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Abstract—HTTP Adaptive Streaming (HAS) is becoming the
de-facto standard for video streaming services over the Internet.
In HAS, each video is segmented and stored in different qualities.
Rate adaptation heuristics, deployed at the client, allow the most
appropriate quality level to be dynamically requested based on
the current network conditions, in order to achieve a continuous
playout. Due to the ability of HAS protocols to dynamically
adapt to bandwidth fluctuations, they are especially suited for the
delivery of multimedia content in mobile environments. However,
current HAS solutions do not take the battery lifetime into
account, which is a typical issue for mobile devices. In this paper,
we therefore propose an energy-aware heuristic for HAS. We first
present a measurement study to identify and quantify the main
factors influencing the battery lifetime on mobile devices. We then
develop a heuristic based on these findings, which optimizes both
the quality of experience and the battery consumption of a video
streaming session. Particularly, we found that the video resolution
and display size have the highest impact on the battery lifetime
and that our energy-aware heuristic can prolong a streaming
session with up to 13%, compared to a standard HAS heuristic.
This result represents a consistent improvement for the overall
user experience on battery-constrained devices.

I. INTRODUCTION

Internet traffic is currently dominated by video streaming
applications [1]. Mobile devices represent an important way
of accessing video content over the Internet. Despite that, de-
livering an acceptable Quality of Experience (QoE) to mobile
users is still an open challenge, due to the limited resources
of mobile devices in terms of battery lifetime, processing
capabilities, and the highly fluctuating network conditions
typical of mobile environments.

HTTP Adaptive Streaming (HAS) represents the ideal can-
didate to deliver multimedia content to mobile devices, thanks
to the capability of adapting the video quality to the varying
bandwidth conditions. Examples of HAS implementations
are represented by Microsoft’s Smooth Streaming, Apple’s
HTTP Live Streaming, Adobe’s HTTP Dynamic Streaming
and Dynamic Adaptive Streaming over HTTP (MEPG-DASH).
In HAS, the video is stored at different quality levels and is
temporally segmented. The video client dynamically selects
the most appropriate quality level in order to accommodate
bandwidth variations and guarantee a continuous playback.

Despite the major advancements that occurred in recent
years, battery capabilities still represent a major performance
bottleneck for mobile devices. However, current HAS solutions
are only designed to optimize the video quality of a streaming

session, without keeping into account battery lifetime. In this
paper, we present a battery-aware rate adaptation heuristic for
HAS, which is able to find the best trade-off between video
quality and battery consumption. This heuristic allows to fully
optimize the final QoE experienced by a user.

The main contributions of this paper are twofold. First,
we present a measurement study conducted on a Samsung
Galaxy S4 to identify the main factors influencing the battery
consumption during a video streaming session and provide a
mathematical modelling of this influence. Second, we designed
a battery-aware heuristic based on the measurement results,
trying to find the optimal trade-off between video quality and
battery lifetime. This heuristic can be used on top of any
existing non battery-aware heuristic, to optimize its behavior.
Moreover, detailed evaluation results are presented to charac-
terize the gain of the proposed heuristic, under different video
streaming scenarios.

The remainder of this paper is structured as follows. Section
II presents related work on HAS and battery optimization.
Sections III and IV detail the preliminary measurement study
and the energy-aware heuristic, respectively. Section V reports
the main results while Section VI concludes the paper.

II. RELATED WORK

Akshabi et al. present an analysis of the performance and
drawbacks of some commercially available HAS heuristics,
such as Microsoft Smooth Streaming, Netflix and Adobe
players [2]. They show that current rate adaptation heuristics
perform quality selection sub-optimally. Particularly, these
heuristics fail to adapt to rapid bandwidth changes. As a result,
interruptions in the video play-out and unnecessary quality
switches occur. Similar conclusions are drawn by Müller et
al. based on tests of different HAS implementations using real
bandwidth traces collected on a mobile network [3].

