
An Adaptive Scaling Mechanism for Managing
Performance Variations in Network Functions

Virtualization: A Case Study in an NFV-based EPC
Carlos Hernán Tobar Arteaga∗, Fulvio Risso† and Oscar Mauricio Caicedo Rendon∗
†Department of Automatics and Informatics, Politecnico di Torino, e-mail: fulvio.risso@polito.it

∗Grupo de Ingenierı́a Telemática, Departamento de Telemática, Universidad del Cauca,
e-mail: {carlost, omcaicedo}@unicauca.edu.co

Abstract—The scaling is a fundamental task that allows ad-
dressing performance variations in Network Functions Virtu-
alization (NFV). In the literature, several approaches propose
scaling mechanisms that differ in the utilized technique (e.g.,
reactive, predictive and machine learning-based). The scaling in
NFV must be accurate both at the time and the number of
instances to be scaled, aiming at avoiding unnecessary procedures
of provisioning and releasing of resources; however, achieving a
high accuracy is a non-trivial task. In this paper, we propose
for NFV an adaptive scaling mechanism based on Q-Learning
and Gaussian Processes that are utilized by an agent to carry
out an improvement strategy of a scaling policy, and therefore,
to make better decisions for managing performance variations.
We evaluate our mechanism by simulations, in a case study in
a virtualized Evolved Packet Core, corroborating that it is more
accurate than approaches based on static threshold rules and
Q-Learning without a policy improvement strategy.

I. INTRODUCTION

The Network Functions Virtualization (NFV) enables to
dynamically modify the capacity of Network Services (NSs)
to face changes such as the number of users and performance
variations [1], [2]. NSs are end-to-end functionalities created
by composing Network Functions (NFs), virtualized or not [3].
The network performance allows assessing the quality of NSs;
it is quantified by measurable parameters (e.g., throughput
and delay) [4], and its variation is associated with changes
of underlying resources and the usage patterns of services and
applications [5], [6]. For instance, in an Evolved Packet Core
(EPC), a control entity sends and receives signaling messages
for a proper operation [7]. The performance of such an entity
can be measured in terms of the Mean Response Time (MRT)
that can vary depending on the number of requests to establish
sessions, update users location and perform handover [8].

The traditional solution to address performance variations
is to oversize the capacity of NFs [9], which means that these
are usually designed to support workload peaks. However,
oversizing is inefficient at time slots of low utilization. NFV
offers an alternative solution, the dynamic scaling of NFs that
allows managing performance variations and improving the
efficiency of using resources [10]. Scaling [11], the process
of modifying the capacity of NFs, can be performed by
increasing and reducing their resources (i.e., scaling up/down)
or creating and removing their instances (i.e., scaling out/in).
It is noteworthy that scaling can be initiated by administrators,

as an outcome of the network performance assessment, or by
the network itself by using adaptive mechanisms [12].

In the literature, several works have proposed NFV scaling
mechanisms by using different techniques. For instance, [13]
and [14] are based on threshold rules, a reactive technique,
in which the scaling depends on the current traffic or perfor-
mance, whose variations can lead to violations of a perfor-
mance target and transitory scaling oscillations. This problem
may be present also in solutions based on optimization, such
as [15], which takes scaling decisions based only on instant
traffic and it does not consider a prediction horizon to evaluate
them. [16] uses time series forecasting that, based on historical
data, enables to predict future resource usage; however, if there
are changes in traffic patterns, an evolutionary strategy would
be desirable, which would allow adapting the models to new
conditions. [17] is based on the Q-Learning method in which,
as other methods in Reinforcement Learning (RL), an agent
interacts with an environment and learns by trial and error;
this approach is adaptive but mistaken decisions may be taken
until the agent learns an optimal scaling policy.

