E2 [10] proposes a framework for NFV applications,
strengthening the role of SDN in NFV management through
the unification of SDN and NFV in a single controller that
automates NF-placement and service interconnection (man-
agement and orchestration). For extended network processing
capabilities, they push richer programming abstractions into
the network layer, however relying on software switches.

Along that line, P4 [4] exploits extended semantics of
data plane processing, resulting in more expressive packet
processing, supporting InFEPs argument of in-data-plane pro-
cessing. However, control plane distribution (switch-local logic)
is not addressed.

VIII. SUMMARY & FUTURE WORK

In this paper, we have presented our concept of in-
forwarding-element processing (InFEP) and have discussed
its relation to middleboxing and NFV. We have implemented
isolation and resource control of switch-local control through
lightweight virtualization and shown its practicability and
performance on white-box networking hardware. Future work
includes porting an InFEP SDN controller to a Unikernel and
improving latency of the switch’s hypervisor network back-end.

REFERENCES

[1] T. Kohler, F. Diirr, and K. Rothermel, “ZeroSDN: A Highly Flexible
and Modular Architecture for Full-range Network Control Distribution,”
in 2017 ACM/IEEE Symposium on Architectures for Networking and
Communications Systems (ANCS). 1EEE Press, May 2017, pp. 25-37.

[2] H. Ballani, P. Costa, C. Gkantsidis, M. P. Grosvenor, T. Karagiannis,
L. Koromilas, and G. O’Shea, “Enabling End-Host Network Functions,”
in Proceedings of the 2015 ACM SIGCOMM Conference, ser. SIGCOMM
’15. New York, NY, USA: ACM, 2015, pp. 493-507.

[3] S. Bhowmik, M. A. Tariq, B. Koldehofe, F. Diirr, T. Kohler, and
K. Rothermel, “High Performance Publish/Subscribe Middleware in
Software-Defined Networks,” IEEE/ACM Transactions on Networking,
vol. PP, no. 99, pp. 1-16, 2017.

[4] P Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: Programming Protocol-independent Packet Processors,” SIGCOMM
Comput. Commun. Rev., vol. 44, no. 3, pp. 87-95, Jul. 2014.

[5] A. Bremler-Barr, Y. Harchol, and D. Hay, “OpenBox: A Software-
Defined Framework for Developing, Deploying, and Managing Network
Functions,” in Proceedings of the 2016 ACM SIGCOMM Conference,
ser. SIGCOMM ’16. New York, NY, USA: ACM, 2016, pp. 511-524.

[6] K. He, J. Khalid, A. Gember-Jacobson, S. Das, C. Prakash, A. Akella,
L. E. Li, and M. Thottan, “Measuring Control Plane Latency in
SDN-enabled Switches,” in Proceedings of the 1st ACM SIGCOMM
Symposium on Software Defined Networking Research, ser. SOSR ’15.
New York, NY, USA: ACM, 2015, pp. 25:1-25:6.

[7] R. Cziva, S. Jouet, K. J. S. White, and D. P. Pezaros, “Container-based
network function virtualization for software-defined networks,” in 2015
IEEE Symposium on Computers and Communication (ISCC), Jul. 2015.

[8] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bifulco,
and F. Huici, “ClickOS and the Art of Network Function Virtualization,”
in Proceedings of the 11th USENIX Conference on Networked Systems
Design and Implementation, Berkeley, CA, USA, 2014, pp. 459-473.

[9] A. Kantee and J. Cormack, “Rump kernels: No o0s? no problem!” in
;Login: USENIX Magazine, October 2014, Vol. 39, No. 5. USENIX.

[10] S. Palkar, C. Lan, S. Han, K. Jang, A. Panda, S. Ratnasamy, L. Rizzo, and
S. Shenker, “E2: A Framework for NFV Applications,” in Proceedings

of the 25th Symposium on Operating Systems Principles, ser. SOSP ’15.
New York, NY, USA: ACM, 2015, pp. 121-136.

