
Boost Online Virtual Network Embedding:
Using Neural Networks for Admission Control

Andreas Blenk∗, Patrick Kalmbach∗, Patrick van der Smagt†‡, Wolfgang Kellerer∗
∗Chair of Communication Networks, Department of Electrical and Computer Engineering

Technical University of Munich, Germany
†fortiss, Associate Institute of Technical University of Munich, Germany

‡BRML, Department of Informatics, Technical University of Munich, Germany

Abstract—The allocation of physical resources to virtual net-
works, i.e., the virtual network embedding (VNE), is still an
on-going research field due to its problem complexity. While
many solutions for the online VNE problem exist, only few have
focused on methods that can be generally applied for optimization
of online embeddings. In this paper, we propose an admission
control based on a Recurrent Neural Network (RNN) to improve
the overall system performance for the online VNE problem.
Before running a VNE algorithm to embed a virtual network
request, the RNN predicts whether the request will be accepted
by the VNE algorithm based on the current state of the substrate
and the virtual network request (VNR). The RNN prevents
VNE algorithms from spending time on VNRs that are either
infeasible or that cannot be embedded in acceptable time. In
order to train and operate the RNN efficiently, we additionally
propose new representations for substrate networks and virtual
network requests. The representations are based on topological
and network resource features to represent the substrate net-
work and the VNRs with low computational complexity. Via
simulations, we show that our admission control reduces the
overall computational time for the online VNE problem by up
to 91% while preserving VNE performance on average. Using
our new substrate and request representations, the RNN achieves
an accuracy ranging between 89% and 98% for different VNE
algorithms, substrate sizes, and VNR arrival rates.

Index Terms—Virtual network embedding, mathematical opti-
mization, admission control, machine learning, neural networks

I. INTRODUCTION

Network virtualization plays an important role for future
communication networks such as 5G [1], [2]. With network
virtualization, end-service providers can request, use and con-
trol virtual networks (VNs) according to their service specific
demands. For instance, VNs can be used to dynamically
and flexibly interconnect virtual network functions [3]. VNs
are sliced out of the infrastructure and provide the needed
networking resources, i.e., network link and node capacity for
virtual network tenants. In order to operate virtualized infras-
tructures efficiently, infrastructure operators need to deploy
sophisticated resource allocation mechanisms. The allocation
of physical to virtual resources, also called the virtual network
embedding (VNE), is still an ongoing research area due to its
computational complexity [4].

Due to runtime and computational efficiency, infrastructure
operators mostly depend on heuristic embedding algorithms,
providing only sub-optimal solutions. In contrast, VNE al-
gorithms based on mathematical programming, e.g., mixed

integer programing (MIP), guarantee optimality [5], [6], [7].
However, optimal algorithms suffer the problem of exponen-
tially growing runtime for increasing problem sizes. Hence,
mechanisms are needed that are able to improve the runtime
efficiency in particular for the online VNE problem.

In the mathematical programming research area, on-going
studies investigate the potential of applying concepts from
machine learning (ML) in order to improve the performance
of algorithms and solvers for mathematical programming
formulations [8], [9], [10]. For instance, ML is used to learn
branching during optimization [9] or to detect the best solver
configurations for varying problem instances [10]. In this
paper, we use ML techniques to predict whether a problem
instance, i.e., virtual network request (VNR), will be accepted
by a VNE algorithm. In detail, we propose to exploit the
behavior of VNE algorithms. If faced with similar problem
instances, e.g., similar VNRs, the outputs of VNE algorithms,
i.e., accepted or rejected, are likely to be equal. We therefore
provide an admission control based on ML to predict the ac-
ceptance decisions of VNE algorithms. In detail, the admission
control uses a Recurrent Neural Network (RNN) to predict
the probability whether VNRs will be accepted by VNE
algorithms. The VNE algorithms only process those requests
that are accepted by the RNN. Hence, such admission control
improves the runtime of systems that face the online VNE
problem as VNE algorithms do not spend time on infeasible
VNR requests. This improves the computational efficiency as
it decreases the amount of needed computational resources.

It has already been shown that graph features and topo-
logical features can be used for heuristic-based VNE algo-
rithms [11], [12], [13], [14], [15], [16]. Those algorithms
use the knowledge that topological graph features of VNRs
show a high correlation with topological features of substrate
networks for efficient embeddings. In those embeddings, vir-
tual nodes are placed on substrate nodes with similar graph
features. In this work, we use graph features to provide a
compact representation of the substrate state and the VNRs.

Beside VNE, the application of graph features for classifi-
cation has already been successfully applied to data mining
tasks in chem-informatics and bioinformatics [17], [18]. For
substrate networks and virtual networks, we propose two rep-
resentations based on feature-vectors constructed from graph
as well as resource features (attributes) of the networks. One

978-3-901882-85-2 c© 2016 IFIP

representation for the substrate network and one representation
for the VNRs. The RNN-based admission control uses the new
representations as input in order to predict whether VNRs will
be accepted. More specifically, the RNN filters out VNRs that
are likely to be infeasible or not solvable in acceptable time,
given experience from previous runs. Thus, the admission
control reduces the computational time for the online VNE
problem while not increasing the cost of embedding networks.

We make the following main contributions:
• We initiate the study of using Artificial Neural Networks

(ANNs) in admission control for VNE algorithms.
• We present a novel procedure to improve the runtime

performance for the online VNE problem.
• We propose network representation models depending on

graph and resource features.
• We present and publish an RNN-based admission control

and a VNE simulator together with this paper [19].
Our simulations demonstrate that our admission control

based on an RNN works for two different VNE algorithms.
The admission control reduces the runtime of the online
VNE problem between 20% and 91% while even improving
embedding metrics, such as acceptance ratio, revenue, cost,
and revenue-cost-ratio in some cases on average.

II. RELATED WORK

We categorize the related work into two areas. The first
area classifies embedding algorithms according to the solution
techniques they rely on, i.e., mathematical programming or
heuristics. An overview and classification of VNE algorithms
is given in [4]. The second area classifies existing admission
control mechanisms that are based on Artificial Neural Net-
works (ANNs) and are deployed for resource management in
communication networks.

Exact solutions for VNE algorithms guarantee optimality,
i.e., the best possible solution for a given objective function.
However, as the VNE problem is NP-hard [4], exact solutions
suffer from exponentially growing runtime. Still, problem for-
mulations are proposed that can serve as baselines for heuristic
algorithms for small problem instances [5], [6], [7], [20].
Further VNE algorithms exist that solve only subproblems
via mathematical programming, for instance the path embed-
ding [21]. Other algorithms exist that use rounding techniques
to derive feasible solutions from Linear Programming (LP)
solutions [22].

