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Abstract—Predicting the performance of cloud services is
intrinsically hard. In this work, we pursue an approach based
upon statistical learning, whereby the behaviour of a system is
learned from observations. Specifically, our testbed implementa-
tion collects device statistics from a server cluster and uses a
regression method that accurately predicts, in real-time, client-
side service metrics for a video streaming service running on
the cluster. The method is service-agnostic in the sense that
it takes as input operating-systems statistics instead of service-
level metrics. We show that feature set reduction significantly
improves prediction accuracy in our case, while simultaneously
reducing model computation time. We also discuss design and
implementation of a real-time analytics engine, which processes
streams of device statistics and service metrics from testbed
sensors and produces model predictions through online learning.

Keywords—Quality of service, cloud computing, network ana-
lytics, statistical learning, machine learning.

I. INTRODUCTION

Next-generation telecom and internet services will execute
on telecom clouds, which combine the flexibility of today’s
computing clouds with the service quality of telecom systems.
Real-time service assurance will be critical for such environ-
ments, and real-time prediction of service-level metrics will be
a key capability to achieve service assurance.

Understanding and predicting the performance of telecom
cloud services is intrinsically hard. Such services involve large
and complex software systems that run on general-purpose
platforms and operating systems, which do not provide real-
time guarantees. One approach to understand the performance
of cloud services is to model the various layers of hardware
and software using analytical models and to develop an overall
model of the system for end-to-end predictions. Such an ap-
proach requires thorough understanding of the functionalities
of various components and their interactions, and the resulting
system model becomes highly complex.

An alternative approach, which we pursue in this work, is
based upon statistical learning, whereby the behaviour of the
target system is learned from observations. In such a case, a
large amount of observational data is needed, but no detailed
knowledge about the system components and their interactions
is required. The problem of predicting metrics in cloud and
network environments has been studied for some time, for
instance, for the purpose of predicting TCP throughput rates,

the probability of device failures, and the response times
of web applications [1]–[4]. Common to all these works is
that domain experts pre-select a small number (usually up
to a dozen) of observation variables, also called features, for
predicting a specific metric. Our approach is more general,
since it considers a large amount of general statistics (in the
thousands) and relies on feature selection through algorithmic
reduction.

In this work, features are drawn from the kernel statistics
of a server cluster that runs a video-on-demand service (VLC)
[5]. We apply statistical learning methods on device statistics
and service metrics in real-time, compute models that predict
service metrics, and evaluate the model accuracies. (Prediction
here relates to estimating service metrics for current times
based on current and past measurements.) The reported results
are based upon extensive experimentation, where we run the
video service under various load patterns on a laboratory
testbed.

This is the second paper with results from our investigation
into real-time prediction of service metrics. In [6], we studied
the problem of predicting service metrics from device statistics
for a video-on-demand service that runs on a single server.
We experimented with various regression methods, performing
batch learning on traces, and found that a random forest
model allows us to predict various service metrics within an
accuracy of 15% for a variety of load patterns. In this work,
the system under investigation is more complex, since the
video-on-demand service is provided by a server cluster with
dedicated components, and the objective is to predict service
metrics in real-time during the operation of the system.

We make two main contributions with this paper. First, we
identify a learning method that accurately predicts service met-
rics for a cluster-based video service. The method is service-
agnostic in the sense that it takes as input device statistics only,
and no service-specific metrics. We also show that feature-
set reduction significantly improves prediction accuracy in our
case, while simultaneously reducing model computation time.
We provide evaluation results in several steps towards real-
time prediction: batch learning on traces, online learning on
traces, and real-time learning on live statistics. Second, we
design and implement a real-time analytics engine, which
processes streams of device statistics and service metrics from
testbed sensors and produces model predictions through online
learning. This engine represents a key building block for an
automated-service-assurance system and serves as a powerful
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tool for exploratory model evaluation and demonstration pur-
poses.

The paper is organized as follows. Section II explains the
problem setting. Section III describes concepts from statistical
learning used in our work. Section IV discusses the specific
statistics and metrics for our work. Section V gives details
about the testbed and design and implementation of the real-
time analytics engine. Section VI describes the evaluation
of the model accuracies in several steps towards real-time
prediction. Section VII discusses related work. Section VIII
contains our conclusions and future work.