Considering the above limitations, we argue that the scaling
in NFV should be adaptive and highly accurate to avoid
violations of expected levels of Quality of Service (QoS) and
transitory scaling oscillations. So, we consider that: (i) the
use of RL for scaling is a good option since learning evolves
whereas agents interact with their environment; and (ii) the
scaling policy of Q-Learning can be iteratively improved
before taking a final decision, and therefore the scaling could
be more accurate. Here, we propose for NFV an adaptive
scaling mechanism based on Q-Learning and Gaussian Pro-
cesses (GPs), which are utilized by an agent to carry out an
improvement strategy of a scaling policy, and therefore, to
make better decisions for handling performance variations.
By simulations, we evaluate our mechanism for managing
variations of MRT in an NFV-based EPC, corroborating it is
more accurate than approaches based on static threshold rules
and Q-Learning without the policy improvement strategy.

The rest of this paper is organized as follows. Section II
presents the related work. Section III introduces the proposed
mechanism in an NFV-based EPC. Section IV evaluates and
analyzes the behavior of our mechanism. And Section V
provides some conclusions and implications for future work.

978-3-901882-98-2 c© 2017 IFIP

II. RELATED WORK

In the NFV literature, several works have proposed scaling
mechanisms that use different techniques. [13] and [14] use the
technique of static threshold-based rules. Thresholds separate
three performance regions: poor, good and oversized. If perfor-
mance is in the good region no action is taken; if performance
crosses from good to poor, scaling up/out starts. On the other
hand, if performance crosses from good to oversized scaling
down/in starts. In this technique, performance could exceed a
target level at times that thresholds are crossed, which may
incur in violations of expected quality. Also, if performance
crosses consecutively thresholds, transitory scaling oscillations
may happen. These transitory changes occur because scaling
modifies the performance levels. Oscillations can lead to a
significant problem because each scaling decision triggers
procedures for provisioning or releasing resources.

[15] introduces optimization algorithms that minimize the
power consumption and the cost of instantiating new NFs.
These algorithms may also lead to violations of performance
target levels and oscillations, since these algorithms consider
only the current traffic and does not contemplate its prediction
to evaluate the scaling decision to take. [16] proposes a
mechanism that uses time series models for predicting CPU
usage, and so, schedules required resources. This approach
enables data efficiency, but it does not include an evolutionary
strategy that would allow adapting the models to changes
in the traffic patterns. [17] uses the Q-learning method that
learns by trial and error in an environment. Learning implies to
explore such an environment, and trying/erring means wrong
scaling decisions; although these erroneous decisions occur
just until the agent learns an optimal policy. We consider
that this behavior must be avoided due to the implications on
provisioning or releasing resources proper of each decision.

In summary, to face performance variations of NSs, the
scaling decision-making should be adaptive and highly accu-
rate to avoid performance violations, transitory oscillations,
and wrong decisions. Our solution addresses this problem
combining the Q-Learning method with GPs-based system
models. Using the system models, an RL agent can iteratively
improve its scaling policy, and therefore, to take more accurate
scaling decisions.

III. SCALING MECHANISM

A. A motivating scenario: NFV-based EPC
The current standard for 4th Generation (4G) mobile net-

works is the Long-Term Evolution (LTE), and its core is
EPC [7]. The main entities of EPC are the Mobility Man-
agement Entity (MME), the Home Subscriber Server (HSS),
the Serving Gateway (SGW) and the Packet Data Network
Gateway (PGW). MME is the control entity responsible for
signaling, mobility management of users, bearer management
and QoS provisioning. HSS stores the administrative and user
information utilized by MME. SGW and PGW compose the
EPC data plane, which is in charge of routing and forwarding
packets. For the proper EPC operation, SGW and PGW also
interact with MME.

eNB

vMME

SGW PGW PDN

S1-MME

S1-U

S11

S5/S8 SGi

FE

SL 1

SL N

SDBSL 2

MME SL instances

HSS

S6a

Fig. 1: Service Graph of an NFV-based EPC

From the Network Service Chaining (NSC) [18] point of
view, EPC is composed of two network services: an NS
for signaling (i.e., control plane) and other NS for packet
forwarding (i.e., data plane). Figure 1 depicts these NSs by
a Service Graph (SG) that follows the description proposed
in [19]. The nodes: eNB and PDN are Service Access Points
(SAPs) of SG. In particular, eNB is part of the access network
and represents the base stations from where the mobile users
are connected. In turn, PDN is any external data network like
the Internet. Note that continuous arrows are service links that
represent logical connectivity for the data plane, and dotted
arrows are service links for the control plane. Each link is
labeled with the protocol used. An SG is a directed graph
depicting only one direction of the flow. However, a reverse
chain is assumed since the communication is bidirectional.

