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Abstract—Anomalies in communication network traffic caused

by malware or denial-of-service attacks manifest themselves in

structural changes in the covariance matrix of traffic features.

Real-time detection of anomalies in high-dimensional data de-

mands a very efficient algorithm to identify these changes in a

compact low-dimensional representation. This paper presents an

efficient algorithm for the rapid detection of structural differences

between two covariance matrices, as measured by the maximum

possible angle between the subspaces specified by subsets of

the two sets of principal components of the matrices. We show

that our algorithm achieves a significantly lower computational

complexity compared to a naive approach. Finally, we apply our

results to real traffic traces from Internet backbone links and

show that our approach offers a substantial reduction in the

computational overhead of anomaly detection.

I. INTRODUCTION

Security professionals who monitor communication net-
works for malware or denial-of-service attacks are increasingly
dependent on real-time detection of anomalous behavior in the
traffic data. Such detection and classification of threats even
as they are unfolding requires a fast and efficient method to
assess changes in traffic features over very short intervals of
time.

This work is primarily motivated by two observations: (i)
anomalies lead to changes in the covariance matrix of the set
of traffic features being monitored, and (ii) different types of
anomalies cause different types of deviations in the covariance
matrix allowing a categorization of the detected anomaly and
an immediate prescription of actions toward threat mitigation
[1]. This is to be expected since the covariance matrix, as a
second-order statistic, captures the variance of each monitored
feature as well as the correlation between each pair of features.
Besides, use of the covariance matrix requires no assumptions
about the distributions of the monitored features, making it a
general method for traffic characterization. For these reasons,
this paper is focused on characterizing communication traffic
as a stream of covariance matrices, one for each designated
window of time, and then using observed changes in the
covariance matrices to infer changes in the system status.

Current state-of-the-art network traffic analysis invariably
deals with high-dimensional datasets of increasingly larger
size—thus, it is important to derive a low-dimensional structure
as a compact representation of the original dataset. Principal
component analysis (PCA) allows us to examine the linear
relationship between features of traffic and derive a reduced
set of unrelated features that are linear combinations of the

original features [2]. In this work, we detect and quantify
differences between two covariance matrices by the changes
in the principal components of the covariance matrices.

This paper introduces a new metric for detecting changes
based on the angle between the subspaces specified by the
most significant principal components of two given matrices.
We also present an efficient algorithm for computing this
metric. The output of this algorithm also includes two sets of
distinguishing characteristics for the two matrices which can be
employed for purposes such as anomaly detection. As a result,
the algorithm supports the real-time detection of anomalies by
allowing rapid detection and categorization of the structural
differences between the covariance matrices.

II. PROBLEM STATEMENT

Let N denote the number of features in the data set of
interest. Let ⌃

A

and ⌃

B

denote the two N ⇥ N covariance
matrices to be compared. These two matrices could represent
real traffic data during different time windows or one of them
could be a reference matrix representing normal operation
without anomalies. Let a

1

, . . . , a

N

and b

1

, . . . , b

N

denote the
eigenvectors of ⌃

A

and ⌃

B

, respectively.

Let ✓
kA,kB (A,B) denote the angle between the sub-

space composed of the first k
A

principal components of
⌃

A

, a

1

, . . . , a

kA , and the subspace composed of the first k
B

principal components of ⌃

B

, b

1

, . . . , b

kB . We refer to this
angle between the subspaces as the subspace distance, which
has a range between 0 to 90 degrees. We have:
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kA,kB (A,B)) k (1)

where k · k is the matrix norm and T
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of [b
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kA ]. Therefore,
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To compare the two matrices, we quantify the difference
between ⌃

A

and ⌃

B

as the maximum angle ✓
kA,kB (A,B),

where 1  k
A

 N and 1  k
B

 N :

✓
max

= max

1kA,kBN

✓
kA,kB (A,B) (4)
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In this paper, we refer to ✓
max

as the maximum subspace
distance, which quantifies the difference between the two
matrices.

