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Abstract— In the last years, traffic over wireless networks has
been increasing exponentially, due to the impact of Internet of
Things (IoT) and Smart Cities. Current networks must adapt
to and cope with the specific requirements of IoT applications
since resources can be requested on-demand simultaneously by
multiple devices on different locations. One of these requirements
is low latency, since even a small delay for an IoT application
such as health monitoring or emergency service can drastically
impact their performance. To deal with this limitation, the
Fog computing paradigm has been introduced, placing cloud
resources on the edges of the network to decrease the latency.
However, deciding which edge cloud location and which physical
hardware will be used to allocate a specific resource related
to an IoT application is not an easy task. Therefore, in this
paper, an Integer Linear Programming (ILP) formulation for the
IoT application service placement problem is proposed, which
considers multiple optimization objectives such as low latency
and energy efficiency. Solutions for the resource provisioning of
IoT applications within the scope of Antwerp’s City of Things
testbed have been obtained. The result of this work can serve as
a benchmark in future research related to placement issues of
IoT application services in Fog Computing environments since
the model approach is generic and applies to a wide range of
IoT use cases.

Index Terms—IoT, Centralized management, Orchestration,
ILP, Fog Computing

I. INTRODUCTION

In recent years, the Internet of Things (IoT) has introduced
a whole new set of challenges and opportunities by trans-
forming objects of everyday life in communicating devices
[1]. Moreover, with the advent of the IoT, the concept of
Smart City has become even more popular in the last few
years [2]. Smart City applications will transform a wide range
of services in different domains of urban life, for instance,
by creating intelligent smart grid networks, improving public
transportation, developing smart car parking and real-time
industrial automation applications and reducing traffic con-
gestion. Essentially, millions of devices will be connected to
the network, sending and receiving data to the cloud, which
current networks will not be able to support [3]. Therefore, it
is necessary to adapt existing cloud and network architectures
to future needs and design and develop new management
functionalities to help meet the strict requirements of future
Smart City IoT applications. Fog Computing extends the
Cloud Computing paradigm by bringing cloud services closer
to the end devices, thus reducing the communication latency
[4], [5]. However, there is still a large number of research

challenges associated with this approach since Fog Computing
is in its early stages and needs more time to evolve. One of
the main challenges is the proper resource allocation, since
services can be placed in a highly congested location, or
even further from the end devices, which would result in a
higher communication latency because current end devices and
gateways are lacking in terms of processing power, storage ca-
pacity and memory [6]. Moreover, few resource management
strategies are currently addressing the real-time constraints of
Smart City IoT applications while minimizing resource costs
and maximizing quality of service (QoS). Therefore, efficient
resource allocation strategies are needed in order to address
all these issues.

This paper presents an Integer Linear Programming (ILP)
formulation for the IoT application service placement problem
in order to evaluate resource provisioning in Smart City
scenarios. IoT applications have been considered as a set of
multiple communicating services, like applications designed
in Service-Oriented Architectures (SOA). SOA-based architec-
tures have been used in the last years for IoT [7], [8]. This way,
an IoT application can be designed as a coordinated work-
flow of multiple services which are associated with actions
performed by end devices. Research have been carried out to
solve the issues of abstracting end device functionalities, trying
to provide a suitable architecture with service management
and composition capabilities able to link a set of common
services in a set of IoT applications. This proposed architecture
is presented in Fig. 1. Each communicating service can be
provided by a Virtual Machine (VM) which may be used by
multiple tenants. In a Smart City scenario, when there is a
request for an IoT application, resources should be distributed
within the network ensuring that the services composing the
IoT application are allocated and instantiated close to the
end device that made the request. Multiple factors should be
taken into account to ensure proper resource allocation such
as latency, energy efficiency, bandwidth and cost.

The remainder of the paper is organized as follows. In the
next Section, related work is discussed. Section III introduces
the proposed ILP model for the resource provisioning of
IoT application services. In Section IV, evaluation scenario
is described which is followed by the evaluation results in
Section V. Finally, conclusions are presented in Section VI.

978-3-901882-98-2 © 2017 IFIP



Fig. 1: SOA-based architecture for IoT applications.