II. PROBLEM SETTING

Figure 1 shows the system under investigation. It consists
of a cluster of servers that is connected to a client machine via
a network. The client accesses a service S, which runs on the
server cluster. In this work, we consider a video-on-demand
(VoD) service. We are interested in the device statistics X
of the cluster and how these statistics relate to service-level
metrics Y on the client. In this setting, device statistics Xi of
server i = 1..n refer to metrics on the operating-system level.
The device statistics X of the cluster is the concatenation of
the server statistics, i.e., X = [X1, X2, ..., Xn]. The statistics
Y on the client side refer to service-level metrics, for example,
video frame rate and audio buffer rate.

The metrics X and Y evolve over time, influenced, e.g.,
by the load on the servers, operating system dynamics, etc.
Assuming a global clock that can be read on both the client
and the servers, we model the evolution of the metrics X and
Y as time series {Xt}t, {Yt}t, and {(Xt, Yt)}t.

Our objective is to predict the service-level metric Yt at
time t on the client, based on knowing the cluster metrics Xt =
[X1t, ..., Xnt]. Using the framework of statistical learning, the
problem is finding a learning model M : Xt → Ŷt, such that
Ŷt closely approximates Yt for a given Xt.

There are two ways to address this problem. First, we
consider a set of samples {(X1, Y1), ..., (Xm, Ym)}. Assuming
that each sample (Xt, Yt) in the set is drawn uniformly at
random from a joint distribution (X,Y ), we apply concepts
and methods from statistical learning to find M . The solution
M is evaluated using the validation set approach [7]. Note that
in this case M does not change over time.

The second way to address this problem is to consider a
time series of samples {(X1, Y1), (X2, Y2), ...}. We apply on-
line methods from statistical learning, which process this series
sequentially and produce a sequence of models M1,M2, ....
The solution Mt, t = 1, 2, ... is evaluated using the interleaved
test-then-train approach [8]. Note that in this case M changes
over time.

The first approach, often called batch learning, is the
standard approach in statistical learning, where the goal is to
explain an existing dataset. The second approach, called online
learning, is commonly followed, when studying a system that
evolves over time. The second approach allows to handle
concept drift, which requires dynamic adaptation of the model
for accurate predictions [9].

In this work, we use both batch learning and online learning
methods. We apply batch learning on traces from our testbed to

obtain a baseline for model accuracy. We apply online learning
as a basis for implementing real-time prediction, since samples
become available in a sequential fashion as time evolves.

We do not take into account network statistics and client
device statistics in this work, in order to simplify the problem.
(Note that previous research has shown the feasibility of using
network measurements to predict client-side metrics [10].) In
practical terms, this means that in our experiments the network
and client machine are lightly loaded. Statistics from network
devices and the client machine can be included in our problem
setting by extending the X space with the feature sets of those
devices. This is part of our future work.

Fig. 1. System under investigation.

III. STATISTICAL LEARNING METHODS
USED IN THIS WORK

We outline several regression methods that are used in this
work. First, we apply linear regression, a simple method that
serves as a baseline. It models the relationship between X and
Y as a linear function Ŷ =

∑p
j=0Xjβj , whereby X0 = 1;

Xj , j = 1..p are the features of the feature space X; and
βj , j = 0..p are the model coefficients. The coefficients are
computed such that the sum of the squares of the residuals
(RSS) is minimised [7]. In our case, the solution is computed
using stochastic gradient descent (SGD) [11].

Second, we use the Lasso regression method, which is a
variant of linear regression that mitigates overfitting in case
of a high-dimensional feature space. Lasso regression solves
the linear regression problem with the additional constraint∑

j |βj | ≤ λ, where λ is a regularization parameter. The
solution to the Lasso regression problem tends to yield a model
with smaller coefficients βj (which can even be zero) than
those of a linear regression model would [12].

In addition to linear methods, we apply tree-based meth-
ods in this work: regression tree, random forest, and fast
incremental-model tree. The regression tree method com-
putes region boundaries with the objective of minimising
RSS. It recursively partitions the feature spaces into regions
R1, R2, ..., RM . For a given X , Y is estimated as Ŷ =∑

i∈Rk

Yi

|Rk| , where Rk is the region that X falls into, |Rk|
is the number of training samples in Rk, and i is the index
of those samples. The regions are constructed using a greedy
algorithm, whereby during each construction step of a selected
region, a feature and a threshold are identified that fulfil the
optimisation criterium [7]. (The method has a computational
complexity of O(N2p.))