Many heuristic solutions have proposed to take topological
attributes into account while solving the embedding. Those
solutions try to identify the importance of substrate nodes via
their graph or resource attributes [14]. Further, the importance
of nodes can be quantified via their hop distance [12]. Besides,
instead of taking only one or two node metrics into account,
node ranks are also done on multiple node characteristics [13],
[11]. Others apply techniques such as Markov Random Walks
or Markov Chains to rank nodes [15], [16]. Those techniques
try to order nodes with respect to the overall network state.

Admission control systems in VNE have been used to
postpone the embedding of VNRs [21] or for selecting VNRs

Admission
Control

VNE
Algorithm

reject reject

accept

Substrate

VNR

accept
&

embed

Substrate & embedded VNR

Fig. 1. Admission Control for a VNE Algorithm for online VNE.

that provide a high benefit, e.g., in terms of revenue [23],
[24], [25]. In communication networks, the use of ANNs
for admission control is not new. For instance, it has been
proposed in the context of ATM networks, cellular networks,
or multimedia wireless networks [26], [27], [28], [29], [30].
As an example, in case of ATM, an ANN was used to rapidly
decide whether a flow request might lead to network over-
utilization [30], [27], [26].

In this paper, we propose an admission control using an
RNN to improve the system runtime for the online VNE
problem. In contrast to the state-of-the-art, our admission
control has to classify graphs, i.e., VNRs, based on substrate
states, i.e., a changing graph. For this, we propose a network
representation based on topological and resource features.

III. AN ADMISSION CONTROL FOR ONLINE VIRTUAL
NETWORK EMBEDDING

A schematic view of our proposed system is shown in Fig-
ure 1. The system consists of two main blocks, the admission
control part and the VNE algorithm. In general, it is the goal of
the admission control to assess the chances for the successful
generation of a solution by the VNE algorithm. The admission
control classifies VNRs that arrive over time t. A VNR GVt
can be either infeasible, unsolvable in acceptable time (no
solution), or accepted. A VNR is classified as no solution if
a solver cannot find a feasible solution in time T . Note that
this does not imply that the VNR is generally infeasible. The
time constraint T allows our system to trade off embedding
quality and needed computational runtime.

The admission control uses an RNN to realize the clas-
sification. The input of the RNN needs to be compact and
independent of the size of substrates and VNRs. For this, the
functions φS and φV create feature vector representations of
substrate networks and VNRs, explained in Sec. V. Using
the VNR representations φV (G

V
t) and φS(G

S
t−1) as input,

the RNN filters VNRs. In case a VNR is classified as not
solvable in acceptable time (no solution) or infeasible, it
will be rejected. Otherwise, the VNR is forwarded to the
VNE algorithm for processing. We chose an RNN to capture
changing VNRs, which we want to analyze in future work.

In our online VNE system, the (computational) runtime
needed for one VNR is compound of the mathematical

model creation time (including the creation of φV (GVt) and
φS(G

S
t−1) and filtering for the RNN case) and the model

solving time. Note that the solving time is bounded by T .
The VNE algorithm tries to embed the VNR GVt on the

current substrate network GSt under a time constraint T . If
the VNE algorithm can actually embed the VNR in time T ,
the VNR is placed on the substrate. This transfers the substrate
network state GSt−1 into GSt . If the VNR cannot be embedded
as it is infeasible or no solution is found in T , the substrate
network state is not affected.

IV. VIRTUAL NETWORK EMBEDDING FORMULATION

In this section, we mathematically describe the online VNE
problem. For integrity, we also briefly describe four VNE
performance metrics, which are used in the results (Sec. VII).

A. Substrate Network

We denote an undirected graph GS := (N S , ES ,AS) as
a substrate network. N S describes the set of physical nodes
N S := {ni}ni=1 where n is the total number of network nodes.
ES is the set of physical edges with ES ⊆ NS × NS and
eSij = (nSi , n

S
j) denoting a physical edge. Similar to [21],

we denote by PS the set that contains all loop free paths
in the substrate network. A path pin ∈ PS consists of a set
of edges that connect nSi to nSn , i.e., ∀pin ∈ PS , pin :=
{eSij , eSjk, · · · , eSlm} ⊆ ES . Each element o ∈ N S ∪ ES is
associated with a set of attributes AS(o) := {aS1 , . . . , aSl },
where l specifies the type, e.g., CPU or bandwidth (bw). In
this paper, we consider CPU capacity for nodes and link
capacity (bandwidth) for edges as resource attributes. This
means ∀n ∈ NS : aSCPU ∈ AS(n) with CPU(n) ∈ R+

0

specifying the CPU of a substrate node and ∀e ∈ ES : aSbw
with bw(e) ∈ R+

0 giving the bandwidth of a substrate link.

B. Virtual Network Requests (VNRs)

We denote an undirected graph GV := (N V , EV ,AV)
as a VNR. N V contains all virtual nodes nVi of a VNR.
EV contains all edges with EV ⊆ N V × N V and eVij =
(nVi , n

V
j). For each virtual node or link o ∈ N V ∪ EV ,

the set AV := {aV1 , . . . , aVl } specifies its attributes. Again,
∀n ∈ N V : aVCPU ∈ A(n), CPU(n) gives the demanded CPU
of a virtual node. The demanded link bandwidth is given by
bw(e), i.e., ∀e ∈ EV : aVbw ∈ A(e). Each VNR has a given
lifetime following a pre-defined distribution. Further node and
link attributes being necessary for the network state model
proposed in this paper will be introduced in Sec. V.

C. Virtual Network Embedding and Performance Metrics

Online VNE algorithms map a VNR GV to a substrate
network GS . As VNRs arrive and leave over time, we will
use the subscript t to refer to a VNR and the substrate graph
at a certain time.

A mapping of a VNR GVt to the substrate GSt is only valid,
if all virtual nodes N V are allocated to a substrate node N S ,
and all virtual nodes are connected via their demanded edges
EV . All virtual node and link demands in GVt need to be

satisfied. For this, a node mapping fN and a link mapping fE
is defined [4]:

fN : (N V , aVCPU)→ (N S , aallocCPU) (1)

fE : (EV , aVbw)→ (PS , aallocbw) (2)

where aallocCPU and aallocbw are the allocated CPU and bw.
In order to get all virtual nodes that are mapped to a sub-

strate node and all virtual edges that are mapped to a substrate
link, we define the inverse mapping functions providing the set
of mapped virtual nodes or virtual edges

f−1N (nSi) := {nVj | fN : nVj → nSi } (3)

f−1E (eSij) := {eVkm | fE : eVkm → eSij} (4)

We define the residual CPU capacity 4CPU(n),∀n ∈ NS

and the residual bandwidth capacity 4bw(e),∀e ∈ ES as:

4CPU(nSi) := CPU(nSi)−
∑

nV
j ∈f

−1
N (nS

i)

CPU(nVj) (5)

4bw(eSij) := bw(eSij)−
∑

eVkm∈f
−1
E (eSij)

bw(eVkm) (6)

The following four metrics are used to quantify the quality
of the solution for the online VNE problem.