II. RELATED WORK

In recent years, studies have been carried out in order
to deal with application placement issues in IoT. In [9], a
model and an architecture have been introduced to deal with
resource provisioning in fog computing environments focusing
on the reduction of service latency for IoT applications. In
[10], a energy management strategy for a Fog Computing
platform is presented. Moreover, SmartSantander [11] worked
on a suitable architectural model for the IoT and the inherent
challenges of service provisioning in Smart Cities was in their
scope [12]. In [13], a resilient IoT architecture for Smart
Cities has been presented and in [14] the remaining issues of
integrating Cloud Computing and IoT are discussed, where the
integration was referred to as Cloud of Things. In [15], a novel
scheme for an energy efficient IoT based on Wireless Sensor
Networks (WSN) has been introduced focusing on WSN
characteristics. Cloud requirements have not been included on
the model.

In recent years, research efforts have been carried out
to overcome application placement issues mainly focused
on cloud environments where IoT or Smart Cities contexts
have not been considered. Many works focused only on the
allocation of virtual network functions (VNFs) or VMs on
clouds [16], [17]. However, recently in [18], a resource aware
placement algorithm of IoT applications in Fog Computing
environments has been presented focusing on latency, network
usage and energy consumption. Only static network topologies
have been evaluated and no wireless constraint has been
introduced. Nevertheless, a lot of challenges still remain to
fully address resource provisioning of Smart City IoT appli-
cations, since previous research does not take into account
requirements stemming from the characteristics of wireless
networks. This way, in this paper, a resource provisioning ILP
model is presented that goes beyond the current state-of-the-
art by taking into account not only cloud requirements but also
wireless constraints which were, to the best of our knowledge,
not yet explored in-depth in literature. The main advantage of

ILP is the flexibility to analyze complex problems as the IoT
application service issue presented in this paper. However, ILP
models can only be solved if there are clear linear relationships
between all the different variables.

III. THE ILP MODEL

A. Model Description

The resource provisioning model considers cloud and wire-
less characteristics. The cloud model is based on the previous
work done by Moens et al. [16] on network-aware placement
of service oriented applications in clouds. Regarding wireless
characteristics, an IEEE 802.11ah [19] Low-Power Wide-Area
Network (LPWAN) has been modeled as an ILP formulation.
An IoT application is composed of multiple communicating
services. End devices send requests for these IoT applications
through wireless gateways. These gateways communicate with
the fog-cloud infrastructure, managing a set of computational
resources. Each service must be allocated and instantiated on
a given set of computational resources, subject to multiple
constraints [16]:

• Computational resources have limited CPU and memory.
• Communication links between computational resources

have limited bandwidth.
• Gateways have limited association identifiers (AIDs) so

end devices can associate and send requests for IoT
applications.

• IoT application services cannot be instantiated on every
computational resource, due to specific hardware or soft-
ware requirements.

The work in [16] incorporates multiple optimization objec-
tives which have been extended to address the IoT application
placement problem identified in this paper. This way, the
model is executed iteratively so that in each iteration a
different optimization objective is considered. To retain the
objective values obtained in the previous iterations, additional
constraints are added to the model. Thus, the solution space
continuously decreases since iterations must satisfy the pre-
vious optimal solutions. Every iteration refines the previous
obtained solution by improving the model with an additional
optimization objective. The optimization objectives considered
in the model are the following:

1) Maximization of accepted IoT application requests.
2) Maximization of service bandwidth.
3) Minimization of service migrations between iterations.
4) Minimization of number of active comp. nodes.
5) Minimization of the number of active gateways.
6) Minimization of hop count between comp. nodes and end

devices.
7) Minimization of path loss.

Optimization objectives from 1) to 4) have been already
considered in [16]. The work has been extended with three
additional optimization objectives, from 5) to 7), which are
related with wireless formulations.



TABLE I: Input variables related to the cloud infrastructure

Symbol Description
Nc The set of comp. nodes on which services are executed.

Nf
The set of fog clouds on the network which manage the
comp. nodes.

A
The set of all IoT applications. Each IoT application is
composed of a set of communicating services.