Random forest is an ensemble method. Each estimated
value of Y is an average of predictions from several regression



trees [13]. Each of these trees is constructed using a different
training set, and each construction step uses a randomised
reduced feature set [7].

Fast incremental-model tree with concept drift detection
(FIMT-DD) is an online regression method [14]. It starts with
a leaf and incrementally builds a tree, while reading a stream
of samples.

We apply feature selection to reduce the dimensionality
of the feature space. We specifically use a method called
forward-stepwise-selection. Starting from an empty feature set,
the method incrementally grows the feature set by including,
in each iteration, a new feature that minimises the prediction
error [7].

To mitigate concept drift in real-time learning, we use a
proactive approach, whereby the model is retrained periodi-
cally [9]. An alternative approach would be a reactive one,
whereby the model is only retrained when concept drift is
detected.

IV. DEVICE STATISTICS AND SERVICE-LEVEL METRICS

A. Device statistics: the feature space X

We obtain device statistics Xi from the kernel of the Linux
operating system that runs on the server i. The Linux kernel
is the core of the Linux operating system. It gives applications
access to resources, such as CPU, memory, and network, and
it schedules requests to those resources. To access the kernel
data structures, we use procfs [15].

Procfs is based on the Unix file system abstraction. There-
fore, kernel data can be accessed as if it was structured in
directories and stored in files. For every process, for instance,
procfs includes a directory named by the process identifier,
and this directory contains invocation parameters, environment
variables, status variables, etc., about that particular process.

Our earlier study in [6] shows that learning from a prepro-
cessed feature set (Xsar) yields better prediction accuracies
than from a feature set obtained directly from procfs. Thus,
in this work we use the feature set Xsar for each server
machine. The feature set Xsar is constructed using System
Activity Report (SAR), a popular open source Linux tool [16].
Reading data through procfs, SAR computes various system
metrics over a configurable interval. Examples of such metrics
are CPU core utilization, memory and swap space utilization,
disk I/O statistics, and network statistics. For the feature set
Xsar, we include only numeric features returned by the SAR
tool, and we end up with a set size of about 840 per server
machine.

Later in this work, we use Xi to refer to Xsar collected
from a server machine i. To represent the device statistics for
the cluster of server machines, we concatenate Xi collected
from each server to be (X1, ..., Xn), whereby n is the number
of server machines in the cluster. Hence, our feature set for
the cluster predictions has about n ∗ 840 features. We refer to
this feature set as the full feature set.

We also apply the feature selection method mentioned in
Section III. Then, we end up with a reduced feature set of
around 10 features. We refer to this feature set as the minimal
feature set.

B. Service-level metrics Y for a video-on-demand service

For this work, we chose the VLC media player software to
provide a video-on-demand service on our testbed, for which
we predict service-level metrics. The service-level metrics we
are considering are measured on the client device. During an
experiment, we capture the following three metrics.

1) Video frame rate (frames/sec): the number of displayed
video frames per time unit;

2) Audio buffer rate (buffers/sec): the number of played
audio buffers per time unit;

3) Network read operation rate (operations/sec): the num-
ber of socket read operations issued by VLC per time unit.

These metrics are not directly measured, but computed
from VLC events like the display of a video frame at the
client’s display unit, etc. We have instrumented the VLC
software to capture these events.

V. TESTBED AND PROTOTYPE

In this section, we describe the hardware and software setup
for video-on-demand service and data collection infrastructure,
we describe how we perform the experiments, how we generate
load, and how we obtain traces for model computation and
evaluation. In addition, we discuss design and implementation
of the real-time analytics engine.

A. The testbed

We run the experiments on our testbed at KTH, which in-
cludes a rack of nine high-performance servers interconnected
by Gigabit Ethernet. The servers are Dell PowerEdge R715 2U
machines, each with 64 GB RAM, two 12-core AMD Opteron
processors, a 500 GB hard disk, and a 1 Gb network controller.

The basic setup for experimentation includes three parts,
namely, a server cluster that provides the video-on-demand
service over HTTP, a client machine that runs video-on-
demand sessions, and a load generator that creates the aggre-
gate demand of a set of VoD clients. All machines run Ubuntu
12.04 LTS, and their clocks are synchronised through NTP
[17]. Figure 2 shows the components that execute on these
machines and the flows of media streams during experiments.