In Figure 1, we consider a virtualized MME (vMME) [20]
that can scale by increasing or decreasing the number of
instances of its service logic, which enables to scale the control
plane of EPC. For example, EPC may have more demand
at evening than early morning depending on the number of
service requests from users and, so, it is needed scaling vMME
adaptively to improve the use of resources in the control
plane. The vMME is formed by three components: Front-End
(FE), MME Service Logic (SL) and State DataBase (SDB).
FE acts as the communication interface with other entities of
the network and balances the load among several MME SL
instances that are in charge of processing control messages.
SDB stores the user session state, hence enabling stateless
SL.

B. Adaptive Scaling Mechanism - Overview

Our mechanism aims at maintaining the MRT of the EPC
control plane less than a particular threshold (e.g., 1 ms
[20]). To satisfy such aim, the proposed mechanism can make
scaling-out/in of vMME. In this sense, we consider that the
infrastructure can instantiate up to K instances (e.g., K = 4)
of vMME, and measure the offered workload and MRT.

Our mechanism is based on RL [21], a sub-field of machine
learning, where an agent learns a decision-making process
by interacting with an environment. From Markov Decision
Processes [22], the agent and environment interact at discrete
time steps. At each time step t, the agent receives some

representation of the state of the environment, St ∈ S, where
S is the set of possible states. Based on St, the agent selects
an action, At ∈ A, where A is the set of available actions
in the state St. One step later, the agent receives a numerical
reward, Rt+1 ∈ R, and finds itself a new state, St+1.

Figure 2 depicts the RL process instantiated to our scaling
problem; the environment is the NS of signaling in EPC, the
states are pairs formed by the current number of instances
and performance, and actions refer to the number of available
instances. The steps, labeled as 1) observe the state, 2) take an
action, and 3) receive a reward, refer to a direct RL process
called Policy Evaluation Process, which means that the agent
interacts directly with the environment.

To calculate rewards, we consider the performance target
(e.g., MRT less than 1 ms) and the utilization factor ρ =
λ/(k · µ) < 1 [23] of vMME, where λ is the workload, k
is the number of instances and µ is the service rate of an
instance. ρ must be less than 1 to guarantee stability and
allows defining expected ranges of utilization to be supported
by vMME, which are k−1

k ≤ ρ < 1. Given these ranges, the
reward function is

R(k, λ) =

{
+1, tr < 1 ms ∧ k−1

k ≤ ρ < 1
−1, in other case

(1)

We use Q-Learning [24] as a method to perform RL. In
this method, to each pair state-action is assigned an action
value, which is the expected utility of carrying out an action
At when the agent is in the state St and follows the most
optimal policy. A policy is a rule for selecting actions. The
value function is represented by Q(St, At); and Q, implicitly
defines the current policy f :

ft(St) = a, such that Qt (St, At) = max
A
Qt(St, At) (2)

ft and Qt correspond to the policy and values of Q at time
t, respectively. That is, the current policy consists of choosing
the action with maximal estimated value. The agent, through
its experience, adjusts the values of Q according to:

Qt+1(St, At)← (1− α)Qt(St, At)+

α(Rt+1 + γmax
A
Qt(St+1, A))

(3)

where Rt+1 denotes the reward received at step t+1, α is the
learning factor (a small positive number) that allows the agent
to retain what has been learned, and 0 ≤ γ ≤ 1 is the discount
factor that determines the importance of future rewards.