S The set of all communicating services.
Ra The set containing all requests for an application a ε A.
Da The total number of requests for an application a ε A.
Ωn The total CPU capacity (in GHz) of the comp. node nεNc.
Γn The total memory capacity (in GB) of the comp. node nεNc.
ωs The CPU requirement (in GHz) of the service s ε S.
γs The memory requirement (in GB) of the service s ε S.

Rs,n

The Relation matrix. If Rs,n = 1, the communicating
service s can be allocated on node n. If Rs,n = 0, the
communicating service s cannot be instantiated on node n.

Ia,s

The Instance matrix. If Ia,s = 1, the communicating service
s is part of application a. If Ia,s = 0, the communicating
service s is not part of application a.

Bn1,n2

The Bandwidth matrix between comp. nodes indicates the
bandwidth (Mbit/s) available between the comp. node n1

and the comp. node n2.

Cn1,n2

The Communication matrix between comp. nodes indicates
the bandwidth (Mbit/s) required between services of an IoT
application.

Ef,l Ef,l = 1 indicates that fog cloud f is at location l.

En,f
En,f = 1 indicates that comp. node n is managed by fog
cloud f .

En,l En,l = 1 indicates that comp. node n is at location l.

TABLE II: Input variables related to the wireless dimensioning

Symbol Description
Ngw The set of wireless gateways on the network.
Ned The set of end devices on the network.

Red
A binary value that indicates if the end device ed sent a
request for an IoT application a ε A.

Θgw
The total association identifiers available on a gateway
gw ε Ngw .

θed
Each end device ed εNed needs an association identifier to
associate with a gateway.

L
Set of locations where IoT application requests are generated
by end devices.

Φa,r,ed
The Request matrix. If Φa,r,ed = 1, the end device ed
made the rth request of application a.

Hn,ed
The Hop Count matrix indicates the number of devices
between the comp. node n and the end device ed.

Dgw,ed
The Distance matrix indicates the distance (in meters) be-
tween a gateway and an end device.

PLgw,ed
The Path Loss matrix indicates the path loss (in dB) between
a gateway and an end device.

Aed,gw

The Association matrix. If Aed,gw = 1, the end device ed
can associate with the gateway gw. If Aed,gw = 0, the end
device ed cannot associate with the gateway gw.

Egw,l Egw,l = 1 indicates that gateway gw is at location l.
Eed,l Eed,l = 1 indicates that end device ed is at location l.

B. Variables

Input variables used in the model are shown in Table I and
in Table II while decision variables are shown in Table III.
All input variables related to the wireless dimensioning have
been added to previous work as well as four new variables
addressing cloud requirements (17 new variables, representing
57% of the total input variables alongside two new decision
variables for the wireless dimensioning). A set of applications
A composed of communicating services S are given. The
number of requests and the total number of requests for an

TABLE III: Decision variables of the ILP model

Symbol Description

Ga,r

The acceptance matrix. If Ga,r = 1, the rth request
of IoT application a can be accepted. IfGa,r = 0, the
rth request of IoT application a cannot be accepted.

Pa,r
s,n

The placement matrix. If Pa,r
s,n = 1, an instance of

service s is executed on comp. node n for the rth
request of IoT application a.

Us,n

The service execution matrix. If Us,n = 1, an
instance of service s is allocated on comp. node n.
If Us,n = 0, there is not an instance of service s
allocated on comp. node n.

Ued,gw
The end device execution matrix. If Ued,gw = 1, the
end device ed is associated with gateway gw.

Ugw

The gateway utilization matrix. Ugw = 1 indicates
that there is at least one end device associated with
gateway gw.

Un

The comp. node utilization matrix. Un = 1 indicates
that there is at least one service allocated on comp.
node n.

Fa,r
s1,s2 (n1, n2)

The flow matrix contains the bandwidth (in Mbit/s)
belonging to the rth request of IoT application a
that is used in the communication between services
s1 and s2 which are allocated on node n1 and n2,
respectively.

za,rs1,s2

The service bandwidth matrix contains the amount
of bandwidth for every flow in the communication
between services s1 and s2 for the rth request of
IoT application a.