The server cluster consists of six machines: one load-
balancer machine, three web server and transcoding machines,
and two networked-storage machines. Each machine in the
server cluster runs a sensor that periodically reads out the
vector X in form of Xsar (SAR version 10.0.3), as described
in Section IV. At the start of every second, the sensor reads
X and saves it on the local X-trace file, together with a
timestamp. The load balancer machine runs HAProxy version
1.4.18 [18]. Each web server and transcoding machine runs
Apache version 2.2.22 [19] and ffmpeg version 0.8.16 [20].
Each networked-storage machine runs GlusterFS version 3.5.2
[21]. The networked-storage machines are populated with the
ten most viewed YouTube videos in 2013.

The client machine runs a VLC client, whose sensor
extracts service-level events. At the start of every second, the
sensor collects the events from the last second, computes the
Y metrics, and writes them to the local Y -trace file, together



Fig. 2. Testbed configuration for creating X-Y traces and for real-time prediction of service metrics. A solid rectangle represents a physical machine.

with a timestamp. The load generator machine dynamically
spawns and terminates VLC clients, depending on the specific
load pattern that is executed during an experiment.

An experimental run lasts about 14 hours. At the beginning
of a run, the VLC client sends a VoD session request for
playing a specific video to the load balancer. After the video
has played, the VLC client sends a new request for the same
video to the load balancer. Also, at the beginning of the run,
the load generator starts sending VoD session requests to the
load balancer, according to the selected load pattern. Further,
the sensors on the server and client machines are started.

Receiving a VoD session request from a client, the load
balancer forwards the request to the backend web server that
has the least number of pending connections with the load
balancer. To respond to a request forwarded from the load
balancer, the web server spawns a transcoding instance for a
selected video, whereby the raw video content is retrieved over
the network from one of the networked storage machines.

B. Generating load on the testbed

We have built a load generator that dynamically controls
the number of active VoD sessions on the testbed by spawning
and terminating VLC clients. When a client is created, it sends
a request for a random video to the load balancer. The server
cluster then starts streaming the video content to the client.
Whenever the video ends, the client keep issuing a new request,
until the client is terminated by the load generator. We use the
following load patterns in the reported experiments.

1) Periodic-load pattern: the load generator starts clients
following a Poisson process with an arrival rate that starts

at 70 clients/minute and changes according to a sinusoid
function with a period of 60 minutes and an amplitude of
50 clients/minute. The load generator terminates a client after
an average holding time of one minute, which is exponentially
distributed.

2) Flashcrowd-load pattern: the load generator starts and
terminates clients according to the flash-crowd model de-
scribed in [22]. The creation of clients follows a Poisson
process with an arrival rate that starts at ten clients/minute
and peaks at flash events, which are randomly created at a
rate of ten events/hour. At each flash event, the arrival rate
increases within a minute to 120 clients/minute. The rate
stays at this level for one minute, and then decreases to
ten clients/minute within four minutes. The load generator
terminates a client after an average holding time of one minute,
which is exponentially distributed.

C. Prototype of the real-time analytics engine

We designed and implemented a real-time analytics engine
that runs on a separate machine on our testbed. It receives
streams of device statistics and service metrics from the sen-
sors and produces model predictions through online learning.
In this work, we use this engine for predicting service metrics
in real-time and evaluating the prediction accuracies. We have
also built an application that visualises the outputs of this
analytics engine.

Figure 3 shows the software design of the analytics engine
and the data flow through the engine’s pipeline architecture.
It includes three main components: (1) a data aggregator



Fig. 3. Design of the real-time analytics engine for predicting service metrics.
The analytics engine executes on a separate machine not shown in Figure 2.

and synchroniser, (2) model processors, and (3) an output
aggregator.

The data aggregator and synchroniser component collects
the data items xi, i = 1..n and yj , j = 1..m from the
sensors, aggregates and time-synchronises them, and produces
a stream of samples (x1, x2, ..., xn, yj)t that is fed to the model
processors.

For each service metric yj there is one model processor.
The processor implements the learning method. It reads a
stream of samples, computes the learning models Mt and the
model prediction ŷj at time t, and streams the prediction to
the output aggregator.

The output aggregator time-synchronises the predictions
and sends the aggregate (ŷ1, ..., ŷm)t to the management
application.