1) Acceptance Ratio: The acceptance ratio AR for a given
time interval T := [tstart, tend] is defined as

AR(T) := | Racc(T) |
| Rrej(T) ∪Racc(T) |

(7)

where Racc(T) is the set of accepted VNRs and Rrej(T) is
the set of rejected VNRs during T

2) Revenue: The revenue R(GV) of a VNR is given by

R(GV) :=
∑

nV
i ∈NV

CPU(nVi) +
∑

eVkm∈EV
bw(eVkm). (8)

3) Cost: The cost C (GV) of a VNR is defined as:

C (GV) :=
∑

nV
i ∈NV

CPU(nVi)+
∑

eVkm∈EV
| fE(eVkm) | ·bw(eVkm),

(9)
where | fE | provides the length of the physical path on which
a virtual edge has been mapped.

4) Revenue-Cost-Ratio: The revenue-cost-ratio RCR(GV)
of a VNR is defined as the fraction of its revenue R(GV) over
its cost C (GV)

RCR(GV) :=
R(GV)

C (GV)
. (10)

V. NETWORK REPRESENTATIONS AND RNN-BASED
ADMISSION CONTROL

In order to achieve an efficient admission control, compact
representations of substrate networks and virtual network
requests (VNRs) are needed. The representations sizes should
be independent of the number of nodes and edges. Thus,

TABLE I
GRAPH FEATURES

Graph Feature Computational Complexity
Average degree O(n+m)

Standard Deviation degree O(n+m)

Average clustering coefficient O(m2

n
)

Standard deviation clustering coefficient O(m2

n
)

Average effective eccentricity O(2n2 + nm)
Standard deviation effective eccentricity O(2n2 + nm)

Maximum effective eccentricity O(2n2 + nm)
Minimum effective eccentricity O(2n2 + nm)

Average Path length O(2n2 + nm)
Standard Deviation Path Length O(2n2 + nm)

Percentage of central points O(2n2 + nm)
Percentage of endpoints O(n+m)

Number of nodes O(n+m)
Number of edges O(n+m)

Spectral radius O(n3)
Second largest eigenvalue O(n3)

Energy O(n3)
Number of eigenvalues O(n3)

Label Entropy O(n)
Neighborhood Impurity O(ndmax)

Link Impurity O(n+m)

representations that simply consider a feature per node and
edge cannot be generalized and are not efficient.

As graphs are used in many disciplines, different methods
have been developed to use graphs together with ML concepts.
Examples of such applications are graph classification or
community detection. Graph kernels are one method for graph
classification. For graph kernels, a function k : G × G → R
is defined, where G is the set of all possible graphs for which
a mapping % : G → H into a Hilbert Space H exist, s.t.
k(G,G′) = 〈%(G), %(G′)〉, ∀G,G′ ∈ G [31]. Depending on
the kernel, the complexity is at best O(n3) [32], with n being
the number of nodes. Besides, the computation of a complete
kernel is even at least as complex as the graph isomorphism
problem, which is an NP-hard problem [31].

Another approach is the calculation of node, edge, and graph
features. The goal is to obtain a fixed length real valued feature
vector φ : G → Rn. When used for graph classification, the
approach potentially outperforms graph kernels [32]. Table I
summarizes all graph features and their complexity used in
this work. Although spectral properties have also a complexity
of O(n3) like graph kernels, efficient algorithms such as
power iteration exist that exploit special properties of the ad-
jacency matrix to calculate eigenvalues. Generally, algorithms
exist that efficiently solve eigenvalue problems in less than
O(n3) [33]. As our goals are the reduction of computational
overhead and a speedup in the embedding process, we use
graph features (see Table I) as presented in [32], [34] for our
network representations. In this way, our feature vectors are
independent of the number of nodes and edges of substrate
networks and VNRs.

A. Substrate Network Representation

Features for the substrate graph GS must allow the distinc-
tion of states in which a request can be embedded. Accord-
ingly, this demands in particular a representation that captures

the changing meta-distribution AS , i.e., the changing amount
of network resources of nodes and edges. To obtain a represen-
tation that captures the changes of the substrate network over
time, we consider the graph GS′ := (N S′, ES′) induced by the
embedded requests. Formally, ∀o ∈ NS ∪ ES : acm ∈ AS(o)
with acm ∈ N indicating the number of mapped virtual
nodes/edges respectively. Then N S′ := {nS ∈ NS | 0 <|
f−1N (nS) |} and ES′ := {eS ∈ ES | 0 <| f−1E (eS) |}. As
f−1E and f−1N change over time, we obtain a network with a
changing topology, for which we always recalculate all graph
features (see Table I) whenever the substrate network changes.

We additionally use eight resource features, which we refer
to as VNE-Features (VF) in the remainder. For resource fea-
tures, we additionally calculate three CPU features (free CPU,
occupied CPU, and total CPU), three bandwidth features (free
bw, occupied bw, and total bw) as well as two embedding
features (total number of currently embedded edges and total
number of currently embedded nodes).

We define the mapping φS(G) : G → Rn with
n = 29 and the resulting feature vector xS :=
(xGF1 , . . . , xGFi , xV Fi+1, . . . , x

V F
n). For proof of concept of our

admission control, we use all 21 graph features xGF1 , . . . , xGF21

and the eight VF features xV F22 , . . . , xV F29 . In this way, the
representation allows to distinguish different states of the
substrate and to capture the current resource distribution.

B. Virtual Network Request (VNR) Representation

Different models exist specifying the distribution of edges
in graphs [35]. The distribution of edges has an impact on the
embedding. For example [36] decomposes requests into stars
leveraging their topology to simplify the embedding problem.
Therefore the features extracted for graphs of requests must
allow a distinction between VNRs based on different models,
i.e., representations of similar graphs should be similar. For
graphs GV1 , GV2 and GV3 where EV1 , EV2 ∼ B(n, p1) and
EV3 ∼ B(n, p2) with p1 sufficiently different from p2 we thus
require that d

(
φ
(
GV1

)
, φ
(
GV2

))
≤ d

(
φ
(
GV1

)
, φ
(
GV3

))
'

d
(
φ
(
GV2

)
, φ
(
GV3

))
for some distance function d defined on

Rn.
Consider two VNRs GV1 and GV2 with the same total

number of nodes and the same amount of requested resources,
but different connectivity probabilities p, e.g., p1 < p2. The
substrate GSt is highly utilized but has enough spare resources
to accommodate one of the requests. We assume that the used
VNE algorithm has load balancing as objective. The spare
resources can then be expected to be distributed evenly on the
substrate graph. GV2 is then more likely to be accepted, as each
edge is expected to have less bandwidth demand as GV1 . I.e.,
it is harder to find physical edges that are able to accommodate
the edges of GV1 with higher bandwidth requests.

