
Forecasting Methods for Cloud Hosted Resources,
a comparison

M van Greunen
MIH Media Lab

Stellenbosch University
Stellenbosch, South Africa

Email: manrich@ml.sun.ac.za

H.A. Engelbrecht
MIH Media Lab

Stellenbosch University
Stellenbosch, South Africa

Email: hebrecht@ml.sun.ac.za

Abstract—The emergence of cloud management systems, and
the adoption of elastic cloud services enable dynamic adjustment
of cloud hosted resources and provisioning. In order to effectively
provision for dynamic workloads presented on cloud platforms,
an accurate forecast of the load on the cloud resources is
required. In this paper, we investigate various forecasting methods
presented in recent research, identify and adapt evaluation
metrics used in literature and compare forecasting methods on
prediction performance. We investigate the performance gain of
ensemble models when combining three of the best performing
models into one model. We find that our 30th order Auto-
regression model and Feed-Forward Neural Network method
perform the best when evaluated on Google’s Cluster dataset
and using the provision specific metrics identified. We also show
an improvement in forecasting accuracy when evaluating two
ensemble models.

I. INTRODUCTION

In recent years, the advent of Elastic Cloud solutions such
as Google Compute Engine [1] and Amazon Web Services
[2] provide dynamic resource availability and auto-scaling
that enable reactive provisioning. Cloud Users (hosting
applications or services in the cloud) are required to set auto-
scaling policies such as target utilisation levels and overload
thresholds according to their cloud application to minimise
running costs and meet Service Level Agreements (SLAs)
with their end-users. To achieve more effective provisioning
(referred to as proactive provisioning) to handle fluctuations
in workload presented to clouds, an accurate estimation of
the resource requirement (or quantitative load) is required to
ensure sufficient resources are available when needed [3].

The fields of statistics and machine learning have
developed forecasting methods suitable for predicting on time
series data, which have been applied to data from economics,
finance and science. Much effort has been spent in improving
the modelling and forecasting accuracy of methods, which
include Auto-Regression and Exponential Smoothing together
with work proposed in PRESS [4], Agile [5], iOverbook [6]
(and many others). The problems that remain when using
forecasting methods for provisioning cloud hosted resources
are: (1) there does not exist a set of metrics to evaluate the
performance accuracy of forecasting methods when applied
to resource provisioning in clouds and (2) when comparing
multiple types of forecasting methods, which prominent
forecasting provides the most accurate prediction of the load
presented on cloud hosted resources.

We make the following contributions:

1) Present a set of evaluation metrics collected and
adapted from literature, used to evaluate and compare
forecasting methods.

2) Implement and compare prominent forecasting meth-
ods presented in recent research from both statistical
and machine learning fields.

The rest of the paper is summarised as follows: Section II
covers research on proactive provisioning methods. Section III,
covers preliminary theory on forecasting and prediction meth-
ods. Section IV describes the evaluation metrics and the
dataset used in the Evaluation section of the paper and our
experimental methodology. Section V discusses the evaluation
results and we conclude in Section VI.

II. LITERATURE SYNOPSIS

In this section, we identify prominent approaches to proac-
tive provisioning in the cloud environment, that was recently
published. Specifically, we use the 2012 technical report by
Lorido-Botrán et al. [7] as primary source to identify the
set of advance prediction methods described here. The report
lists five method categories, applicable to reactive scaling
and proactive provisioning, but we focus here on prediction
methods from machine learning and time-series analysis.

Gong, Gu and Wilkes [4] present PRESS, a time-series
analysis forecasting method that uses Fast-Fourier-Transforms
and dynamic time warping to extract signature-patterns from
resource demand data. In cases where the data does not contain
a significant repeating pattern, they use a machine learning
approach of a discrete first-order Markov chain (with finite
states). They focus on accurately predicting short-term load
changes, evaluate PRESS on Google’s 7-hour workload cluster
dataset [8] and show that PRESS outperforms methods such
as mean-max, auto-correlation and auto-regression.

Nguyen et al. [5] extend PRESS and propose a time-series
analysis method, Agile, which uses Wavelet-transforms to per-
form medium-term resource demand predictions. Evaluating
on the 29 day Google Cluster usage trace dataset [9], Agile
consistently outperforms PRESS and Auto-regression when
evaluated on CPU and Memory overload prediction rates.

Huang et al. [10] propose a time-series analysis prediction
model that uses an exponential smoothing method, specifically
a double exponential smoothing (Holt method), to improve
accuracy of resource estimation in proactive provisioning.