All components of the real-time analytics engine are writ-
ten in R (version 3.1.2) [23]. The communication between
components is realised through TCP network sockets, using
the connection package [24]. The communication between
sensors and the data aggregator and synchroniser is realised
using Netcat [25] version 1.89. All communication channels
are setup at initialisation times and kept alive during operation.
The output aggregator, the data aggregator and synchroniser,
and each model processor run in a separate Linux process.

Figure 4 shows a screenshot of an application we built that
visualises the output of the analytics engine. The screen shows
time series of the predicted service metrics and the measured
service metrics. The application was built using Graphite
[26] and JQuery [27]. We currently use this application for

Fig. 4. Visualising the output of the real-time analytics engine.

exploratory model evaluation and for demonstration purposes,
as we did at IM2015 [28].

VI. MODEL COMPUTATION AND EVALUATION

Our goal is to provide accurate predictions of service
metrics in real-time. Towards that goal, we perform model
computation and evaluation in several steps, increasing the
required effort and the obtained realism in each step. We start
with batch learning using traces from the testbed to obtain a
baseline for the accuracies of different learning models. As a
second step, we use online learning on the same traces, since
online learning, while more complex than batch learning, is
required for real-time adaptation of prediction models. Finally,
we perform model prediction and evaluation in real-time on the
testbed. In this case, samples are collected from live statistics
instead of from traces, and the learning models are computed
by our testbed prototype, which includes the real-time analytics
engine described in Section V-C.

We expect higher prediction accuracy with batch learning
than with online learning. This is because batch learning
methods perform model computation and evaluation using all
samples from an experiment, while online learning methods
perform model computation and evaluation on subsets of
all samples. (We assume here that the effects of concept
drift is limited during experimental runs.) Second, we expect
that online learning on a trace can be achieved with similar
accuracy than real-time learning on the testbed under the same
load pattern.

In order to obtain baseline predictions, we collect traces
that were obtained under different load patterns from our
testbed. We have made the traces from this work available
at [29]. We apply a range of statistical learning methods on
these traces, compute models for predicting service metrics,
and evaluate these models against ground-truth data from the
traces.

A. Platform and packages for learning on traces

We compute and evaluate models on a server with spec-
ification given in Section V-A. We run R version 3.1.2 [23],



specifically the following packages: glmnet version 1.9-8 [30]
for Lasso regression using coordinate descent (with regularl-
ization parameter 0.02), rpart version 4.1-8 [31] for regression
tree, RMOA [32] for Hoeffding-based regression tree with
concept drift detection (FIMT-DD), and randomForest version
4.6-7 [33] for random forest (with 120 trees). We run Mat-
lab version R2014b for least-square linear regression, using
stochastic gradient ascent with learning rate of 0.01 for video
frame rate and audio buffer rate and 0.001 for network read
rate. The model computation parameters have been determined
through experimentation.

B. Batch learning on traces

Using traces collected from the testbed, we compute
models for a variety of regression methods, including Lasso
regression, regression tree, and random forest. We apply the
validation set approach for model evaluation, which is gen-
erally used when large datasets are available. According to
this approach, we (1) randomly assign each sample (Xt, Yt)
of a trace to either a training set or a test set, (2) compute
the models from the training set, and (3) evaluate them using
the test set [7]. Following standard practise, the training set
contains 70% of the samples, and the test set 30%.

We compute two metrics to evaluate the learning models.
The first metric is the Normalized Mean Absolute Error
(NMAE), computed as 1

ȳ ( 1
m

∑m
i=1 |yi− ŷi|), where ŷi is the

model prediction for the measured service metric yi, and ȳ is
the average of the samples yi of the test set of size m. The
second metric is the training time, which measures the times
it takes to train a model on the training set. We report the
average time of three model computations.

Table I shows the evaluation results for different load
patterns, feature sets, regression methods, and service metrics.
Based on these results, we make the following observations.
First, in terms of prediction accuracies, the random forest
method performs best across all traces, feature sets, and service
metrics. For example, the NMAE value of the audio buffer rate
is 21 for the combination of the flashcrowd-load trace, the full
feature set, and the random forest method. When Lasso regres-
sion or regression tree are used instead, the NMAE values of
the audio buffer rate increase to 42 or 31, respectively.

Second, Lasso regression allows for the fastest model
computation. It takes below 22 seconds for each service metric,
trace, and feature set, while random forest takes a thousand
times longer on average. In this case, fast computation comes
at the price of high prediction errors for audio buffer rate and
network read rate.