To obtain a compact representation, we performed a Princi-
pal Component Analysis (PCA) on a set of feature vectors
{θ(GV1),··· , θ(G

Vm)} consisting of all graph features. The
features are extracted from a set of graphs {GV1 ,··· , G

Vm}
generated according to different models. We select features
with high load factors, i.e., high coefficients in the linear

TABLE II
GRID SEARCH PARAMETERS. CHOSEN VALUES ARE PRINTED IN BOLD.

Parameter Values
Optimizer adam [37], RMSprop
Size of hidden layer 100, 200, 300
RMSprop step-rate 0.1, 0.01, 0.001
RMSprop momentum 0.3, 0.6, 0.7, 0.8, 0.9
RMSprop decay 0.3, 0.6, 0.7, 0.8, 0.9

transformation of the input data obtained via the PCA. The
selected features are number of nodes, spectral radius, maxi-
mum effective eccentricity, average neighbor degree, number
of eigenvalues, average path length and number of edges. They
allow the recovery of the models using Multinomial Linear
Regression with an accuracy of 99.0% and thus satisfy the
requirements on the representation stated above. The VNR
representation is then given by the mapping φV : G → Rn
with n = 7 and φV (G

V) = xV = (x1, . . . , x7) where xi
corresponds to one of the features listed above. A deeper
analysis of the feature selection is planned for future work.

C. Recurrent Neural Network (RNN)-based Admission Control

The input of the RNN is the vector x := (xS ,xV) =
(φS(G

S(t)), φV (G
V)), which is a combination of xS and xV

for the substrate and the request as defined in the previous
section. The RNN uses this vector to decide whether the VNR
will be accepted by the VNE algorithm. Formally, the RNN
learns the following mapping: c : Rn → z with z ∈ {0, 1}
where n = 36 (as the dimension of φS(G) is 29 and 7 for
φV (G)). For z, 0 represents reject and 1 accept.

On each VNR arrival, the RNN predicts y ∈ (0, 1) allowing
a direct probabilistic interpretation: P (z = 1) = y and P (z =
0) = 1 − y. This reflects how confident the RNN is for each
class. We take the class with the maximum probability, which
amounts to label a request as accepted if y > 0.5 and else as
rejected. The respective request is then either passed on to the
VNE algorithm or discarded.

The RNN has one hidden layer with 200 hidden units and
is trained using the RMSprop [38] optimizer implemented in
the publicly available climin [39] library. The parameters of
RMSprop are step-rate of 0.001, momentum of 0.7 and decay
of 0.9. The output transfer function is the sigmoid function
σ(x) = (1 + e−x)−1, the hidden transfer function is the
hyperbolic tangent function tanh(x) = (e2x − 1)(e2x + 1)−1,
the loss optimized on is the Bernoulli cross-entropy loss
L(c | y) = −z log(y)− (1−z) log(1−y), where z ∈ {0, 1} is
the class label and y the prediction. The RNN is implemented
in the publicly available breze library [40]. We used the class
SupervisedRNN from this library. We selected the values for
all parameters using grid search over the different sizes for
the hidden layer, different optimizers and different optimizer
settings as given in Table II. The chosen parameters, printed
in bold letters in Table II, achieved the highest accuracy on
the validation set.

VI. SIMULATION SETUP AND RNN SETUP

A. Simulation Setup

TABLE III
SIMULATION PARAMETERS

Parameter Values
Embedding Algorithm SDP, LB
CPU weight α and link weight β 0.5
Algorithm time constraint T 30 s,60 s,90 s
Substrate graph type Erdos-Renyi
Number of substrate nodes

∣∣NS
∣∣ 50, 75, 100

Substrate node capacity (CPU) Uniformly distr. ∼ U(50, 100)
Substrate edge connectivity prob. 0.1
Substrate edge capacity (bw) Uniformly distr. ∼ U(50, 100)
Virtual Network (VN) graph types Erdos-Renyi
Number of VN nodes NV Uniformly distributed ∼ U(5, 14)
VN node capacity demand (CPU) ∼ U(0, 50)
VN edge connectivity prob. 0.5
VN edge capacity (bw) Uniformly distributed ∼ U(0, 50)
VN lifetime Exponentially distr. with mean 1 000
VN arrival rate λ Exp. distr. with λ = 1

100
, 3
100

, 5
100

Gurobi CPU Cores 1
Gurobi Version Version 6.5.1

1) Virtual Network Embedding Algorithm Objectives: In
this paper, we evaluate two existing VNE algorithms [5],
namely Shortest Distance Path (SDP) and Load Balancing
(LB), briefly described in the following. Due to lack of space,
we omit a detailed listing of constraints and binary variables
and refer the reader to the original work [5].

a) Load Balancing (LB): The target of the load balancing
(LB) algorithm is to minimize the maximum load utilization
per physical resource. The cost function is

min
fN ,fE

{α · CPUmax(nSi) + β · bwmax(eSij)} (11)

where CPUmax(N S) is the maximum CPU utilization over all
substrate nodes and bwmax(ES) is the maximum utilization
over all substrate edges. For instance, for a node nS1 with
CPU(nS1) = 100 and a virtual node nV1 with CPU(nV1) = 50,
the resulting utilization would be CPU(nV

1)

CPU(nS
1)

= 0.5 or 50%. Two
weighting parameters α and β are used to trade off the load
cost per substrate node and substrate link.

b) Shortest Distance Path (SDP): SDP uses as few
physical edges for a valid VNE embedding as possible. The
algorithm always chooses substrate nodes and substrate links
with the highest available capacity. According to [5], this
algorithm targets scenarios with scarce substrate resources.
The cost function is

min
fN ,fE

{α· 1

4CPU(fN (nVi))
+β ·

∑
eSij∈fE(eVkm)

1

4bw(eSij)
} (12)

where α and β are used to trade off the CPU and bandwidth
cost. Over all possible assignments, the cost function choses
the node and link mapping that provides the minimal value.

2) Environment: For our online VNE setup, virtual network
requests (VNRs) arrive over time and need to be embedded on
a capacity-constrained substrate network. All parameters are
additionally shown in Table III. The topologies of substrate
networks and of VNRs are generated based on an Erdos-Renyi
model (Random Graph). We generate substrate topologies with
50, 75 and 100 number of nodes and an edge connection

probability of 0.1. Both substrate node capacities and edge
capacities, which are unitless, are uniformly distributed (uni.
distr.) between 50 and 100, i.e., U(50, 100). For VNRs, the
edge probability is 0.5, the number of nodes is uniformly
distributed (U(5, 14)), and node and edge capacity are also
uniformly distributed (U(50, 100)). The VNR requests ar-
rive with an exponentially distributed (exp. dstr.) arrival rate
λ = 1

100 ,
3

100 ,
5

100 and stay for an exp. dstr. lifetime with
mean 1 000. All chosen parameter settings in this paper are
in accordance with existing VNE research [41], [5], [42].