978-3-901882-77-7 c© 2015 IFIP



They are able to show improvements in accuracy on simulated
workloads. Chandra et al. [11] employ an auto-regression,
predictive time-series analysis method to dynamically provi-
sion resources in a shared datacenter. Caglar and Gokhale [6]
present iOverbook a intelligent resource management tool
that uses a machine learning method, namely an Artificial
Neural Network to predict overbooking rates in datacenters.
They identify ‘features’ associated with the resource data in
Google’s cluster dataset and uses a Feed-Forward Neural Net-
work (FFNN) to forecast the mean hourly CPU and Memory
usage one-step-ahead. Prodan and Nae [12] propose a machine
learning method that uses a Recurrent Neural Network (RNN)
to predict load on a cloud hosted Massively Multiplayer Online
Game (MMOG). They employ an Elman type RNN to estimate
the load and dynamically provision and scale the resources
used by the MMOG. They show that their estimator can
accurately (using an average prediction error) predict various
loads including flash-crowd behaviour.

From the synopsis above, we conclude that:

1) the squared error (or variants of it) is a popular
accuracy metric used to evaluate the performance of
a proposed method,

2) there is no agreement on training- or prediction win-
dow lengths when modelling or forecasting resource
demand and

3) the proposed solutions are primarily compared with
naive methods and not against other prominent ap-
proaches (with the exception of Agile being com-
pared against PRESS).

III. PRELIMINARIES

In Section II, we identified a set of prominent forecasting
methods used in provisioning of cloud hosted resources. In this
section, we cover the preliminary theory and formulation of
forecasting equations for each method investigated. These in-
clude Exponential Smoothing, Auto-regression (AR), Markov
Chains and two types of Neural Networks.
We define a Time series as a set of sequential data points or
measurements collected at a regular time interval. A model
is defined as a mathematical description of a process which
generates a given time series [13, p.15]. Forecasting is defined
as a procedure where historical data is input into a model
and predictions are produced as the output of that model.
According to Mao and Humphrey [14], the workloads pre-
sented to cloud hosted resources can be characterised into
four categories, namely Stable, Trending, Seasonal/Cyclic and
Bursty (or Stochastic). A Stable workload is characterised by
constant load, whereby a Trending workload is observed when
the load is constantly increasing, for example when a particular
website becomes more popular. Seasonal/Cyclic workloads are
characterised by having repeating highs and lows, for example
load on an online retailer, in which higher workloads are
observed by day compared to by night. A Bursty workload
is characterised by a sudden increase in load, such as the
increase in the number of views to a news site, reporting on
a breaking story. For each method discussed here, we will
highlight which of these characteristics the method is able
to model. An appropriate resource model should be able to
accurately model all four categories of workloads.

Exponential smoothing is a time-series smoothing tech-
nique, similar to the moving average, which assigns exponen-
tially decreasing weights to past observations putting more
emphasis on the most recent observations and thus is able to
follow a time-series that contains a trend [15]. Improvements
to Exponential smoothing was made by the authors in [16],
presenting the Holt-Winters method which is capable of pre-
dicting on a time series that contain a trend and/or seasonal
component. The forecasting expression for the Holt-Winters
method are as follow, with weights being estimated using Least
Squares Estimation (LSE):

yt+k = (st + kbt)It−L+k, k = 1, 2, 3, ... (1)

where st is the level-estimate, bt the trend-estimate, and It the
estimate of the seasonal component at time t. The number of
future time steps to predict is given by k. Formal definitions
for st, bt and It can be found in [17, sec. 7.2].

Auto-regression (AR) takes a different approach than
Exponential smoothing by using auto-correlation coefficients
as weights when modelling time series. AR is able to model
cyclic patterns and regress short-term trends. The forecasting
expression for a AR model of order p is given by:

yt+1 = δ + φ1yt + φ2yt−1 + ...+ φpyt+1−p

δ = (1−
p∑

i=1

φi)ȳ
(2)

where ȳ is the mean of the time series up to time t and φi
is the AR coefficients, calculated using Yule-Walker equations
that are discussed in [18].