For learning, the agent needs to explore the environment
and carry out the trial and error process; but, wrong actions
lead to unnecessary procedures of provisioning and releasing
of resources that must be avoided. It is here, where we use
the system models. In this sense, for instance, in the EPC
context, we consider the signaling workload as the input and
MRT as the output of a dynamic system that is modeled by
a regression function h. By observing these metrics, we train
h for predicting values of workload and use such predictions
to run hypothetical iterations of the RL process, which allows
getting the optimal policy before applying it to a particular

Scaling Policy: From the current number

of instances and performance, it decides

a new number of instances to maintain a

target performance

to improve the policy

Policy Improvement Process: it iterates

the RL process (to observe the state, take

an action and receive a reward) but

by using the system models

Receive a reward

Take an action:

Change the number

of instances

Observe the state:

(Number of instances,

performance)

vMME

SGW PGW

HSS

PDN

Performance Measurements

Network Service of Signaling

K Instances

eNB

RL Agent

Policy Evaluation Process

1

2
3

Fig. 2: Overview of the Adaptive Scaling Mechanism

NS. This is what we call Policy Improvement Process (see
Figure 2).

In summary, the agent runs two processes: the policy
improvement and the policy evaluation; the first one allows the
agent to foresee the results of its action, and the second one
is the current execution of the policy. If there is no variation
in the conditions of the NS (e.g., number the users), which
is reflected in the corresponding MRT, the agent probably
just needs one iteration (to observe, take action and receive
a reward) for improving its policy. But, if variations happen,
the agent will need more iterations in the policy improvement
to adapt to new conditions.

C. System Modeling

We consider a network service as a dynamic system. For this
system, we estimate a function h given data D: xi ∈ RD (in-
put) and yi = h(xi)+εi ∈ R (output); the term εi ∼ N (0, σ2

ε)
is independent Gaussian measurement noise, which considers
variations of yi in relation to the values of h. The estimation
of h refers to a regression problem that can be approached
by parametric and non-parametric models. Parametric models
impose a fixed structure on h which limits its representational
power. Non-parametric models allow determining the shape
of the underlying function h from the data and assumptions
about its smoothness. Note that the term non-parametric does
not imply models without parameters, but that the number of
parameters is flexible and grows with the sample size.

We use regression based on GPs [25] that combines non-
parametric models with Bayesian modeling and inference. A
GP is fully specified by a mean function mh(·) that describes

how the average function is expected to look, and a covariance
function which is also called a kernel

kh(x,x
′) = Eh[(h(x)−mh(x))(h(x

′)−mh(x
′))]

= covh[h(x), h(x
′)]

this function specifies the covariance between any two function
values. Here, Eh is the expected value with respect to the
function h.

We consider a Radial Basis Function (RBF) kernel [26] and
a mean function mh = 0. The RBF kernel, also known as the
squared exponential kernel, has the form

kh(x,x
′) = e−

‖x,x′‖2

2`2 (4)

where || · || represents the Euclidean norm and ` is the
characteristic length-scale, which is a hyper-parameter that
describes how smooth the function h is; a small length-scale
value means that values of h can change quickly, while a large
value characterizes h that changes slowly.

Considering h as a random function, Bayesian inference
allows inferring a posterior distribution p(h|D) over h from the
GP prior p(h), the data D and assumptions on the smoothness
of h. The posterior is used to predict h(x∗) values at arbitrary
inputs x∗ ∈ RD. Briefly, Bayesian inference has three steps:
(i) a prior on the unknown quantity has to be specified (in our
case, h), (ii) data are observed; and (iii) a posterior distribution
over h is computed that refines the prior by incorporating
evidence from the observations.

For instance, let’s consider data D of workload and
MRT, which are represented in vectors x, y ∈ R, respec-
tively: x = [1000, 1200, 4600, 6400, 8200, 10000]T , y =
[0.0001, 0.0002, 0.00015, 0.0002, 0.00035, 0.002]T ; x is mea-
sured in service requests per seconds and y in seconds.
Figure 3 (left) plots samples from the GP prior; the prior
uncertainty about h is constant (gray area) because there
no observations. After having observed six function values
(our data D) represented by small circles in Figure 3 (right),
samples from GP posterior depict that the uncertainty varies
and depends on the location of the training inputs. In this
example, we have chosen a length-scale ` of 3000, which
allows to have the smoothness of h in Figure 3.

2000 4000 6000 8000 10000
x

−2

−1

0

1

2

Prior of h(x)

2000 4000 6000 8000 10000
x

0.0000

0.0005

0.0010

0.0015

0.0020

Posterior of h(x)

Fig. 3: Prior and Posterior of h(x)

D. Scaling Processes

By using pseudo-codes, we detail the processes of policy
improvement and policy evaluation.