application a ε A are given by Ra and Da respectively. A
binary request matrix Φa,r,ed indicates if an end device edεNed

made the rth request of application a. Also, a binary instance
matrix I indicates if a service s ε S is part of an application
a ε A. Each service s has a CPU and a memory requirement
represented by ωs (in GHz) and γs (in GB) respectively. The
communicating services must be allocated on computational
nodes (comp. nodes) n ε Nc. Each comp. node n has a CPU
and a memory capacity represented by Ωn (in GHz) and Γn

(in GB), respectively. A binary relation matrix R is used to
indicate if an instance of service s could be allocated on a
given comp. node n ε Nc. If Rs,n = 1, the communicating
service s can be allocated on node n. Otherwise, due to
software or hardware limitations, the service s cannot be
instantiated on node n. Moreover, a binary acceptance matrix
G is used to indicate if the rth request of application a can be
accepted. If Ga,r = 1, all the services that compose application
a are allocated on comp. nodes n ε Nc and therefore the rth
request of application a is accepted. A binary placement matrix
P is used to represent in which comp. node n an instance of
a service s is allocated. If P a,r

s,n = 1, an instance of service s
is executed on the comp. node n for the rth request of the IoT
application a. A set of locations L is used to define where IoT
applications requests are generated. Multiple binary matrices
E are considered to define in which location fog clouds f εNf ,
end devices ed ε Ned, gateways gw ε Ngw and comp. nodes
n εNc are on the network. One additional binary matrix E is
considered to indicate if a comp. node n is managed by a fog
cloud f .

Regarding wireless formulation, the total AIDs available
on a given gateway gw ε Ngw is given by Θgw. Each end



device ed ε Ned needs an AID to associate with a gateway
which is represented by θed. Moreover, a distance matrix D
indicates the distance (in meters) between a gateway gwεNgw

and an end device ed ε Ned while a path loss matrix PL
indicates the path loss (in dB) between a gateway gw ε Ngw

and an end device ed ε Ned. A Red binary variable indicates
if an end device ed sent requests for an IoT application.
If Red = 1, the end device ed sent a request for an IoT
application a ε A. Otherwise, Red = 0. An additional binary
association matrix A is used to indicate if an end device ed
can associate with a gateway gw. This association is based on
the distance matrix D. If Dgw,ed is less than one thousand
meters, the end device ed can associate with gateway gw
and then Aed,gw = 1. Otherwise, Aed,gw = 0. The limit
is set to one thousand meters because this is the maximum
coverage range in IEEE 802.11ah networks [20]. A hop count
matrix H indicates the number of devices between the comp.
node n and the end device ed. Moreover, additional decision
execution and utilization matrices U are considered. First,
service execution matrix Us,n and end device execution matrix
Ued,gw indicate if a service instance s is allocated on comp.
node n and if an end device ed is associated with the gateway
gw, respectively. Secondly, comp. node utilization matrix Un

and gateway utilization matrix Ugw indicate if there is at least
a service running on comp. node n and if there is at least an
end device associated with gateway gw, respectively.

Then, as mentioned by Moens et al. [16], a two-stage
approach has been considered to allocate the bandwidth be-
tween communication services s1 and s2 that are part of the
same IoT application request r. A bandwidth matrix B which
indicates the available bandwidth (in Mbit/s) between two
comp. nodes is considered. Moreover, a communication matrix
C is defined, where Cs1,s2 indicates the needed bandwidth
(in Mbit/s) between two communication services. The flow
bandwidth between two comp. nodes is defined by the flow
matrix F . Fa,r

s1,s2(n1, n2) contains the bandwidth (in Mbit/s)
belonging to the rth request of IoT application a that is used
in the communication between services s1 and s2 which are
allocated on node n1 and n2, respectively. Finally, za,rs1,s2 is a
decision variable that indicates the percentage of the requested
bandwidth between services s1 and s2 that is guaranteed for
the rth request of the IoT application a.

Each optimization objective is detailed bellow. The input
and decision variables included in the descriptions are all
related with novel variables.