A Markov Chain is a machine learning method used to
fit and predict stochastic sequential data. Mark Craven [19]
defines a Markov chain model as one that has a set of states
and associated transitions probabilities. These probabilities
describe transitions from one given state to any possible next
state. A discrete first-order Markov chain models a time series
yt, by defining m states (denoted as S = {x1, x2, x3, ..., xm})
with each state corresponding to a discrete value. States are
obtain by digitising the data into equally spaced bins. Each
state xi depends only on the previous state xi−1 and using
this property a transition probability matrix P of size m×m
is constructed. According to PRESS [4], a Markov chain
is capable of modelling short-term trends and capture the
bursty nature of cloud usage data. Given the state probability
distribution πt at time t, forecasting can be done by:

ŷt+k = max(πtP
k) k = 1, 2, 3, ... (3)

where ŷt+k is the predicted state, k steps into the future and P
is the 1st-order transition matrix constructed using the method
described in [19].

Neural Networks are machine learning techniques, in-
spired by the biology and cognitive functionality of living
brains, capable of ‘learning’ complex functions that map inputs
to corresponding outputs. In this paper we investigate two types
of neural networks namely, a Feed-Forward Neural Network
(FFNN) and an Elman Recurrent Neural Networks (RNN).
The authors of iOverbook [6] proposed FFNNs as they are
able to learn complex trends and seasonal characteristics of
workloads present in a shared datacenter. Prodan and Nae [12]
confirm this and use an Elman type RNN which is more



R
es

ou
rc

e 
us

ag
e

Time 

Fig. 1: An example of how a Feed-Forward Neural Network
is used to predict a value into the future using past values as
input.

resilient to the bursty nature of flash-clouds in MMOGs.
Elman networks [20], are RNNs with ‘context’ neurons that
provides memory. These context neurons allow the network
to remember state which is beneficial when processing state-
dependant tasks. Backpropagation, as presented in [21] is used
to train both types of NNs described here. Figure 1 illustrates
how a FFNN is used to forecast on time series data.

IV. EXPERIMENTAL DESIGN

In this section, we list a set of evaluation metrics, discuss
the dataset and parameters used in evaluation and describe our
experimental methodology.

A. Evaluation metrics

When identifying evaluation metrics form literature, we
want to be able to measure regression type accuracy as well
as accuracy measures for resource provisioning. We use Root
Mean Squared Error (RMSE) as a generic prediction accuracy
metric for time series, and use provision specific metrics
proposed by the authors of PRESS and Agile.

RMSE: gives an indication of how accurately the predic-
tions follow the true values. Scikit-learn [22] defines RMSE as
the error measure corresponding to the expected value of the
quadratic error loss and is calculated as the square ‘distance’
between the predicted values and the true values.

Over- and under-estimation: RMSE calculates the error
distance between the forecasted values ŷ and the true values
y, but fails to indicate if this error distance was because
of values being over- or under-estimated. We will follow
PRESS’s [4] over- and under-estimation metric, classifying an
over-estimation as a value more than 10% of the true value and
under-estimation, a value less than 10%. The over-estimation
rate (OER) is calculated by the ratio of over-predicted values to
total forecasts, with the under-estimation rate (UER) calculated
in a similar way.

An accurate model has a low over-estimation rate and a low

under-estimation rate and using this we define an Estimation
score (ES) used in this work, as follows:

ES =
1

2
(OER) +

1

2
(UER) (4)

where OER and UER denotes the over-estimation and under-
estimation rates. The factor of 1

2 can be adjusted to weight
each rate differently.

Correct estimation: A value within ±10% of the true
value is classified as correct, with correct estimation rates
calculated similar to PRESS.

Overload estimation: Similar to Agile [5], we define
overload for a specific machine as any value above the 70th
percentile of all values in the that machine’s data trace. Liu
and Cho [23] reported in their paper, that 93% of the machines
monitored in the Google cluster dataset have a capacity set
to 0.5, supporting Agile’s argument for setting overload at a
capacity of 0.7. Using the standard classification measures,
namely true positive (Tp), false positive (Fp), true negative
(Tn) and false negative (Fn); a predicted value is deemed
true positive when it is forecasted as overloaded and agrees
with its true value. Similar for true negative, a forecasted
value and its corresponding true value are both less than the
overload threshold. For false positive and false negative, the
forecasted value is different to its true value. We calculate the
True Positive Rate (TPR) and False Positive Rate (FPR) using
the following:

TPR =
Tp

Tp + Fn
, FPR =

Fp

Fp + Tn
(5)

where a higher TPR and lower FPR indicates higher accuracy.