For each setup, i.e., for each combination of embedding
algorithm, algorithm time constraint T , number of substrate
nodes |N S |, and arrival rate λ, we perform simulation runs
with and without RNN until we have processed 5 000 requests.
We apply the batch-means approach to calculate the mean
values of all metrics used in the results per setup. We form
batches of 100 VNRs and calculate the confidence intervals
of the mean values of all batches per setup. For runtime, all
VNRs are considered per batch, while for revenue, cost, and
revenue-cost-ratio, only the accepted VNRs are considered.
The solver for the MIP problems is Gurobi version 6.51 [43].
A gurobi instance is restricted to one core to produce reliable
runtime results.

B. Recurrent Neural Network (RNN) Setup

The RNN used in this paper is trained offline, i.e., we apply
supervised learning. Accordingly, we describe the generation
of samples that are used for learning and the training procedure
in the following.

1) Sample Generation: To acquire the necessary training
data, we perform 10 simulations for the setups as described
in Table III and outlined in the previous section without the
admission control, i.e., the RNN. Each run contains 2 500
requests. For each arriving VNR GVt , we store the feature
vector xt together with the MIP solution (accepted, no solu-
tion, infeasible) and the time needed to create the model and
the time needed to solve the MIP problem.

2) Training of RNN: We train one RNN for each combi-
nation of number of substrate nodes, algorithm type, and T .
Note that one RNN is always trained for all λ values to prove
it can be used for different system utilizations. Thus, we train
18 RNNs in total. Note, we plan to analyze RNNs for larger
parameter combinations for future work. We use a corpus of
three setups combining all λ values to train one RNN model.
As a result, the corpus consists of 3 · 10 · 2 500 = 75 000
samples. In matrix notation we have X ∈ R75 000×36 where
each row in X is one feature vector xt.
60% of the samples are used as training set, 20% as valida-

tion set and 20% as test set. Every feature vector in training,
validation and test set is standardized using x′ = x−µtrain

σtrain
with

the mean µtrain and standard deviation σtrain calculated from
the training set. Each RNN is then trained for at least 30 000
iterations with patience of 5 000 iterations. Every 50 iterations,
the performance of the RNN is evaluated on the validation set.
If a new best loss has been achieved, the number of iterations
is extended about 5 000 iterations. Training terminates if no

TABLE IV
MODEL PERFORMANCE. ER50-SDP30 MEANS AN RNN TRAINED FOR

ERDOS-RENYI-BASED SUBSTRATE NETWORK WITH 50 NODES, SDP
ALGORITHM, AND T = 30 s.

RNN Model Accuracy [%] TPR [%] TNR [%] MV [%]
ER50-SDP30 92.70 86.57 95.35 69.86
ER50-SDP60 92.60 87.88 94.98 66.53
ER50-SDP90 92.91 89.71 94.59 65.61
ER75-SDP30 90.57 88.68 92.39 50.89
ER75-SDP60 90.52 91.88 89.16 50.03
ER75-SDP90 89.64 89.85 89.44 50.23
ER100-SDP30 90.61 92.36 87.85 61.26
ER100-SDP60 90.30 92.97 85.87 62.45
ER100-SDP90 90.15 91.82 87.31 62.91
ER50-LB30 97.77 92.30 98.78 84.38
ER50-LB60 98.02 92.88 99.01 83.93
ER50-LB90 97.68 92.33 98.68 84.17
ER75-LB30 96.24 88.98 98.29 77.97
ER75-LB60 96.34 90.10 98.03 78.62
ER75-LB90 96.22 89.10 98.17 78.46
ER100-LB30 94.21 87.52 96.70 72.87
ER100-LB60 93.48 86.39 96.26 71.79
ER100-LB90 92.86 87.61 94.89 72.01

new best validation loss is found when the maximum number
of iterations is reached. Using this technique, we ensure that
the RNN will find a good optimum but also keep the training
time low. We take the parameters for which the best validation
loss has been achieved and evaluate the model on the test set.

VII. RESULTS

We first inform on the performance of our RNN. Second,
we elaborate on the VNE results with respect to the metrics
as introduced in Sec. IV. Further, we show the results of the
runtime of the online VNE process with and without RNN.

A. RNN Performance Results

Table IV gives an overview of the classification performance
of the 18 RNNs. The accuracy gives ratio of correctly classi-
fied samples. The True Positive Rate (TPR) gives proportion
of correctly identified positive samples (accepted) and the
True Negative Rate (TNR) the proportion of correctly iden-
tified negative outcomes (infeasible, no solution). All models
achieve accuracies between 89% and 98% and are better than
the respective majority vote. The accuracies for LB are in
general higher than SDP. As can be seen from the majority
vote column, the datasets are often very skewed. The high
values for both TPR and TNR show how well the models learn
the mapping c. As the results are similar for different network
sizes (50, 75, 100), we will focus on substrate networks with
sizes of 100 in the next section.

Besides, note that we used y > 0.5 as threshold for our
RNN, however, other thresholds than 0.5 can also be chosen
to reflect different application scenarios. For example, in case
of abundant computational resources, one might want to use
a smaller value than 0.5, as this will lead to a higher TPR on
the cost of a lower TNR.

B. VNE Performance Results

Figs. 2a-b show the filtering behavior of SDP and LB
with and without RNN. The four colors represent the ratios

T
=

3
0
,λ

=
1

T
=

3
0
,R

N
N

,λ
=

1

T
=

6
0
,λ

=
1

T
=

6
0
,R

N
N

,λ
=

1

T
=

9
0
,λ

=
1

T
=

9
0
,R

N
N

,λ
=

1

T
=

3
0
,λ

=
3

T
=

3
0
,R

N
N

,λ
=

3

T
=

6
0
,λ

=
3

T
=

6
0
,R

N
N

,λ
=

3

T
=

9
0
,λ

=
3

T
=

9
0
,R

N
N

,λ
=

3

T
=

3
0
,λ

=
5

T
=

3
0
,R

N
N

,λ
=

5

T
=

6
0
,λ

=
5

T
=

6
0
,R

N
N

,λ
=

5

T
=

9
0
,λ

=
5

T
=

9
0
,R

N
N

,λ
=

5

0.0

0.2

0.4

0.6

0.8

1.0

R
a
ti

o
o
f

O
u
tc

o
m

e
s

Accepted

No Solution

Infeasible

Filtered

(a) SDP VNE Algorithm

T
=

3
0
,λ

=
1

T
=

3
0
,R

N
N

,λ
=

1

T
=

6
0
,λ

=
1

T
=

6
0
,R

N
N

,λ
=

1

T
=

9
0
,λ

=
1

T
=

9
0
,R

N
N

,λ
=

1

T
=

3
0
,λ

=
3

T
=

3
0
,R

N
N

,λ
=

3

T
=

6
0
,λ

=
3

T
=

6
0
,R

N
N

,λ
=

3

T
=

9
0
,λ

=
3

T
=

9
0
,R

N
N

,λ
=

3

T
=

3
0
,λ

=
5

T
=

3
0
,R

N
N

,λ
=

5

T
=

6
0
,λ

=
5

T
=

6
0
,R

N
N

,λ
=

5

T
=

9
0
,λ

=
5

T
=

9
0
,R

N
N

,λ
=

5

0.0

0.2

0.4

0.6

0.8

1.0

R
a
ti

o
o
f

O
u
tc

o
m

e
s

Accepted

No Solution

Infeasible

Filtered

(b) LB VNE Algorithm

Fig. 2. Comparison between both VNE algorithms with and without RNN. The four colors represent the ratios of accepted (blue), no solution (red), infeasible
(green), and filtered (purple) ratios of VNRs by the system, i.e., by the admission control and the VNE algorithm. Substrate network size: 100.