Algorithm 1: Policy Improvement
Data: GP-based system models, Q-Learning parameters

(e.g., γ and α), a reward function (e.g., see
Equation 1) and a learning threshold (e.g., εl)

Result: An improved value function (i.e., Q) which is
used by Algorithm 2

1 for each t do
2 Initialize a variable error to a value greater than εl;

this variable allows finishing this iterative process;
3 while error > εl do
4 Store Q before the RL process in previousQ;
5 Get the scaling action a using Equation (2);
6 Estimate St+1 using GPs-based system models;
7 Calculate the reward using Equation (1);
8 Update Q using Equation (3);
9 Replace St with St+1;

10 Store Q after the RL process in finalQ;
11 Calculate the error using the Mean Squared

Error (Equation 5);
12 end
13 end

The Mean Squared Error (MSE) mentioned in the previous
algorithm is given by

MSE =
1

N

N∑
i=1

e2i (5)

where ei = previousQ − finalQ is the error between the
value function before and after an iteration, and N is the
number of elements of Q.

Algorithm 2: Policy Evaluation
Data: An improved Q as result of Algorithm 1,

Q-Learning parameters (e.g., γ and α) and a
reward function (e.g., see Equation 1)

Result: A scaling-out/in action transferred to vMME
1 Since the agent receives its reward after that it takes

action; this algorithm runs in two steps;
2 for each t do
3 Measure and store the current state in St;
4 Get the scaling action a using Equation (2);
5 Modify the number of instances of vMME according

to the action a;
6 end
7 for each t+ 1 do
8 Measure and store the current state in St+1;
9 Calculated the reward using Equation (1);

10 Update Q using equation (3);
11 end

IV. EVALUATION AND ANALYSIS

By simulations, we evaluate the GPs-based system modeling
and the behavior of our scaling mechanism. Also, we compare
it with other ones: (i) based on static threshold rules, and (ii)
based on Q-Learning without system models for improving
the policy.

A. System Modeling

We generate a synthetic workload and gather data of MRT
from a simulated vMME. The synthetic workload is generated
using the expressions given in [27], which consider that traffic
in a mobile network exhibits a spatial-temporal pattern [28].
To measure MRT, we simulate the vMME of Figure 1 as a
queuing model. Simulations followed a discrete event process
implemented in Python [29]. As service rates, we use the
defined in [20]: 120.000 packets per second for FE, 10.167
control procedures per second for MME SL and 100.000
transactions per second for SDB. Also, we consider a vMME
composed by up to four SL instances; hence, four GPs-based
models are needed for building the regression models of the
vMME, one for each scaling configuration. We use scikit-
learn [30] for creating GPs, tuning their hyper-parameters and
performing predictions.

Figure 4 plots the signaling workload and some samples
of MRT gathered from the simulated vMME (one and four
instances for clarity), which are label as measured MRT. Also,
in Figure 4 we plot MRT estimated from the models. Note
that there is a good accuracy between measured and estimated
MRT, which is confirmed by quantifying the MSE of the
predictions (Equation 6): 8.6 · 10−7 for one SL instance and
5.0 · 10−7 for four SL instances.

MSE =
1

N

N∑
i=1

e2i (6)

where ei = measured MRT − estimated MRT is the
prediction error, and N is the number of samples.

B. Adaptive Scaling Behavior

We simulate an overall time of 24 hours, using as signaling
workload the total arrival rate of control messages of Figure
4. We simulate the vMME of Figure 1 as a queuing model,
and we use the GPs-based system models built previously. The
simulation followed a discrete-events process in which by each
time step the Policy Improvement (Algorithm 1) and Policy
Evaluation (Algorithm 2) were executed. The time step was 10
minutes, which allows achieving a right level of granularity.

In our simulations, γ is 0.8 because its value close to
1 allows both the agent to consider future rewards and the
expected reward can converge. In turn, α is 0.1 because this
small value enable the agent to retain the learning. A learning
threshold εl = 10−3 is a small enough difference between
Q before and after an iteration of the policy improvement
algorithm, which allows the loop to terminate.