C. Maximizing the Number of Accepted Requests - MAX R

The goal of this optimization is to maximize the number
of accepted requests on the network. This objective can be
represented as shown in (1). This optimization objective is
subjected to multiple constraints. Constraints presented in [16]
have been considered in the model, which has been extended
with additional ones related to the wireless formulation.

max
∑
a ε A

∑
r ε Ra

Ga,r ×

(∑
s ε S

Ia,s × ωs

)
(1)

In IEEE 802.11ah networks, end devices associate with
gateways through an AID, a unique value assigned to an
end device by the gateway during association handshake [21].
A gateway cannot have more than 8191 associated stations
according to the latest standard. However, the association
limitation has been set to 50 since an urban macro deployment
with extended range has been considered [21]. This way, with
this lower limitation, it has been assumed that good channel
conditions are always achieved and that all requests sent for
IoT applications can be accepted. Therefore, a constraint must
be added to the model ensuring that the AIDs limit in each
gateway is respected. This way, by using the end device
execution matrix U , the AIDs limitation can be expressed as
shown in (2). The total amount of AIDs attributed in a gateway
must be less than the total amount of AIDs available.

∀gw ε Ngw :
∑

ed ε Ned

θed × Ued,gw ≤ Θgw (2)

Secondly, a constraint is added to ensure that end devices
are associated with one gateway to be able to send requests
for IoT applications. This constraint is represented by (3).

∀ed ε Ned :
∑

gw ε Ngw

Ued,gw ×Aed,gw = 1 (3)

D. Maximizing the Satisfied Service Bandwidth Demand -
MAX SB

On the previous objective, an IoT application is allocated
on the network if at least 80% of the required bandwidth
is guaranteed. The goal of this optimization is to further
increase the allocated bandwidth, ensuring that the maximum
capacity available is allocated to the communicating services
that compose the IoT applications requested on the network.
This maximization is expressed in (4).

max
∑
a ε A

∑
r ε Ra

∑
s1,s2 ε S

za,rs1,s2 (4)

E. Minimizing Service Migrations On Subsequent Iterations -
MIN M

The goal of this optimization is to minimize service mi-
grations between subsequent iterations of the model. Since
the model is executed iteratively, the execution matrix from
the previous iteration U i−1 is added to the model, which is
used to compare with the current execution matrix U in order
to reduce the service migrations needed to achieve the next
optimization objective. Therefore, the minimization of service
migrations can be expressed as shown in (5). Services may
have to be migrated from one comp. node to another in order
to find the optimal solution. However, it might be preferable
to find a solution where service reallocations are minimized
so delay caused by reallocations is kept at a minimum.

min
∑
s ε S

∑
n ε Nc

| Us,n − U i−1
s,n | (5)



F. Minimizing the Number of Active Comp. Nodes - MIN Nc

The goal of this optimization is to minimize the number of
active comp. nodes in the cloud infrastructure, which results in
cost and energy savings. By using the comp. node utilization
decision variable Un, the minimization can be expressed as
shown in (6).

min
∑

n ε Nc

Un (6)

The binary decision variable Un is subject to additional
constraints, ensuring that it only takes on value 0 if there is
no communicating service allocated on that comp. node [16].
This constraint is expressed in (7).

∀n ε Nc :
∑
s ε S

Us,n ≤ Un× | S | (7)

G. Minimizing the Number of Active Gateways - MIN Ngw

The goal of this optimization is to minimize the number
of active gateways in the network. This minimization results
in an improved wireless resource efficiency as well as energy
and cost savings. Moreover, since gateways could be placed
in a sleep state it contributes to an interference reduction.
By using the gateway utilization decision variable Ugw, the
minimization can be expressed as shown in (8).

min
∑

gw ε Ngw

Ugw (8)

The binary decision variable Ugw is subject to additional
constraints, ensuring that it only takes on value 0 if there is
no end device sending requests for an IoT application through
that gateway. This constraint is expressed in (9).

∀gw ε Ngw :
∑

ed ε Ned

Ued,gw ×Red ≤
∑
a ε A

Da × Ugw (9)

H. Minimizing Hop Count Between Comp. Nodes and End
Devices - MIN H

This optimization objective is related to low latency in
the communication between comp. nodes where communi-
cating services that compose an IoT application are running
and the end device that requested the IoT application. This
optimization can be achieved by minimizing the hop count
between comp. nodes and end devices. This minimization can
be expressed as shown in (10) by using the Hop Count matrix
H and the placement matrix P .

min
∑

n,ed ε Nc,Ned

Hn,ed

×(
∑
a ε A

∑
r ε Ra

∑
s ε S

P a,r
s,n × Φa,r,ed) (10)

Fig. 2: Evaluation Scenarios.