4.5

5.0

5.5

6.0

6.5

7.0

7.5

S
D

P
 -

 R
e
v
e
n
u
e

1e2

Without RNN

With RNN

T=
30

, λ
=
1

T=
60

, λ
=
1

T=
90

, λ
=
1

T=
30

, λ
=
3

T=
60

, λ
=
3

T=
90

, λ
=
3

T=
30

, λ
=
5

T=
60

, λ
=
5

T=
90

, λ
=
5

3.5

4.0

4.5

5.0

5.5

6.0

6.5

LB
 -

 R
e
v
e
n
u
e

1e2

Without RNN

With RNN

(a) Revenue R

0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2

S
D

P
 -

 C
o
st

1e3

Without RNN

With RNN

T=
30

, λ
=
1

T=
60

, λ
=
1

T=
90

, λ
=
1

T=
30

, λ
=
3

T=
60

, λ
=
3

T=
90

, λ
=
3

T=
30

, λ
=
5

T=
60

, λ
=
5

T=
90

, λ
=
5

2

3

4

5

6

7

LB
 -

 C
o
st

1e3

Without RNN

With RNN

(b) Cost C

0.55

0.60

0.65

0.70

0.75

0.80

S
D

P
 -

 R
C

R

Without RNN

With RNN

T=
30

, λ
=
1

T=
60

, λ
=
1

T=
90

, λ
=
1

T=
30

, λ
=
3

T=
60

, λ
=
3

T=
90

, λ
=
3

T=
30

, λ
=
5

T=
60

, λ
=
5

T=
90

, λ
=
5

0.10

0.15

0.20

0.25

0.30

LB
 -

 R
C

R

Without RNN

With RNN

(c) Revenue-cost-ratio RCR

Fig. 3. VNE metrics for substrate network size 100 and both VNE algorithms (SDP,LB). The graphs show mean values and their 95 % confidence intervals
over at least 10 batches. The run without RNN is indicated via orange circles and orange dashed lines. The run with RNN is indicated via blue triangles and
blue dashed lines. The dashed lines illustrate trend over different simulation settings. Note the scientific scaling of y-axis.

of accepted (blue), no solution (red), infeasible (green), and
filtered (purple) ratios of VNRs by the system, i.e., by the
admission control and the VNE algorithm. The results are
shown for all T = 30, 60, 90 and λ = 1, 3, 5 with and
without RNN. In general, the acceptance ratio (AR) of SDP
is higher than LB. The reason is that LB allocates more
VNR resources to bottleneck links, which leads to a higher
blocking. In contrast to LB, SDP always tries to prevent
allocating resources to bottleneck links. For increasing λ, the
RNN still achieves a high filtering ratio, i.e., it filters efficiently
infeasible or no solution VNRs. This is independent of the
ratio of infeasible to no solution VNRs, as the RNN recognizes
and filters them reliably for SDP and LB. In all cases, the
RNN slightly affects the overall acceptance ratio compared
to the case without RNN, i.e., it accepts 7.01% less (LB,
T = 60, λ = 5) or 2.37% more VNRs (SDP, T = 60, λ = 5),
which is due to TNR and TPR.

Fig. 3a-c show mean values and confidence intervals for

Revenue (R), Cost (C), and Revenue-cost-ratio (RCR). Sim-
ilar to AR, it can be observed that R and C are decreasing
for increasing λ. The reason is that with increasing λ, more
smaller VNRs are embedded, as the available resources are
generally scarce. For smaller networks, C decreases faster
than the revenue, which leads to an increasing RCR. In case
of SDP, the RNN rejects more larger networks (in terms of
number of nodes), which provide a lower RCR, thus the mean
values are slightly better. The mean values for LB, however,
are slightly worse with RNN. The reason is that generally less
networks are accepted, which are embedded with higher costs
due to LB’s objective to balance node and link utilizations. In
general, no statistical significant difference between all metrics
with and without RNN can be observed in our setups.

Fig. 4 shows the results of the mean runtime of batches
of 100 VNRs. For both algorithms, the RNN can lead to
a statistical significant runtime gain. However, for SDP, the
relative runtime gain is smaller than for LB. The reason is that

TABLE V
COMPARISON OF EMBEDDING METRICS. POSITIVE VALUES MEAN INCREASE, NEGATIVE VALUES MEAN DECREASE DUE TO USING RNN.

Algorithm T [s] λ ∆ Acceptance Ratio [%] ∆ Runtime [%] ∆ Revenue [%] ∆ Cost [%] ∆ Revenue-Cost-Ratio [%]
SDP 30 1 -1.28 -30.40 -1.75 -7.12 2.13
SDP 30 3 -0.38 -54.29 -0.98 -6.18 2.37
SDP 30 5 0.65 -53.39 -3.30 -10.46 3.78
SDP 60 1 -0.40 -29.33 -0.52 -4.10 1.62
SDP 60 3 1.06 -56.19 -0.56 -6.48 2.78
SDP 60 5 2.37 -47.49 -1.77 -6.89 2.00
SDP 90 1 -1.32 -20.34 -1.31 -6.31 1.80
SDP 90 3 0.67 -38.88 -1.42 -8.32 3.12
SDP 90 5 1.07 -50.14 -3.37 -11.70 4.22
LB 30 1 -5.11 -78.27 -3.37 1.95 -5.80
LB 30 3 -6.34 -84.00 -6.78 2.08 -8.97
LB 30 5 0.00 -85.94 -5.77 0.86 -11.83
LB 60 1 -5.12 -69.04 -2.99 2.94 -4.30
LB 60 3 -5.87 -85.09 -8.03 3.57 -10.00
LB 60 5 -7.01 -91.50 -4.66 8.26 -12.14
LB 90 1 -5.71 -70.18 -4.76 -1.36 0.71
LB 90 3 -6.52 -81.38 -6.49 2.51 -9.82
LB 90 5 -6.32 -85.82 -6.51 0.57 -6.63

0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8
2.0

S
D

P
 -

 T

1e4

Without RNN

With RNN

T=
30

, λ
=
1

T=
60

, λ
=
1

T=
90

, λ
=
1

T=
30

, λ
=
3

T=
60

, λ
=
3

T=
90

, λ
=
3

T=
30

, λ
=
5

T=
60

, λ
=
5

T=
90

, λ
=
5

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

LB
 -

 T

1e4

Without RNN

With RNN

Fig. 4. Mean runtime comparison. Batches contain 100 VNRs.