Overloaded state estimation: Agile defines an overload
state as Q consecutive overloaded values, seen Figure 2.
Similar to Agile, we set Q = 5 samples or 25 minutes i.t.o the
Google dataset. A true positive overloaded state prediction is
one where the start of the predicted overloaded state is within a
‘grace period’ of 3 samples of the true overloaded state’s start.
The prediction is deem true negative if the end of a overloaded
state is predicted within the ‘grace period’ of the true end of
the overloaded state.

Trending and Seasonal/Cyclic workloads present longer
overloaded states and a method with a high TPR and low FPR
is more accurate.

B. Dataset

For the main analysis and evaluation we use the 2011
Google’s Cluster usage trace dataset [9] which contains the
resource requirements corresponding to tasks scheduled onto
each machine in Google’s production cluster cell, recorded
over 29 days in May of 2011. The recorded resource measures
include among other, CPU usage and Memory usage data
captured at 5 minutes intervals, producing 8352 data points per
machine, over the 29 days. According to Liu and Cho [23], the
dataset has been sanitised, but still gives accurate information
on cluster usage and load, important for the work presented in
this paper.



R
es

ou
rc

e 
us

ag
e

Time (samples)

Fig. 2: An illustration of an overload state. A valid overload
state is one where Q consecutive observations are above
the overload threshold. When predicting an overload state, a
positive prediction is classified as one where the start and end
of the overload state is predicted within the grace period.

Parameter Value
Training window 3000 samples
Forecasting window 30 samples
Overload threshold 70th percentile
Overload duration 5 samples
Grace period 3 samples
Minimum forecast value 5th percentile

TABLE I: Parameters used in experiments.

C. Experimental Methodology

To perform a fair comparison between methods we use the
same training data, modelling and evaluation parameters across
all experiments. Table I summarises these parameters, and the
design decisions made are discussed here. We conducted our
experiments following Agile’s random sub-sampling validation
approach, ensuring the models are data independent and results
are statistically significant. All modelling and evaluations
where performed using the CPU and Memory usage resource
data.

Similar to Agile, we choose to use a Training window
length of 3000 samples (250 hours), which is about a third
of the 29 day data trace. The Forecasting window is set to
30 samples (2.5 hours) which is 1% of the training window.
The Overload threshold was set to the 70th percentile of the
total trace, the Overload duration and Grace period set to
5 and 3 samples respectively. The forecasting methods used
may predict negative values and thus we followed PRESS’s
suggestion to replace negative values with the 5th percentile
value of the total trace.

Next, we discuss method-specific design decisions. In our
Holt-Winters implementation we speed-up refitting by limiting
the model parameter to values in [0, 1] and use the previous
time step’s model parameters as starting conditions for the
Least Squared optimisation. For our auto-regression model,
we set the order p, denoted by AR(p), equal to the Forecasting
window of 30 samples. The order of an AR(p) model deter-
mines the number of predictions the model can accurately pre-
dict into the future. In our preliminary experiments, we found
that higher values for p increases computation when fitting the

model. For our Markov models, we followed PRESS’s method
which uses 40 states and digitises the data into equal-sized
bins. We implemented a first-order and a second-order Markov
model and did not consider higher order than second order,
because the dimension of the transition matrix P increases
exponentially with the order p.

We implemented both PRESS and Agile according to
the descriptions in their respective papers. For our PRESS
implementation we use a mean-ratio of 0.1 (instead of 0.05),
because the 29 day Google dataset is more noisy compared to
the 7-hour dataset used in PRESS. In our Agile wavelet model,
we select a wavelet function and scale from PyWavelet’s [24]
wavelet library, that gives the best absolute distance between
the fitted values and the true values.

A Neural Network’s accuracy depends greatly on the
choice of hyper-parameters, with grid search being a common
approach to find suitable values for these parameters. We
follow Bergstra and Bengio [25], which suggests rather using
random search to find good parameters. Random search take
less time and do not require a grid to be set up beforehand. The
first 1000 samples of each machine is used to search for hyper-
parameters using the best RMSE on a validation set (10% of
the 1000 samples), we find a network for each machine.

Ensemble models: After initial implementation and eval-
uation of individual methods is done, we identify three top
performing models and combine these into ensemble models.
We investigate two combination methods: an average model
(denoted as AvgModel) and a Feed-Forward Neural Network
(FFNN) combination model (denoted as Combined). The Avg-
Model weights forecasts produced by each model equally and
combines to produce new forecasts per forecasting window.
For our Combined ensemble model, we use a 3-layer FFNN
(3 input neurons, 2 hidden neurons and 1 output neuron) and
train it on the first 30 forecasts. Using this network we predict
the next forecasting window and update the network on the
previous window’s true values.