I. Minimizing Path Loss - MIN PL

The objective of this optimization is to minimize the path
loss of the wireless communication links. The path loss matrix
PL is calculated based on the path loss formula for IEEE
802.11ah networks, when an urban macro deployment and
a central frequency (fc) of 900 MHz are considered. This
formulation can be expressed as in (11). The distance (in
meters) is given by the Distance matrix D, which indicates
the distance between end devices and gateways. This way, by
using the path loss matrix PL and the end device execution
matrix Ued,gw the minimization objective is given by (12).

PL(dB) = 8 + 37.6 log10(d) (11)

min
∑

gw,ed ε Ngw,Ned

PLgw,ed × Ued,gw (12)

IV. EVALUATION SCENARIOS

The evaluation scenarios are based on use cases within the
scope of Antwerp’s City of Things testbed [22]. A rectangle
area of 216 km2 similar to the area of Antwerp has been
considered. Gateways have been strategically placed covering
the entire area while minimizing interference due to low
coverage overlap between gateways. Two use cases have been
evaluated, a static and a dynamic scenario as shown in Fig. 2,
to demonstrate the wide applicability of the ILP model. It
should be noted that nine areas of 24 km2 are considered as
possible locations for fog resources.

A. Static Scenario

As a future use case, water level sensors will be installed
in sewers in the city of Antwerp. This use case is a static
scenario related to a Water Level IoT application, which is
decomposed in four communicating services:



TABLE IV: Input variables for each Scenario

Variables Static Dynamic
Ned 1000 100
A 1 1
S 4 3
Nc 45 45
Ngw 123 123
Nf 9 9

• API service responsible for receiving sensor data.
• Database service for storing information.
• Data processing service for information analysis.
• Monitoring service that supervises all other services.

B. Dynamic Scenario

As an initial proof of concept of the Antwerp’s City of
Things architecture, air quality sensors have been installed on
cars driving around the city of Antwerp [22]. These sensors
send measures of typical gasses and climate data such as
temperature and humidity, which are then annotated with
GPS locations. This use case is a dynamic scenario related
to an Air Quality IoT application, which is decomposed in
three services: an API service, a database service and a data
processing service.

C. Evaluation Setup

The ILP model presented has been implemented in Java
using the IBM ILOG CPLEX ILP solver [23]. Input variable
values for each scenario are presented in Table IV. Nine fog
clouds f ε Nf each one managing 5 comp. nodes n ε Nc

have been considered. Moreover, 1000 water level sensors
randomly distributed in the City of Antwerp were included
in the model for the static scenario while for the dynamic
scenario, 100 cars driving around the city were considered. In
the dynamic scenario, each car is driving at an average velocity
of 30km/h and each simulation occurs separated by 5 minutes.
Therefore, car positions have been changed 2.5 km between
simulations. A new x coordinate is randomly selected and then
by solving the quadratic equation two solutions for the new
y coordinate are obtained. Constraints have been included in
the model to make sure that the new calculated car positions
are inside the evaluation area. For both scenarios, the end
device ed which makes the rth request of an IoT application
is randomly selected from the set Ned. Every comp. node has
a CPU and a Memory capacity. The CPU capacity of a comp.
node n ε Nc represents the processing power per core times
the number of cores, which is randomly chosen from the set
{9, 12, 15, 18, 21GHz} while the memory capacity is chosen
from the set {6, 8, 10, 12, 14GB}. In the same way, the com-
municating services have a CPU and a Memory requirement
which are chosen from the sets {0.5, 0.7, 0.9, 1.1, 1.3 GHz}
and {0.5, 0.7, 0.9, 1.1, 1.3, 1.5GB}, respectively. Each comp.
node, gateway, end device and fog cloud has a given location
l εL associated. A location is one of the nine areas of 24 km2

previously explained in the Section IV. If the location l of a
comp. node n and a fog cloud f is the same, it means that
the comp. node n is managed by that fog cloud f since there

is only one fog cloud for each location l ε L. Moreover, (xy)
coordinate positions are randomly attributed to each end device
ed ε Ned while for each gateway gw ε Ngw, (xy) coordinate
positions are strategically attributed in order to cover the entire
evaluation area. Based on these (xy) coordinates, the distance
matrix D is calculated by the euclidean distance formula as
shown in (13).