Many adaptation heuristics have been proposed to alleviate
the problems highlighted in the previous paragraph [4]. Tian et
al. present a control theory-based HAS client where the buffer
filling level of the client is controlled [5]. Adzic et al. propose
to add additional information into the manifest file about the
objective quality of the video segments to enhance the rate
adaptation algorithm [6]. Riiser et al. use GPS information
to enhance the quality decision process of a client [7]. The
client can plan the download of the segments based on its GPS
coordinates and historical data on the available bandwidth.
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Zhang et al. analyze the battery consumption on mobile
devices streaming a video over 4G networks [8]. Their study
is meant to better design the streaming service, rather than on-
line optimize the battery consumption. Wei et al. leverage the
new server push feature of the HTTP/2 protocol to optimize
the number of segment requests issued by a client and reduce
battery consumption [9]. Trestian et al. show that battery can
be effetively saved by reducing the resolution of the video [10].
Go et al. propose a battery-aware heuristic pursuing an effec-
tive tradeoff between video quality and energy consumption
[11]. This heuristic requires the rate-distortion information for
each video segment, which should be included in the manifest
of the file. A similar approach is also followed by He et al.
[12]. In our work instead, no modifications are required to the
standard HAS architecture, as only the rate adaptation heuristic
of the client is modified. In previous work [13], we showed
that the encoding rate and segment duration have a negligible
impact on the battery lifetime. We extend in this paper these
measurements by providing a deeper evaluation of the different
factors influencing battery lifetime and designing a battery-
aware heuristic based on these measurements.

III. MEASUREMENT STUDY

In order to develop a battery-aware adaptation heuristic, we
first try to identify the most important factors influencing bat-
tery lifetime and their characteristics. Particularly, we analyze
the impact of the encoding rate, video resolution, display size
and segment length. For this purpose, several experiments have
been conducted on a Samsung Galaxy S4, connected via a
dedicated Wi-Fi network to an HAS Server implemented on a
Windows 10 laptop using MAMP 3.2.01. The streamed content
is The Swiss Account, a 1-hour long video, consisting of 17
quality levels ranging from 89 kbps to 3.9 Mbps and offered at
5 different video resolutions, from 320x240 to 1920x1080. The
video is also available at different segment durations, namely
1, 2, 6 and 15 seconds. For these experiments, the available
bandwidth is over-provisioned (i.e., it is always possible to
play the highest quality of the video) and the screen brightness
is set to the maximum. The ExoPlayer2 has been used as
DASH-compatible video player, as it is easy to extend and
customize. The low-level API provided by Android allows to
periodically monitor the battery percentage of the device and
study the battery depletion during the streaming session.

The results of these preliminary experiments show that
only the video resolution and display size have a meaningful
influence on the battery consumption. These results are in
accordance with our previous work [13], where we showed
that the segment duration and encoding rate have a negligible
influence on the battery. They entail that video decoding and
rendering account for the largest part of the battery draining.

Further experiments have been conducted to exactly deter-
mine the influence of the video resolution and display size on
the battery consumption. Particularly, we tried to determine
a mathematical relationship between the two aforementioned

1https://www.mamp.info/en/
2https://google.github.io/ExoPlayer
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Fig. 1: Video resolution shows a linear impact on battery
depletion. α represents the battery depletion (in %) per second.
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Fig. 2: The display size has a logarithmic impact on battery
depletion. α represents the battery depletion (in %) per second.

video characteristics and the battery depletion per second,
denoted as α. The results of these experiments are presented
in Figures 1 and 2. By varying the resolution of the video and
the display size, the number of pixels shown on the device’s
screen is varied. The x-axis shows the number of pixels in
resolution or display, while the value of α is presented on
the y-axis. The video resolution shows a linear influence on
the battery depletion (Figure 1), while the display size has a
logarithmic influence (Figure 2). Based on these findings, it is
possible to generate a formula to estimate the battery depletion
based on the resolution of the played video and the screen size
of the mobile device, given in the following:

α =
(
−73× 10−11PXres

)
×
(
−76× 10−11 logPXdisp

)
(1)

where PXres and PXdisp correspond to the amount of pixels in
the resolution and in the display, respectively. The coefficients
of Equation 1 have been found by solving the optimization
problem to minimize the error between the observed data and
the interpolation function. By using Equation 1, it is possible to
develop an energy-aware heuristic that adapts the video quality
based on the available bandwidth, the buffer filling level and
the battery depletion, which is described in Section IV.