Third, and most importantly, random forest on the minimal
feature set significantly reduces training time and improves
prediction accuracy than random forest on the full feature set.
(This is expected, since the training time increases linearly with
the number of features, and improving prediction accuracy has
been the objective of feature selection.) This is true for all
tested service metrics and traces. For example, considering the
video frame rate of the periodic trace, the NMAE value is 6
and the training time is less than 10 minutes for the minimal
feature set, while the NMAE value is 12 and the training time
is more than 10 hours in case of the full feature set.

We conclude from the batch learning experiments that
random forest on the minimal feature set is a good candidate
method for real-time prediction.

C. Online learning on traces

Using testbed traces, we compute models for several online
regression methods, including linear regression using stochas-
tic gradient descent, Hoeffding-based regression tree with
concept drift detection, and random forest on a sliding-window
of samples. We evaluate a model as follows. During a warm up
phase (the first 20K samples), we compute an initial model.
After that, during the evaluation phase (the subsequent 30K
samples), we follow the interleaved-test-then-train approach,
whereby we repeatedly read in a new sample, test the model
on the sample, and then adapt the model [34]. For model
evaluation, we use NMAE (defined above) computed from
all samples used in the evaluation phase.

Table II presents the evaluation results using the minimal
feature set for different load patterns, online regression meth-
ods, and service metrics. It allows the following observations.

First, we observe that the prediction error differs for each
service metric. For instance, video frame rate has consistently
the lowest error. Interestingly, the service metric with the
lowest error has also the lowest coefficient of variation, and
the one with the highest error shows the highest coefficient of
variation.

Second, random forest on a sliding-window of samples
achieves the best prediction accuracy across traces and service
metrics.

Third, while it is difficult to directly compare the evaluation
results from batch learning methods with those of online
learning methods (since the algorithms are different), Table I
and Table II confirm our intuition that batch learning generally
achieves higher prediction accuracy than online learning. For
example, the minimum prediction error of audio buffer rate
for the online method on flashcrowd trace is 19% (Table II),
while the minimum error for the batch learning method is 15%
(Table I).

These experiments further confirm that random forest with
the minimal feature set is a promising candidate method for
real-time prediction.

D. Real-time learning

Collecting live statistics from the testbed, our prototype
computes learning models for the random forest method on
a sliding window of samples using the minimal feature set.
The service predictions from the prototype are evaluated in the
same ways as described above for the case of online learning.
The prototype computes an initial model during the warm up
phase and computes a series of models during the evaluation
phase. Specifically, the random forest model uses the window
size of 600 samples, and the model is retrained for every new
sample.

Table III presents the evaluation results. Comparing these
results with Table II, our key observation is that there is
no significant difference in prediction errors for the tested
random forest method. For instance, the NMAE values of



Trace Feature set Regression method
Video frame rate Audio buffer rate Network read rate
NMAE Training NMAE Training NMAE Training

(%) (secs) (%) (secs) (%) (secs)

Periodic-load

Full
Lasso regression 22 9 53 9 51 11
Regression tree 17 871 42 875 50 788
Random forest 12 5.97E4 32 7.83E4 33 9.18E4

Minimal
Lasso regression 22 0.05 53 0.05 52 0.05
Regression tree 22 1.7 53 0.28 51 1.6
Random forest 6 862 22 1.6E3 24 1.56E3

Flashcrowd-load

Full
Lasso regression 18 9 42 11 50 11
Regression tree 13 664 31 704 48 840
Random forest 8 5.56E4 21 7.98E4 33 9.4E4

Minimal
Lasso regression 18 0.05 42 0.05 50 0.05
Regression tree 19 0.31 42 0.37 50 1.9
Random forest 4 778 15 1.75E3 22 1.95E3

TABLE I. OFFLINE-MODEL ACCURACIES AND TRAINING TIMES FOR DIFFERENT SERVICE METRICS, FOR THE FULL AND
THE MINIMAL FEATURE SET, DIFFERENT BATCH REGRESSION METHODS, AND DIFFERENT TRACES.

Trace Regression method NMAE(%)
Video frame rate Audio buffer rate Network read rate

Periodic-load
Linear regression using SGD 18 37 51

Hoeffding-based regression tree (FIMT-DD) 21 51 49
Sliding-window random forest 6 25 26

Flashcrowd-load
Linear regression using SGD 13 32 49

Hoeffding-based regression tree (FIMT-DD) 18 42 49
Sliding-window random forest 5 19 25

TABLE II. ONLINE-MODEL ACCURACIES FOR DIFFERENT SERVICE METRICS, FOR THE MINIMAL FEATURE SET, FOR
DIFFERENT ONLINE REGRESSION METHODS, AND DIFFERENT TRACES.