D(gw, ed) =
√

(xgw − xed)2 + (ygw − yed)2 (13)

Then, the path loss matrix PL is calculated based on
the path loss formula for the IEEE 802.11ah previously
shown in (11) by using the calculated distance matrix values.
The communication matrix C is a random number between
[0.02, 0.04] which represents the bandwidth requirement (in
Mbit/s) between two communicating services, s1 and s2,
respectively. Moreover, the bandwidth matrix B is a ran-
dom number between [6, 14] which represents the available
bandwidth (in Mbit/s) between two comp. nodes, n1 and n2,
respectively. The hop count matrix H between comp. nodes
and end devices is a random number between [2, 3] if the
node n and the end device ed are on the same location l
or between [4, 8] if the node n and the end device ed are
on different locations, l1 and l2, respectively. Different sets of
model configurations for each scenario have been evaluated. In
each iteration of the model, a different optimization objective
has been considered. In Table V and Table VI, the model
configurations are shown. It should be highlighted that for
all model configurations first, the number of accepted IoT
application requests is maximized and then the satisfaction
of the service bandwidth is maximized, ensuring that the
communication requirements between application services are
guaranteed as well as possible. In Table V, model configu-
ration A corresponds to a wireless efficiency strategy, since
the final objective is the minimization of the number of active
gateways on the network. Secondly, model configuration B
is related to energy efficiency in the cloud infrastructure,
since the final goal of this configuration is the minimization
of power consumption of the comp. nodes. Finally, model
configuration C corresponds to a low latency strategy based on
the minimization of the hop count value between comp. nodes
and end devices. IoT application services are placed closer to
the end device when this model configuration is executed.

On the other hand, in Table VI, four additional model con-
figuration strategies are shown. Both D and E configurations
are composed of six optimization objectives. D prioritizes
low latency, while E prioritizes energy efficiency. Moreover,
both DM and EM configurations are composed of seven opti-
mization objectives since an additional optimization objective
is introduced between the 3rd and the 4th iteration of the
configurations D and E, related to the minimization of service
migrations on subsequent model iterations in order to reduce
delay from reallocating IoT services. All model configurations
have been evaluated 50 times and confidence intervals of 95%
have been considered in the evaluation.



TABLE V: Model Configurations for the Static Scenario

A - Wi-Fi Eff. B - Cloud Energy-Aware C - Latency
1 - MAX R 1 - MAX R 1 - MAX R
2 - MAX SB 2 - MAX SB 2 - MAX SB
3 - MIN Ngw 3 - MIN Nc 3 - MIN H

TABLE VI: Model Configurations for the Dynamic Scenario

D - Latency E - Energy Eff. DM - Latency EM - Energy Eff.
1 - MAX R 1 - MAX R 1 - MAX R 1 - MAX R
2 - MAX SB 2 - MAX SB 2 - MAX SB 2 - MAX SB
3 - MIN H 3 - MIN Nc 3 - MIN H 3 - MIN Nc

4 - MIN Nc 4 - MIN Ngw 4 - MIN M 4 - MIN M
5 - MIN Ngw 5 - MIN H 5 - MIN Nc 5 - MIN Ngw