SDP generally accepts more VNE. Thus, more VNRs need to
be processed by the VNE algorithm. For LB, the RNN always
reduces the runtime by more than 69%. As the amount of
infeasible solutions is generally high for LB, the RNN saves
efficiently the processing time of the VNE algorithm.

Table V provides an overview over the relative perfor-
mance improvements. The performance values are computed
by dividing the performance over all runs with RNN through
the performance without RNN. While parameters such as λ
affect the absolute metrics, Table V shows that the relative
performance differences for the VNE metrics are generally
small. Note again, however, that the RNN has a more positive
effect on SDP (RCR improvement up to 4.22 %) than on LB
(RCR decreases by 12.14 %). We conclude that our admission
control saves significantly computational time while it does not
significantly diminish the VNE performance in particular for
a VNE algorithm that shows a high acceptance ratio.

VIII. CONCLUSIONS

Rapidly and efficiently solving the online virtual network
embedding (VNE) problem is inevitable in particular for next

generation networks. In this paper, we proposed an admission
control for the online VNE problem. The admission control
uses a Recurrent Neural Network (RNN) that classifies virtual
network requests based on newly developed network represen-
tations. Via simulations, we demonstrate that the RNN predicts
whether a request will be accepted by the VNE algorithm or
rejected, as the request is either infeasible or needs too long for
being efficiently processed. Our admission control reduces the
overall system runtime, thus improves calculation efficiency
for the online VNE problem. We demonstrate the ability to
learn from the history of algorithms, i.e., how they performed
over time, and how to use this knowledge for admission control
of future problem instances.

For future work, we would like to investigate the feature
selection in more detail. Further, we want to extend our
analysis to a wider range of VNE algorithms and different
embedding objectives, e.g., to accept only networks providing
a high revenue-cost-ratio. An online learning procedure is
also in our future research scope. Further, we want to focus
on systems that need to adapt, e.g., to changing networking
environments or dynamically changing virtual network de-
mands. Besides, we would like to investigate how our network
representations can be beneficial in other research areas, e.g.,
for Software-defined Networking (SDN) network hypervisor
placements [44], [45] or NFV function placements [3], where
virtual networks are an inevitable component.

ACKNOWLEDGMENT
This work has been performed in part in the framework of

the CELTIC EUREKA project SENDATE-PLANETS (Project
ID C2015/3-1) and is partly funded by the German BMBF
(Project ID 16KIS0473), and in part in the framework of the
EU project FlexNets funded by the European Research Coun-
cil under the European Unions Horizon 2020 research and
innovation program (grant agreement No 647158 - FlexNets).
The authors alone are responsible for the content of the paper.
Finally, we would like to thank all reviewers for their fruitful
comments.

REFERENCES

[1] N. Nikaein, E. Schiller, R. Favraud, K. Katsalis, D. Stavropoulos,
I. Alyafawi, Z. Zhao, T. Braun, and T. Korakis, “Network Store,” in
Proc. ACM MobiArch, Paris, France, 2015, pp. 8–13.

[2] N. Omnes, M. Bouillon, G. Fromentoux, and O. Grand, “A pro-
grammable and virtualized network & IT infrastructure for the internet of
things: How can NFV & SDN help for facing the upcoming challenges,”
in Proc. International Conference on Intelligence in Next Generation
Networks. IEEE, 2015, pp. 64–69.

[3] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck, and
R. Boutaba, “Network Function Virtualization: State-of-the-art and Re-
search Challenges,” IEEE Communications Surveys & Tutorials, vol. 18,
no. c, pp. 1–1, jan 2015.

[4] A. Fischer, J. F. Botero, M. T. Beck, H. de Meer, and X. Hesselbach,
“Virtual Network Embedding: A Survey,” IEEE Communications Sur-
veys & Tutorials, vol. 15, no. 4, pp. 1888–1906, jan 2013.

[5] M. Melo, S. Sargento, U. Killat, A. Timm-Giel, and J. Carapinha,
“Optimal Virtual Network Embedding: Node-Link Formulation,” IEEE
Transactions on Network and Service Management, vol. 10, no. 4, pp.
356–368, dec 2013.

[6] A. Blenk and W. Kellerer, “Traffic pattern based virtual network embed-
ding,” in Proc. of ACM CoNEXT Student Workshop, 2013, pp. 23–26.

[7] M. Rost, S. Schmid, and A. Feldmann, “It ’ s About Time : On Optimal
Virtual Network Embeddings under Temporal Flexibilities,” in Proc.
IEEE IPDPS, 2014, pp. 1–10.

[8] F. Hutter, H. H. Hoos, and K. Leyton-brown, “Automated Configuration
of Mixed Integer Programming Solvers,” Tech. Rep.

[9] E. B. Khalil, P. L. Bodic, L. Song, G. Nemhauser, and B. Dilkina,
“Learning to Branch in Mixed Integer Programming,” in Proc. AAAI,
2016.

[10] F. Hutter, H. H. Hoos, and K. Leyton-Brown, Integration of AI and OR
Techniques in Constraint Programming for Combinatorial Optimization
Problems: 7th International Conference, CPAIOR 2010, Bologna, Italy,
June 14-18, 2010. Proceedings. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2010, ch. Automated Configuration of Mixed Integer Pro-
gramming Solvers, pp. 186–202.

[11] M. Feng, J. Liao, J. Wang, S. Qing, and Q. Qi, “Topology-aware Virtual
Network Embedding based on multiple characteristics,” in Proc. IEEE
ICC, no. 61372120, jun 2014, pp. 2956–2962.

[12] J. Wang and J. Liao, “Topology-aware virtual network embedding
through bayesian network analysis,” in Proc. IEEE Globecom. IEEE,
dec 2012, pp. 2621–2627.

[13] M. Feng, L. Zhang, X. Zhu, J. Wang, Q. Qi, and J. Liao, “Topology-
aware virtual network embedding through the degree,” in National Doc-
toral Academic Forum on Information and Communications Technology.
Institution of Engineering and Technology, 2013, pp. 16–16.

[14] N. F. Butt, N. M. M. K. Chowdhury, and R. Boutaba, “Topology-
Awareness and Reoptimization Mechanism for Virtual Network Embed-
ding,” in Proc. IFIP Networking, 2010, pp. 27–39.