V. EVALUATION AND RESULTS

In this section. we discuss the evaluation results of all
the methods investigated, evaluated using the generic and
provisioning specific metrics discussed above. All results are
whisker-box-plots with the top and the bottom of the box
represents the 25th and 75th percentile of data across randomly
selected 100 machines and the whisker ends represents the 90th
and 10th percentile values respectively. The best and worst
performing methods (excluding the two ensemble models) are
highlighted in each plot, using a green solid-line and red
dashed ellipses respectively. The three methods that performed
the best and used in the ensemble models, are: AR(30), Agile
and FFNN.

Figure 3 shows the RMSE results of every model. Holt-
Winters method performs worst and our AR(30) model per-
forms the best on both CPU and Memory usage. The Holt-
Winters method and our RNN rely on seasonality in data, thus
the large variance in their RMSE performance on Memory
usage data (see Figure 3b) may suggest that the Memory
data lacks seasonality. Both ensemble models outperform the
other methods with the exception of AR(30), indicating that
combining models does increase RMSE accuracy.

Figure 4 shows the Estimation score calculated in our
work, as the average of the over- and under-estimation rates per



H
oltW

in
ters

A
R

(3
0
)

1
st_M

arkov
2
n
d
_M

arkov
PR

E
S
S

A
g
ile

FFN
N

R
N

N

A
vg

M
od

el
C

om
b
in

ed

0.04

0.06

0.08

0.10

0.12

0.14

0.16

R
o
o
t 

M
e
a
n
 S

q
u
a
re

d
 E

rr
o
r

(a) RMSE on CPU usage.

H
oltW

in
ters

A
R

(3
0
)

1
st_M

arkov
2
n
d
_M

arkov
PR

E
S
S

A
g
ile

FFN
N

R
N

N

A
vg

M
od

el
C

om
b
in

ed

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

R
o
o
t 

M
e
a
n
 S

q
u
a
re

d
 E

rr
o
r

(b) RMSE on Memory usage.

Fig. 3: RMSE results for (a) CPU resource data and (b)
Memory resource data. (Lower is more accurate).

H
oltW

in
ters

A
R

(3
0
)

1
st_M

arkov
2
n
d
_M

arkov
PR

E
S
S

A
g
ile

FFN
N

R
N

N

A
vg

M
od

el
C

om
b
in

ed

0.25

0.30

0.35

0.40

0.45

0.50

E
st

im
a
ti

o
n
 s

co
re

(a) CPU usage data.

H
oltW

in
ters

A
R

(3
0
)

1
st_M

arkov
2
n
d
_M

arkov
PR

E
S
S

A
g
ile

FFN
N

R
N

N

A
vg

M
od

el
C

om
b
in

ed

0.0

0.1

0.2

0.3

0.4

0.5

0.6

E
st

im
a
ti

o
n
 s

co
re

(b) Memory usage data.

Fig. 4: Estimation score of all methods, calculated by com-
bining the over- and under-estimation rates. (Lower estimation
scores indicates more accurate predictions).

H
oltW

in
ters

A
R

(3
0
)

1
st_M

arkov
2
n
d
_M

arkov
PR

E
S
S

A
g
ile

FFN
N

R
N

N

A
vg

M
od

el
C

om
b
in

ed

0.10

0.15

0.20

0.25

0.30

0.35

0.40

C
o
rr

e
ct

 P
re

d
ic

ti
o
n
 (

w
it

h
in

 +
- 

1
0
 %

)

(a) CPU usage usage.

H
oltW

in
ters

A
R

(3
0
)

1
st_M

arkov
2
n
d
_M

arkov
PR

E
S
S

A
g
ile

FFN
N

R
N

N

A
vg

M
od

el
C

om
b
in

ed

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

C
o
rr

e
ct

 P
re

d
ic

ti
o
n
 (

w
it

h
in

 +
- 

1
0
 %

)

(b) Memory usage data.

Fig. 5: Correct estimation rates for (a) CPU and (b) Memory
usage.

method, with lower Estimation scores indicating more accurate
predictions. Our FFNN performs the best on the CPU usage
data (see Figure 4a) and the AR(30) method on Memory usage
data (see Figure 4b). Holt-Winters’ method under-performs on
both CPU and Memory usage data. Again the ensemble models
show an increase in accuracy with lower Estimation scores than
the individual methods.