6 - MIN PL 6 - MIN PL 6 - MIN Ngw 6 - MIN H
7 - MIN PL 7 - MIN PL

V. EVALUATION RESULTS

A. Static Scenario

The model configurations shown in Table V have been
evaluated for the static scenario presented in Section IV. In
Fig. 3, the execution speed of the model configurations is
shown. By increasing the number of requests, the execution
time of the model configurations increases. For 200 requests,
each model configuration requires on average at least 23
minutes to find the optimal solution. In Fig. 4, the ratio of
active gateways and the ratio of active comp. nodes for each
model configuration are illustrated. Regarding gateways, all
are active for configurations B and C since no optimization
objective is included regarding wireless efficiency. However,
for configuration A whose final objective is related to wireless
efficiency, the ratio of active gateways slightly increases with
the increase of requests in the network. Results show that
50% of the gateways are active for 140 requests and that
only for values above 220 requests, the ratio is higher than
60%. This configuration shows a higher wireless efficiency
when compared to the other configurations. On the other hand,
the ratio of active comp. nodes is 95% independent of the
number of requests for configurations A and C due to the
lack of an optimization objective regarding energy efficiency
in the cloud environment in both configurations. However, for
configuration B whose final objective is energy efficiency in
the cloud domain, for 20 requests only 9% of the comp. nodes
are active. Moreover, only for values above 180 requests, at
least 80% of the comp. nodes are active. In Fig. 5, the average
hop count between comp. nodes and end devices for each
model configuration is shown. Configuration C obtained lower
hop count values when compared to configurations A and B
due to the fact that the final objective of C is low latency.
C achieved slightly constant hop count values of 2.2 while A
and B achieved hop count values between 4.0 and 5.5, which
results in an increased latency since on average two more hops
are required. Moreover, it should be noted that the average hop
count decreases while requests increase due to the fact that
more comp. nodes are needed in these conditions and therefore
hop count decreases even if in the model configuration there
is no optimization objective related to latency.
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Fig. 3: Execution speed of the model configurations.
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Fig. 4: Gateway & Comp. Node Activity for each model
configuration.
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Fig. 5: Average Hop Count value for each model configuration.

B. Dynamic Scenario

The four model configurations shown in Table VI have been
evaluated using the dynamic scenario presented in Section IV.
In Fig. 6, the ratio of active comp. nodes for each model con-
figuration is shown. Configurations E and EM achieved the
same results. Therefore, minimizing migrations in subsequent
iterations of the model, when energy efficiency is more impor-
tant than low latency, does not alter the final solution. The ratio
of active comp. nodes is independent of the cars repositioning
and remains constant at 16%. However, configurations D and
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Fig. 8: Service migrations between 3rd and 4th objective.

DM obtained different results. For configuration D, where
service migrations are not taken into account average values
of 51% are obtained while for configuration DM where
service migrations are taken into consideration average values
of 88% are achieved. This way, energy consumption cannot
be further minimized when reallocations are considered, which
will contribute to a higher number of active comp. nodes as
it was observed.

In Fig. 7, the average hop count between comp. nodes and
end devices for each model configuration is shown. Config-
urations D and DM obtained the same results because the
minimization of hop count occurs earlier than the minimization

of service migrations and therefore there is no difference
in the achieved results for both configurations. Hop count
values of 2.25 are then obtained. However, configurations E
and EM achieved different results. Hop count values of 3.5
are obtained for model E while for model EM hop count
values of 4.0 are achieved. This is due to the fact that when
service reallocations are considered, latency cannot be further
minimized, which will contribute to an even higher hop count
as it was observed. In Fig. 8, the ratio of service migrations
for each model configuration is illustrated. Values of 0% for
configurations DM and EM are achieved while for D and
E, average values of 22% are obtained meaning that in order
to satisfy the optimal solution, 22% of the communicating
services must be reallocated. This way, if both low latency and
energy efficiency management strategies are considered, delay
caused by service reallocation should be taken into account in
the resource provisioning.

VI. CONCLUSION

In this paper, an ILP model for the resource provisioning of
IoT application services in Smart Cities has been presented.
In the last years, the need for resource management strate-
gies for Smart Cities is increasing due to the deployment
of IoT application use cases. Proper resource allocation is
required in order to minimize costs and maximize QoS. Our
model considers not only cloud infrastructure requirements but
also characteristics coming from wireless aspects in order to
deal with these challenges. The model is executed iteratively
since it optimizes multiple objectives, such as latency, service
migrations and energy efficiency. Obtained results show that
there is a clear trade-off between low latency and low energy
consumption. For an IoT application service with real-time
constraints low latency may be crucial and therefore a low hop
count value between the allocated service and the end device
must be achieved. However, another IoT application service
without real-time constraints could be allocated far from the
end device with the goal of minimizing energy consumption
since low latency is not important. The result of this work can
serve as a benchmark in research related to placement issues of
IoT application services in Fog environments since the model
approach is generic and applies to a wide range of IoT use
cases. As future work, the ILP model will be validated through
realistic evaluations based on real service deployments.
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