When k
A

and k
B

hold values that maximize ✓
kA,kB (A,B),

the two sets of principal components, [a

1

, . . . , a

kA ] and
[b

1

, . . . , b

kB ], can be thought of as the distinguishing char-
acteristics of covariance matrices ⌃

A

and ⌃

B

. We show in
Section IV how to employ these two sets of characteristics for
change detection.

The problem considered in this paper is one of estimating
k
A

and k
B

which maximize the subspace distance without the
overhead of computing ✓

kA,kB (A,B) for all k
A

and k
B

.

III. SOLUTION

Our solution is based on four key ideas: (i) allowing k
A

=

k
B

in our search for the maximum subspace distance, ✓
max

,
(ii) reducing the problem to one of always finding only the
first principal component of a matrix, (iii) using the power
iteration method to approximate the first principal components,
and finally, (iv) using a heuristic to approximately ascertain the
value of ✓

max

.

A. The rationale behind allowing k
A

= k
B

In the approach presented in this paper, we limit our search
for ✓

max

to consider only the cases in which k
A

= k
B

. Our
rationale is based on Theorem 1 below.

Theorem 1. If for some k
A

and k
B

, ✓
kA,kB (A,B) = ✓

max

,
then there exists k, 1  k  N , such that ✓

k,k

(A,B) = ✓
max

.

Proof: Without loss of generality, assume k
A

� k
B

.
The statement of the theorem is proved if ✓

kA,kB (A,B) 
✓
kB ,kB (A,B) and ✓

kA,kB (A,B)  ✓
kA,kA(A,B). The proofs

of each of these two cases follows.

Case (i): Let x denote a column vector of length k
B

. Using
the definition of matrix norm, we have:
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where x

max

is the column vector with unit norm that achieves
the maximum matrix norm. Similarly, using the definition of
the matrix norm again:
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Thus we have ✓
kA,kB (A,B)  ✓

kB ,kB (A,B).

Case (ii): Let y denote a column vector of length k
A

. Using
the definition of matrix norm:
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Let z denote a column vector of length k
A

with x

max

followed
by k
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zeroes: z

0
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0 · · · 0]0. This vector has unit
norm and [b
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Thus we have ✓
kA,kB (A,B)  ✓

kA,kA(A,B).

Allowing k
A

= k
B

to find the maximum subspace distance
reduces the search space from N2 to N . We refer to the value
of k for which ✓

k,k

(A,B) is the maximum subspace distance
as the optimal subspace dimension.

B. Estimating the optimal subspace dimension

It is straightforward to find the optimal subspace dimension
by computing ✓

k,k

(A,B) for every k from 1 to N and
determining the k for which ✓

k,k

(A,B) is the maximum.
However, we are more interested in the choice of a smaller
k, which we will call the effective subspace dimension and
which allows a similar ability to distinguish between the two
subspaces as the optimal subspace dimension does.

Our algorithm computes an approximate value of
✓
k,k

(A,B) beginning with k = 1 and stops when the subspace
distance, ✓

k,k

(A,B), has dropped for the d-th time where d
is an input to the algorithm. In our experiments on Internet
backbone traffic traces, discussed in Section IV, we use d = 3.
The maximum observed ✓

k,k

(A,B) is used as the estimated
maximum subspace distance and the corresponding k becomes
the effective subspace dimension.

Fig. 1 presents the pseudo-code of our algorithm, getESD,
which returns the effective subspace dimension and the esti-
mated maximum subspace distance. During the k-th iteration
of the while loop, we compute the k-th eigenvector for ⌃

A

and ⌃

B

(a
k

and b

k

), and use the two sets of k eigenvectors
([a

1

, . . . , a

k

] and [b

1

, . . . , b

k

]) to calculate the new subspace
distance (✓0) between them. Note that the k-th eigenvectors for
⌃

A

and ⌃

B

are not computed until we are in the k-th iteration
of the while loop. Our implementation of this algorithm uses
the power iteration method [3] for computing the eigenvectors
and the norm of T

k

.