IV. ENERGY-AWARE RATE ADAPTATION HEURISTIC

Our energy-aware heuristic builds upon the results presented
in the previous section. Its main aim is to find a trade-
off between video quality and battery depletion, while still
allowing a continuous play-out. The heuristic intervenes each
time a segment has been completely downloaded and before
requesting a new one. During the dynamic quality adaptation,
the heuristic computes two different possible qualities to
request, indicated with qualityQoE and qualitybattery. qualityQoE



can be computed using any existing non battery-aware heuris-
tic, taking into consideration the available bandwidth and the
buffer filling level only. Instead, qualitybattery is computed to
optimize the battery lifetime. The lowest of both quality levels
qualityQoE and qualitybattery is actually requested by the video
client, as it allows a continuous playout while optimizing the
battery duration. This approach has two advantages. First, the
proposed energy-aware heuristic can be deployed on top of any
existing HAS heuristic. Second, it is more robust in case the
battery status is not available or cannot be computed in real-
time, as the video client can keep on operating even without
any knowledge on qualitybattery. In this paper, qualityQoE is
computed using the rate adaptation heuristic provided by
the ExoPlayer itself. The operations performed to compute
qualitybattery are detailed in the following paragraph.

For each of the available quality levels of the video, the
algorithm computes an estimate of the α value, as shown
in Equation 1. This operation can be performed because the
heuristic knows the video resolutions from the manifest file
of the video and can obtain the screen size using the API
provided by Android. This calculation can be performed at the
beginning of the video, once the manifest file is retrieved and
parsed by the video player. During the playout of the video, the
algorithm computes a score for each of the available quality
levels, in order to find the trade-off between video quality and
battery lifetime. This trade-off is controlled using a parameter
β, which denotes the relative importance of the video quality
over the battery lifetime. Particularly, the score is computed
based on the following formula:

scoreql = β× gainQualityql
gainQualitymax

+(1− β)× lossBatteryql
lossBatterymax

(2)
gainQualityql corresponds to the relative gain in video

quality brought by quality ql, while lossBatteryql corresponds
to the relative increase in battery consumption, both compared
to the lowest available quality level, as shown in the following:

gainQualityql =
ql

qllowest
− 1 (3)

lossBatteryql = 1− αql

αlowest
(4)

In order to ensure a fair comparison between the video
quality and battery depletion, gainQualityql and lossBatteryql

are both normalized in Equation 2 with respect to their
highest absolute values gainQualitymax and lossBatterymax.
These values represents the relative gain and loss associated to
the highest available quality level. This normalization results
in gainQualityql varying between 0 and 1 and lossBatteryql

varying between -1 and 0. The quality associated with the
highest score is then selected as qualitybattery and compared
with qualityQoE to select the final quality to request.

An important parameter of the proposed algorithm is the
value of β. In this work, we choose to set β to the current
normalized battery level. This choice allows to dynamically
adjust the trade-off presented in Equation 2 based on the
battery condition. When the battery is almost full, more
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Fig. 3: The energy-aware heuristic can effectively reduce the
battery consumption. This result however comes to the cost of
video quality, especially when battery is almost depleted.

TABLE I: Characteristics of the HAS videos. The nominal
average bit-rate is reported (in Mbps), together with the video
resolution. The segment duration is fixed to 2 seconds.

The Swiss Red Bull Valkaama Tears of Elephant’s
Account Playstreets Steel Dream

0.09(320x240) 0.1(320x240) 0.04(320x240) 0.25(480x270) 0.04(320x240)
0.17(480x360) 0.2(480x360) 0.17(480x360) 0.5(640x360) 0.18(480x360)
0.43(854x480) 0.5(854x480) 0.43(854x480) 1.5(1280x720) 0.52(854x480)
1.3(1280x720) 1.5(1280x720) 0.81(1280x720) 3.0(1920x1080) 0.79(1280x720)

2.7(1920x1080) 3.0(1920x1080) 1.9(1440x1080) – 2.1(1920x1080)

importance will be given to the video quality. When the battery
starts depleting, the video quality starts being limited in order
to maximize the video session viewing time.

V. PERFORMANCE EVALUATION

In this section, we compare the performance of the proposed
energy-aware heuristic with that of a standard HAS heuristic
that does not take battery into account. Particularly, we use
the heuristic implemented in the ExoPlayer. We compare the
two solutions both in terms of battery consumption and video
quality, estimated using the Mean Opinion Score (MOS) as
reported by De Vriendt et al. and Claeys et al. [14], [15]. The
estimated MOS is computed as in Equation 5:

5.67× q

qmax
− 0.96× q̂

qmax
+ 0.17 (5)

where q and q̂ are the average and the standard deviation
of the requested video quality, respectively, and qmax is the
maximum quality. The experiments are performed with the
same setup described in Section III. In order to simulate
realistic mobile network conditions, we throttle the speed of
the Wi-Fi network connecting the server and the client. The
bandwidth profiles are obtained from measurements on a real
3G network in Norway [7].