[15] X. Cheng, S. Su, Z. Zhang, H. Wang, F. Yang, Y. Luo, and J. Wang,
“Virtual network embedding through topology-aware node ranking,”
ACM SIGCOMM CCR, vol. 41, no. 2, p. 38, apr 2011.

[16] S. Zhang, Z. Qian, J. Wu, and S. Lu, “An Opportunistic Resource
Sharing and Topology-Aware mapping framework for virtual networks,”
in Proc. IEEE Infocom, no. i. IEEE, mar 2012, pp. 2408–2416.

[17] P. Mahé and J.-P. Vert, “Graph kernels based on tree patterns for
molecules,” Machine Learning, vol. 75, no. 1, pp. 3–35, apr 2009.

[18] C. Bilgin, C. Demir, C. Nagi, and B. Yener, “Cell-graph mining for
breast tissue modeling and classification,” in Proc. Annual International
Conference of the IEEE Engineering in Medicine and Biology Society,
Aug 2007, pp. 5311–5314.

[19] “cnsm-vne-simulator,” 2016. [Online]. Available: https://github.com/
tum-lkn/cnsm-vne-simulator

[20] I. Houidi, W. Louati, and D. Zeghlache, “Exact Multi-Objective Virtual
Network Embedding in Cloud Environments,” The Computer Journal,
2015.

[21] M. Yu, Y. Yi, J. Rexford, and M. Chiang, “Rethinking virtual network
embedding,” ACM SIGCOMM CCR, vol. 38, no. 2, p. 17, mar 2008.

[22] M. Chowdhury, M. R. Rahman, and R. Boutaba, “ViNEYard: Virtual
Network Embedding Algorithms With Coordinated Node and Link
Mapping,” IEEE/ACM Transactions on Networking, vol. 20, no. 1, pp.
206–219, feb 2012.

[23] G. Even, M. Medina, G. Schaffrath, and S. Schmid, “Competitive and
deterministic embeddings of virtual networks,” Theoretical Computer
Science, pp. 1–22, oct 2012.

[24] L. Gong, Y. Wen, Z. Zhu, and T. Lee, “Toward profit-seeking virtual
network embedding algorithm via global resource capacity,” in Proc.
IEEE Infocom. IEEE, apr 2014, pp. 1–9.

[25] D. Dietrich and P. Papadimitriou, “Policy-compliant virtual network
embedding,” in Proc. IFIP Networking Conference. IEEE, jun 2014,
pp. 1–9.

[26] D. Liu, Y. Zhang, and H. Zhang, “A self-learning call admission control
scheme for cdma cellular networks,” IEEE Transactions on Neural
Networks, vol. 16, no. 5, pp. 1219–1228, Sept 2005.

[27] H. Perros and K. Elsayed, “Call admission control schemes: a review,”
IEEE Communications Magazine, vol. 34, no. 11, pp. 82–91, 1996.

[28] C. W. Ahn and R. S. Ramakrishna, “Qos provisioning dynamic
connection-admission control for multimedia wireless networks using a
hopfield neural network,” IEEE Transactions on Vehicular Technology,
vol. 53, no. 1, pp. 106–117, Jan 2004.

[29] A. Hiramatsu, “Integration of atm call admission control and link
capacity control by distributed neural networks,” IEEE Journal on
Selected Areas in Communications, vol. 9, no. 7, pp. 1131–1138, Sep
1991.

[30] R.-G. Cheng and C.-J. Chang, “Neural-network connection-admission
control for ATM networks,” IEE Proceedings - Communications, vol.
144, no. 2, p. 93, 1997.

[31] T. Gärtner, P. Flach, and S. Wrobel, “On graph kernels: Hardness results
and efficient alternatives,” in Learning Theory and Kernel Machines.
Springer, 2003, pp. 129–143.

[32] G. Li, M. Semerci, B. Yener, and M. J. Zaki, “Effective graph classifi-
cation based on topological and label attributes,” Stat. Anal. Data Min.,
vol. 5, no. 4, pp. 265–283, Aug. 2012.

[33] G. H. Golub and H. A. van der Vorst, “Eigenvalue computation in the
20th century,” Journal of Computational and Applied Mathematics, vol.
123, no. 1-2, pp. 35–65, nov 2000.

[34] M. Berlingerio, D. Koutra, T. Eliassi-Rad, and C. Faloutsos, “Netsimile:
A scalable approach to size-independent network similarity,” CoRR, vol.
abs/1209.2684, 2012. [Online]. Available: http://arxiv.org/abs/1209.2684

[35] R. Albert and A.-L. Barabási, “Statistical mechanics of complex net-
works,” Rev. Mod. Phys., vol. 74, pp. 47–97, Jan 2002.

[36] Y. Zhu and M. H. Ammar, “Algorithms for Assigning Substrate Network
Resources to Virtual Network Components.” in Proc. IEEE Infocom, vol.
1200, 2006, pp. 1–12.

[37] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” CoRR, vol. abs/1412.6980, 2014. [Online]. Available:
http://arxiv.org/abs/1412.6980

[38] Tijmen Tieleman and Geoffrey Hinton, “Lecture 6.5-rmsprop: Divide
the gradient by a running average of its recent magnitude.”

[39] Justin Bayer, Christian Osendorfer, Sarah Diot-Girard, Thomas
Rueckstiess, and Sebastian Urban, “climin - A pythonic framework
for gradient-based function optimization,” TUM, Tech. Rep., 2015.
[Online]. Available: https://github.com/BRML/climin

[40] Justin Bayer, Christian Osendorfer, Max Karl, Maximilian Soelch,
and Sebastian Urban, “breze,” TUM. [Online]. Available: https:
//github.com/breze-no-salt/breze

[41] N. M. M. K. Chowdhury, M. R. Rahman, and R. Boutaba, “Virtual
Network Embedding with Coordinated Node and Link Mapping,” in
Proc. IEEE Infocom, apr 2009, pp. 783–791.

[42] M. R. Rahman and R. Boutaba, “SVNE: Survivable Virtual Network
Embedding Algorithms for Network Virtualization,” IEEE Transactions
on Network and Service Management, vol. 10, no. 2, pp. 105–118, Jun.
2013.

[43] I. Gurobi Optimization, “Gurobi optimizer reference manual,” 2015.
[Online]. Available: http://www.gurobi.com

[44] A. Blenk, A. Basta, M. Reisslein, and W. Kellerer, “Survey on network
virtualization hypervisors for Software Defined Networking,” IEEE
Communications Surveys & Tutorials, vol. 18, no. 1, pp. 655–685, Jan.
2016.

[45] A. Blenk, A. Basta, J. Zerwas, M. Reisslein, and W. Kellerer, “Control
plane latency with sdn network hypervisors: The cost of virtualization,”
IEEE Transactions on Network and Service Management, vol. PP, no. 99,
pp. 1–1, 2016.