C. Complexity analysis

The computational complexity of getESD is composed of
(i) the computation of T

k

in k loops which is O(k3N2

), where
k is the effective subspace dimension (ii) the computation of
the first k eigenvectors of ⌃

A

and ⌃

B

using the power iteration
method, which is O(kPN2

) where P is a tuning parameter,



procedure GETESD(⌃
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, d)
k  1 . number of Principal Components (PCs)
✓  0 . angle between two subspaces
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. projection of ⌃
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 0 . maximum angle observed
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if (✓0 < ✓) then
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if (✓ > ✓
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) then
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 ✓
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end if

if (numDrops == d) then

return (ESD, ✓
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)
end if

end if
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end while

return (N � 1, ✓
max

)
end procedure

Fig. 1. The getESD algorithm.

and (iii) the computation of k T
k

k in k loops, which is
O(kPN2

).

Since P ⌧ N , the computation of T
k

becomes the
dominant complexity. The computational complexity of the
getESD algorithm, therefore, is O(k3N2

).

For the naive method which computes all eigenvectors,
the complexity is again dominated by the computation of T

k

in N loops, which is O(N5

). Since the effective subspace
dimension, k, is much smaller than N , the computational
complexity, O(k3N2

), of the getESD algorithm is a significant
improvement.

IV. RESULTS WITH INTERNET BACKBONE TRAFFIC

We use anonymized passive traffic traces from four mon-
itors of CAIDA (Cooperative Association for Internet Data
Analysis) connected to high-speed Internet backbone links
of Tier1 ISPs: equinix-chicago-dirA, equinix-chicago-dirB,
equinix-sanjose-dirA, and equinix-sanjose-dirB [4]. The fol-
lowing six features of each packet are selected for data
analysis: source IP address, destination IP address, source port
number, destination port number, protocol and packet size.
This allows a total of 4 ⇥ 6 = 24 features. We compute the
24 ⇥ 24 covariance matrix of these features for every time
window of 50 milliseconds and compare it to the covariance
matrix corresponding to the previous time window.
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Fig. 2. The optimal and the effective subspace dimension for estimating the
maximum subspace distance between covariance matrices corresponding to
consecutive time windows in Internet backbone traffic traces.
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Fig. 3. Relative percentage error of the estimated maximum subspace distance
between covariance matrices corresponding to consecutive time windows in
Internet backbone traffic traces.

A. Estimation of subspace distance

Our results with Internet backbone traffic data show that the
maximum subspace distance between two covariance matrices
corresponding to consecutive time windows has a mean of
89.82 degrees and is close to 90 degrees with high probability.
This shows that we can always choose two sets of principal
components—one set for each covariance matrix with size
equal to the optimal subspace dimension—that are almost
orthogonal to each other in order to capture and successfully
detect anomalous changes.

Fig. 2 shows that the effective subspace dimension rarely
exceeds 8 with an average of 4.33, a significant reduction
compared to the 24 principal components that would have to
be examined to find the actual maximum subspace distance.

As also shown in Fig. 2, the effective subspace dimension is
almost always smaller than the optimal subspace dimension,
which has an average of about 16.5 and can be as high as
23. Even though it is true in the case of most real data that
the first few principal components are the most significant
in capturing the internal structure of the data while the last
few are comparatively trivial, Fig. 2 shows that the optimal
subspace dimension cannot often be computed by considering
only a few fixed number of significant principal components.
The getESD algorithm, therefore, offers a solution to determine



an effective number of principal components to obtain a good
approximation of the maximum subspace distance.

Fig. 3 shows that the relative percentage error of the esti-
mated maximum subspace distance computed by the getESD
algorithm rarely exceeds 5%. In fact, the average relative
percentage error is as small as 0.64%.