Figure 5 presents the simulation results by plotting, in
different scales, MRT and the number of SL instances vs time.
These results reveal that MRT is smaller than its maximum

allowed value (1ms) all time, which corroborates the expected
accuracy of our mechanism to determine the correct number
of instances at the right time. The changes of the number
of SL instances are performed at 0:40 AM (from four to
three instances), 1:50 AM (from three to two instances), 3:10
AM (from two to one instance), 7:00 AM (from one to two
instances), 9:00 AM (from two to three instances) and 6:07
PM (from three to four instances).

Let’s review some internal details. Figure 6 illustrates the
operation of our scaling mechanism by plotting the number of
iterations per execution of the Policy Improvement (Algorithm
1). We can note that at the beginning, the policy improvement
algorithm performs 160 iterations, which enables to the agent
getting the initial policy. At times of change (0:40 AM, 1:50
AM, and so on), about 200 iterations are needed to improve
policy because we are on the border between two states, but
in the other times only one iteration is required. In summary,
we can affirm that our mechanism adapts to changes in the
environment and learns by using the GPs-based models. This
strategy allows applying scaling actions to vMME only when
the agent reaches an improved policy.

C. Comparisons

Figure 7 presents the behavior of a mechanism that uses
static threshold rules. For the shake of comparison, we use as
rules those defined in our reward function (Equation 1). Note
that this approach is accurate in the time to scale because of
its reactive characteristic, however, when variations cross the
thresholds several times, transitory oscillations happen, such as
the occurred close to 2:00 AM. Also, non performance target
compliances happen when a threshold is crossed. In short, our
mechanism is better than mechanisms based on static threshold
rules because it avoids transitory oscillations and violations of
the performance target.

Figure 8 depicts the behavior of a mechanism that uses
Q-Learning without system models for policy improvement.
We maintain the same conditions that in our mechanism,
this means, the parameters γ = 0.8 and α = 0.1. Note
that a decision to scale, from two to one SL instance, is
taken around 4:00 AM, fifty minutes after our mechanism;
this delay is caused by the small α value, which retains
the previous learning of Q-Learning. A similar situation is
observed between 7:00 AM and 9:00 AM. These delays cause
that MRT exceeds its maximum value (1 ms). Other point to
highlight is the transitory scaling oscillations that the agent
makes when the vMME needs to be scaled, such as at 3:00
AM and 4:00 AM. These oscillations are because the agent
tries wrong actions until it can achieve a good policy. In brief,
our scaling mechanism is better than the based on Q-Learning
without models for policy improvement. It is corroborated by
the time when the scaling happens, the correct number of
instances selected and the performance target compliance.

To sum up, our simulations confirm the expected accuracy
of our approach. At each time step, the Q-Learning agent uses
the system models for improving its scaling policy, and next,
taking the best action based on that improved policy.

0 2 4 6 8 10 12 14 16 18 20 22 24
Time of the day (hou s)

10−4

10−3

M
ea

n
 e

sp
on

se
 ti

m
e

(s
ec

on
ds

)

0

5000

10000

15000

20000

25000

30000

35000

40000

W
o

kl
oa

d
(c

on
t o

l m
es

sa
ge

s p
e

 se
co

nd
)

Total a iving ate of cont ol messages
Measu ed MRT fo one SL instance
Estimated MRT fo one SL instance
Measu ed MRT fo fou SL instances
Estimated MRT fo fou SL instances

Fig. 4: Data samples of Workload, and Measured and Estimated Mean Response Time

0 2 4 6 8 10 12 14 16 18 20 22 24
Time (hours)

10 4

10 3

M
ea
n
re
sp
on
se
 ti
m
e
(s
ec
on
ds
)

1

2

3

4

Nu
m
be
r o
f S
L
in
st
an
ce
s

MRT
Number of SL instances

Fig. 5: Our Mechanism (Q-Learning + System Models)

0 2 4 6 8 10 12 14 16 18 20 22 24
Time (hours)