Figure 3 shows the relative difference in performance be-
tween the energy-aware and the standard HAS heuristic, in
terms of gain in battery life and loss in video quality, for
different starting battery levels. For this experiment, we used
the first 30 minutes of The Swiss Account video in the 2 sec-
onds segment version, and limited the available quality levels
to the different resolutions. This choice allows us to assess
the real gain of the proposed algorithm. The characteristics of
the video are reported in Table I. At high battery levels, both
algorithms behave similarly. As the β parameter in Equation
2 is close to 1, more importance is given to the video quality.
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Fig. 4: In all streaming scenarios, the proposed algorithm can
save battery lifetime. Only for the Valkaama video, this comes
to the cost of a high quality loss.
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Fig. 5: In a full-battery depletion scenario, the proposed
algorithm is able to increase the viewing time of about 34
minutes (or 13%) compared to a standard HAS solution.

The difference in battery depletion increases for lower battery
levels, since the energy-aware heuristic aggressively reduces
the video quality, as shown by the loss in video quality.

In another set of experiments, we assessed the performance
of the energy-aware heuristic for different HAS videos. This
experiment allows us to validate the measurement study per-
formed in Section III on The Swiss Account video, for different
types of contents. Results are presented in Figure 4, where all
videos have a duration of 30 minutes and the initial battery
level is equal to 60%. For all videos, the proposed heuristic
is able to save between 7% and 12% of battery, with a loss
of about 20% in terms of video quality. For the Tears of
Steel video, the loss in video quality is low because only
four qualities are available, and the highest quality is barely
requested by both algorithms due to its high bit-rate (see Table
I). The Valkaama movie shows the worst performance in terms
of video quality. The highest video quality has a resolution
of 1440x1080 and a display size that is smaller compared
to the other videos. This condition entails that little to no
battery gain can be achieved by reducing the quality of only
one level. Consequently, the heuristic reduces the quality level
more aggressively, resulting in a high quality loss.

In a final experiment, The Swiss Account video has been
played in a loop till full depletion of the battery. Figure 5
reports the evolution of the battery over time, for the standard
HAS solution and the battery-aware heuristic. To demonstrate
the upper limit in terms of battery lifetime, the same test
has also been conducted by only playing the lowest available
quality. With the proposed solution, the video could be played
32 minutes longer (or 13.4%) compared to the non energy-

TABLE II: Results for the full-battery depletion scenario. The
table reports the average requested quality (from 1 to 5), its
standard deviation and the total viewing time.

Average
quality

Quality
standard deviation

Viewing
time [s]

Lowest quality only 1 0 20642
Standard HAS 4.45 0.64 14508

Battery-aware HAS 3.16 1.32 16450
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Fig. 6: The quality switching behavior of the energy-aware
heuristic depends not only on the available bandwidth but
also on the battery status. As the battery is depleting, lower
qualities are requested.

aware heuristic, with a loss in video quality of about 50%.
Compared to the lowest-quality only algorithm, our battery-
aware heuristic consumes 25% more battery, but results in 34%
gain in terms of video quality. These results are influenced
by the particular choice of the evolution of the β parameter,
described in Section IV. A different choice for β would lead
to a more aggressive or conservative adaptation for the energy-
aware heuristic. Table II reports the complete results for the
full-battery depletion scenario. The evolution of the requested
quality is shown in Figure 6, where it appears that the battery
status plays an important role in the quality decision process
of the client. When the battery is almost full, all the quality
levels are requested, depending on the network conditions.
When the bandwidth is getting depleted instead, the highest
downloadable quality is limited, in order to save resources.

VI. CONCLUSIONS

In this paper, we proposed an energy-aware rate adaptation
heuristic for mobile devices, which tries to find a trade-off
between video quality and battery lifetime. This heuristic is
based on a measurement study, which allowed us to identify
the main factors influencing the battery lifetime in a video
streaming session. Particularly, in the evaluated scenarios, only
the display size and video resolution resulted in a meaning-
ful influence on battery depletion. Based on these findings,
we showed that our energy-aware heuristic can consistently
increase the battery lifetime, by reducing video quality when
the battery is close to depletion. As an example, the proposed
algorithm can prolong viewing time up to 13% compared to
a standard HAS heuristic, with a video quality loss of about
50%. Future work will investigate how the overall users’ QoE
is impacted by these results. Future work will also include
new experiments considering alternative versions of operating
systems and device models, in order to confirm the findings
reported in this paper. Moreover, we will repeat the modelling
reported in Section III for 3G/4G networks.
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