B. Anomaly detection using Projection Residual

To demonstrate the effectiveness of anomaly detection with
the getESD algorithm, we use two synthetic datasets labeled
Before and After, drawn from a random Gaussian distribution
with zero mean, but with different covariance matrices. These
covariance matrices are such that 10% of the principal com-
ponents capture more than 99.9% of the total variance. We
use the effective subspace dimension to construct a normal
subspace that consists of the first few principal components
of the covariance matrix of dataset Before, assumed to be
normal. We then project the dataset Before and dataset After
onto the normal subspace, and use the projection residual to
indicate the level of abnormality. The projection residual of
the datasets Before and After using the getESD algorithm are
shown in Fig. 4(a). It is clear that the dataset Before has
small projection residuals, which is expected; the dataset After
has large projection residuals, indicating a difference in its
properties with regard to the covariance matrix.

Fig. 4(b) presents results with the subspace method [5],
where the dimension of normal subspace captures 99.5% of
the variance in the dataset. The projection residual result of
subspace method is similar to that of our getESD algorithm.

V. RELATED WORK

The covariance matrices can be directly employed to detect
matrices without applying PCA. For example, [1] proposes the
detection of network anomalies by monitoring changes in co-
variance matrix, where test covariance matrices are compared
against covariance matrices under normal conditions. Other
methods, such as in [6], also avoid using PCA directly and
instead employ graph-based filters to project the graph signals
on normal and anomaly subspaces to inform the detection
of anomalies. Our work, on the other hand, exploits the
correlation of the changes amongst features as indicated by
the changes in the key principal components.

The work presented in this paper is most closely related to
the PCA-subspace approach for network-wide anomaly detec-
tion first proposed by Lakhina et al. [5], [7]. The approach,
based on detecting deviations in the traffic volume and feature
distributions caused by anomalies, does have its limitations
[8], [9]. For example, when a large anomaly dominates in a
certain dimension and disguises itself as normal traffic, it may
succeed in foiling the PCA-based approach [8]. Consequently,
there have been many recent extensions of the PCA-subspace
approach [10]–[15].

An underlying assumption of the original PCA-subspace
method introduced by Lakhina is that the dominant principal
components define normal behavior in network traffic. It is
argued in [9] that the characteristics of the origin-destination
flows of a network determine if a small number of eigenflows
can capture most of the variance. As a result, many anomalies
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(a) Using the effective subspace dimension obtained from the getESD algo-
rithm.
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(b) Using the minimum number of principal components that captures 99.5%
of the variance in the dataset.

Fig. 4. Projection residual of datasets BEFORE and AFTER onto normal
subspace.

which result in a large number of small flows will be missed
using this method. Our work presented in this paper, on the
contrary, imposes no such assumptions on the normal behavior
of network traffic.

As stated in [8], the performance of the PCA-based method
is sensitive to the dimensions chosen for the normal subspace.
One may use a specified number of dimensions, as in [10], or
choose the number of dimensions that accounts for a specified
percentile of the variation, as in [12] and [14]. Other methods
exploit the most relevant principal components, as in [16],
while yet others retain the components with the lowest variance
as the extracted features [17]. This paper complements these
recent approaches because, when comparing the covariance
matrices under normal and abnormal conditions, the effective
subspace dimension returned by our algorithm can be inter-
preted as the right number of dimensions for both the normal
and abnormal behavior of network traffic. Instead of defining
the characteristics of normal behavior only, as in [5] and [7],
our work points out the characteristics of both normal and
abnormal behaviors through two sets of principal components.

VI. CONCLUDING REMARKS

The getESD algorithm presented in this paper reduces the
computational overhead of comparing two covariance matrices
of traffic features for real-time anomaly detection. Meanwhile,
it also retains an ability to distinguish between matrices that
is close to what an optimal algorithm would accomplish. The
algorithm is a general-purpose tool for comparing structural
differences between evolving matrices and is applicable in
almost any scenario that involves processing a stream of
matrices for real-time detection of developing changes.
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