1.0

44.4

87.8

131.2

174.6

218.0

Nu
m
be

r o
f i
te
ra
tio

ns

Number of iterations

Fig. 6: Number of Iterations in the Policy Improvement

0 2 4 6 8 10 12 14 16 18 20 22 24
Time (hours)

10 4

10 3

M
ea
n
re
sp
on
se
 ti
m
e
(s
ec
on
ds
)

1

2

3

4

Nu
m
be
r o
f S
L
in
st
an
ce
s

MRT
Number of SL instances

Fig. 7: Mechanism based on Static Threshold Rules

V. CONCLUSIONS AND FUTURE WORK

Network Functions Virtualization brings flexibility in de-
ploying Network Services, allowing these services can be

0 2 4 6 8 10 12 14 16 18 20 22 24
Time (hours)

10 4

10 3

M
ea
n
re
sp
on
se
 ti
m
e
(s
ec
on
ds
)

1

2

3

4

Nu
m
be
r o
f S
L
in
st
an
ce
s

MRT
Number of SL instances

Fig. 8: Mechanism based on Direct Q-Learning

scaled depending on their workload demand or performance
variations. In this paper, we have presented an adaptive
mechanism that learns a scaling policy for managing net-
work performance variations aiming at being accurate in
the time for scaling and the correct number of instances to
increase or decrease. The mechanism combines Q-Learning
with Gaussian Processes-based system models that allow it to
adapt to dynamic environments and improve its scaling policy
before taking any action. We corroborate by simulations that
our mechanism is more accurate than mechanisms based on
static threshold rules, which are widely used, and Q-Learning
without system models for improving its policy.

As future work, we will compare the GPs-based system
modeling with parametric and non-parametric models, all
applied to network performance modeling. Also, we intend
to deploy our mechanism in an emulated and real test envi-
ronment.

ACKNOWLEDGMENT

The authors would like to thank the University of Cauca
and the Administrative Department of Science, Technology
and Innovation (COLCIENCIAS) - Colombia for supporting
this research work through the PhD scholarship 527-2015 of
the student Carlos Hernán Tobar Arteaga.

REFERENCES

[1] ETSI-GS-NFV. (2013) Network functions virtualisation (nfv);
architectural framework. European Telecommunications Standards
Institute. [Online]. Available: http://www.etsi.org

[2] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee, “Network functions
virtualization: Challenges and opportunities for innovations,” IEEE
Communications Magazine, vol. 53, no. 2, pp. 90–97, February 2015.

[3] D. Bhamare, R. Jain, M. Samaka, and A. Erbad, “A survey on service
function chaining,” Journal of Network and Computer Applications,
vol. 75, pp. 138–155, November 2016.

[4] ITU-T-M800. (2008) Definitions of terms related to quality of service.
Telecommunication Standardiation Sector of ITU. [Online]. Available:
http://www.itu.int

[5] R. Shea, F. Wang, H. Wang, and J. Liu, “A deep investigation into
network performance in virtual machine based cloud environments,” in
IEEE Conference on Computer Communications (INFOCOM), Toronto,
ON, Canada, 2014, pp. 1285–1293.

[6] F. Callegati, W. Cerroni, C. Contoli, and G. Santandrea, “Performance of
network virtualization in cloud computing infrastructures: The openstack
case,” in IEEE 3rd International Conference on Cloud Networking
(CloudNet), Luxembourg, Luxembourg, 2014, pp. 132–137.

[7] 3GPP. (2011) 3gpp ts 23.401: General packet radio service (gprs)
enhancements for evolved universal terrestrial radio access network (e-
utran) access. 3rd Generation Partnership Project. [Online]. Available:
http://portal.3gpp.org

[8] A. Rajan et al., “Understanding the bottlenecks in virtualizing cellular
core network functions,” in IEEE International Workshop on Local and
Metropolitan Area Networks (LANMAN), Beijing, China, 2015.

[9] P. Heidari and A. Kanso, “Qos assurance through low level analysis of
resource utilization of the cloud applications,” in IEEE 9th International
Conference on Cloud Computing (CLOUD), San Francisco, CA, USA,
2016, pp. 228–235.