Real-time load pattern NMAE(%)
Video frame rate Audio buffer rate Network read rate

Periodic-load pattern 3.6 14 28.5
Flashcrowd-load pattern 5.6 11 28

TABLE III. REAL-TIME-MODEL ACCURACIES FOR DIFFERENT SERVICE METRICS, FOR THE MINIMAL FEATURE SET, FOR
THE ONLINE RANDOM-FOREST METHOD AND DIFFERENT LOAD PATTERNS.

video frame rate for both online and real-time learning are
below 6%, the values of audio buffer rate are below 20%. This
result is not obvious, since (1) the online learning experiments
use different implementation for data collection, as well as,
model computation and evaluation, than the real-time learning
experiment, and (2) the load patterns are probabilistic and
produce different executions.

Our main conclusion from all the experiments is that we
were able to identify a method and build the system that
accurately predicts service metrics (NMAE values below 14%
for video frame rate and audio buffer rate, and NMAE values
below 28.5% for network read rate) in real-time for a cluster-
based service.

VII. RELATED WORK

This work relates to recent research on predicting service
metrics and real-time prediction in networking and cloud
environments, using analytics methods.

While our approach to prediction is service independent,

many other works propose methods that are targeted towards
a specific service and metric. Important examples of such
research in the context of cloud and statistical learning are
[4], [35]–[37]. In contrast to our method, these works consider
a small set (less than 10) of selected features to learn from,
which is fixed at the design stage of the method. In our case,
the set of features for model computation is automatically
derived from a very large, general feature set (see Section
IV-A).

The authors in [38] predict quality-of-service metrics for
IPTV using decision trees. The features are selected by a
domain expert. In [10], the authors present an approach for
learning from a set of network-level metrics, e.g., delay, loss,
and jitter measurements, to estimate the quality-of-service
metrics for IPTV streaming clients. The authors conclude that
their prediction method is accurate, as long as the packet loss
ratio is low.

Other works like [39]–[42] use statistical learning models
to estimate quality-of-experience metrics of a multimedia
service. A review of such metrics can be found in [43].



Recent work by [44] proposes a system for service-level
prediction using statistical models. The authors use Bayes clas-
sifiers with a set of statistical metrics as features to determine
the probability of SLA violations. They solve a classification
problem, while our work is based on methods for regression.

The authors in [45] describes a method that dynamically
allocates run-time resources for MapReduce tasks under unbal-
anced data distribution. In particular, the work applies linear
regression to predict partition sizes for reduce tasks and use
the predictions to guide run-time resource allocation.

VIII. CONCLUSION

We have shown the feasibility of predicting service metrics
for cluster-based video streaming service in real-time. Through
testbed evaluation and measurements, we found that a random
forest model gives a prediction accuracy of 14% or better
for video frame rate and audio buffer rate, and an accuracy
of 28.5% or better for network read rate. We found that
feature-set reduction not only reduces model computation time,
which is critical for real-time prediction, but even improves
prediction accuracy (which we think is likely due to reduction
of overfitting). Our investigation progresses in a methodical
fashion: from batch learning on traces, to online learning on
traces, and finally to real-time learning on live statistics. Each
step serves as a baseline for the next, more complex step.

We have designed and implemented a real-time analytics
engine that performs model learning and metrics prediction in
a centralised framework. This engine will serve as a building
block for analytics-based management functions, including a
service assurance system and anomaly detection system. At the
same time, we currently use it for real-time experimentation
and demonstration purposes. We can observe, in real-time, the
effects of system perturbation on service quality. For instance,
we can study the effects of load spikes, background executions
of maintenance jobs, changes of system configuration, or
different types of system failures.

Our plans include the following research directions. First,
we plan to extend our prediction method towards clusters that
run multiple services and towards virtualised environments.
Second, we plan to extend the results from this paper towards
end-to-end predictions over network infrastructure. Third, we
plan to make the prediction method scale, by distributing
the analytics engine and performing model computation and
metrics prediction inside network nodes. Finally, we plan
to engineer novel management applications that are directly
driven by the analytics engine.
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