[10] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. D. Turck, and
R. Boutaba, “Network function virtualization, state-of-the-art and re-
search challenges,” IEEE Communications Surveys & Tutorials, vol. 18,
no. 1, pp. 236–262, Firstquarter 2016.

[11] ETSI-GS-NFV-MAN. (2014) Network functions virtualisation (nfv);
management and orchestration. European Telecommunications
Standards Institute. [Online]. Available: http://www.etsi.org

[12] ETSI-GS-AFI. (2013) Autonomic network engineering for the self-
managing future internet (afi); generic autonomic network architecture.
European Telecommunications Standards Institute. [Online]. Available:
http://www.etsi.org

[13] G. Carella, M. Pauls, L. Grebe, and T. Magedanz, “An extensible au-
toscaling engine (ae) for software-based network functions,” in Confer-
ence on Network Function Virtualization and Software Defined Networks
(NFV-SDN), Palo Alto, CA, USA, 2016.

[14] S. Dutta, T. Taleb, and A. Ksentini, “Qoe-aware elasticity support
in cloud-native 5g systems,” in IEEE International Conference on
Communications (ICC), Kuala Lumpur, Malaysia, 2016.

[15] X. Wang, C. Wu, F. Le, A. Liu, Z. Li, and F. Lau, “Online vnf scaling in
datacenters,” in IEEE 9th International Conference on Cloud Computing
(CLOUD), San Francisco, CA, USA, 2016, pp. 140–147.

[16] A. Bilal, T. Tarik, A. Vajda, and B. Miloud, “Dynamic cloud resource
scheduling in virtualized 5g mobile systems,” in IEEE Global Commu-
nications Conference (GLOBECOM), Washington, DC, USA, 2016.

[17] P. Tang, F. Li, W. Zhou, W. Hu, and L. Yang, “Efficient auto-scaling
approach in the telco cloud using self-learning algorithm,” in IEEE
Global Communications Conference (GLOBECOM), San Diego, CA,
USA, 2015.

[18] W. John et al., “Research directions in network service chaining,” in
IEEE SDN for Future Networks and Services (SDN4FNS), Trento, Italy,
2013.

[19] J. Garay, J. Matias, J. Unzilla, and E. Jacob, “Service description
in the nfv revolution:trends, challenges and a way forward,” IEEE
Communications Magazine, vol. 54, no. 3, pp. 68–74, March 2016.

[20] J. Prados-Garzon et al., “Modeling and dimensioning of a virtualized
mme for 5g mobile networks,” IEEE Transactions on Vehicular Tech-
nology, vol. 66, no. 5, pp. 4383–4395, May 2017.

[21] R. Sutton and A. Barto, Reinforcement learning: An introduction, MIT,
Ed., London, 2012.

[22] Mausam and A. Kolobov, Planning with Markov Decision Processes,
Morgan and Claypool, Eds., 2012.

[23] M. Zukerman, Introduction to Queueing Theory and Stochastic Teletraf-
fic Models, arXiv:1307.2968v14, Ed., 2016.

[24] C. Watkins, “Learning from delayed rewards,” 1989.
[25] M. P. Deisenroth, Efficient Reinforcement Learning using Gaussian

Processes, K. S. Publishing, Ed., 2010.
[26] M. Álvarez, L. Rosasco, and N. D. Lawrence, “Kernels for vector-valued

functions: A review,” Foundations and Trends in Machine Learning,
vol. 4, no. 3, pp. 195–266, April 2012.

[27] S. Wang, X. Zhang, J. Zhang, J. Feng, W. Wang, and K. Xin, “An ap-
proach for spatial-temporal traffic modeling in mobile cellular networks,”
in 27th International Teletraffic Congress (ITC27), Ghent, Belgium,
2015, pp. 203–209.

[28] F. Xu, Y. Li, H. Wang, P. Zhang, and D. Jin, “Understanding mobile
traffic patterns of large scale cellular towers in urban environment,”
IEEE/ACM Transactions on Networking, vol. 25, no. 2, pp. 1147–1161,
April 2017.

[29] Team-SimPy. Discrete event simulation for python. [Online]. Available:
http://simpy.readthedocs.io

[30] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vander-
plas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