Figure 5 shows the Correct estimation rates for all
methods evaluated. Higher correct predicted rates indicates
better accuracy and using this we see that our FFNN model
outperforms on CPU usage data and our AR(30) on Memory

H
oltW

in
ters

A
R

(3
0
)

1
st_M

arkov
2
n
d
_M

arkov
PR

E
S
S

A
g
ile

FFN
N

R
N

N

A
vg

M
od

el
C

om
b
in

ed

0.3

0.4

0.5

0.6

0.7

0.8

T
ru

e
 P

o
si

ti
v
e
 R

a
te

 p
e
r 

sa
m

p
le

 A
cc

u
ra

cy

(a) CPU usage data.

H
oltW

in
ters

A
R

(3
0
)

1
st_M

arkov
2
n
d
_M

arkov
PR

E
S
S

A
g
ile

FFN
N

R
N

N

A
vg

M
od

el
C

om
b
in

ed

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

T
ru

e
 P

o
si

ti
v
e
 R

a
te

 p
e
r 

sa
m

p
le

 A
cc

u
ra

cy

(b) Memory usage data.

H
oltW

in
ters

A
R

(3
0
)

1
st_M

arkov
2
n
d
_M

arkov
PR

E
S
S

A
g
ile

FFN
N

R
N

N

A
vg

M
od

el
C

om
b
in

ed

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Fa
ls

e
 P

o
si

ti
v
e
 R

a
te

 p
e
r 

sa
m

p
le

 A
cc

u
ra

cy

(c) CPU usage data.

H
oltW

in
ters

A
R

(3
0
)

1
st_M

arkov
2
n
d
_M

arkov
PR

E
S
S

A
g
ile

FFN
N

R
N

N

A
vg

M
od

el
C

om
b
in

ed

0.0

0.2

0.4

0.6

0.8

1.0

Fa
ls

e
 P

o
si

ti
v
e
 R

a
te

 p
e
r 

sa
m

p
le

 A
cc

u
ra

cy

(d) Memory usage data.

Fig. 6: True Positive and False Positive Rates for correct
overload predictions for CPU resource data in (a) and (c) and
Memory resource data in (b) and (d).

usage data. This confirms our Estimation score results and we
see the increase in accuracy when combining models. Holt-
Winters under-performs and again we see the large variance
of the RNN model on Memory data (see Figure 5b), confirming
the RMSE results.

The Estimation score and Correct prediction results indi-
cate the FFNN and AR(30) are suitable methods for provision-
ing clouds that exhibit Stable and Treading workload, because
these two methods will be able to accurately forecast on these
types of workloads.

Overload estimation: High TPRs and low FPRs are the
criteria for accurate forecasts as these forecasts are used in
provisioning problems where it is important to have resources
ready ahead of time. Figures 6a and 6c show that for CPU
usage data, our RNN model has a high TPR and our AR(30)
a low FPR. The first-order Markov chain performs the best
on Memory usage with AR(30) having a low FPR. The large
variance on RNN’s performance, specifically on the Memory
data (see Figure 6d) may suggest that the RNN model is biased
to predicting overload on the top 75% of cases.

A Bursty workload will lead to lower TPR, as overloaded
samples will be more difficult to predict, which may suggest
that our RNN is able to handle Bursty workload better than
other methods.

Overloaded state estimation: Figures 7a and 7c show
a surprising result, the Holt-Winters method outperforms the
other methods, having a high TPR and low FPR, with our
neural networks implementations second best. Our RNN per-
forms better on CPU data, which again suggests that the CPU
data has a seasonal component and the Memory data not. Our



H
oltW

in
ters

A
R

(3
0
)

1
st_M

arkov
2
n
d
_M

arkov
PR

E
S
S

A
g
ile

FFN
N

R
N

N

A
vg

M
od

el
C

om
b
in

ed

0.00

0.05

0.10

0.15

0.20

T
P
R

 f
o
r 

p
re

d
ic

ti
n
g
 t

h
e
 o

v
e
rl

o
a
d
 s

ta
te

(a) CPU usage data.

H
oltW

in
ters

A
R

(3
0
)

1
st_M

arkov
2
n
d
_M

arkov
PR

E
S
S

A
g
ile

FFN
N

R
N

N

A
vg

M
od

el
C

om
b
in

ed

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

T
P
R

 f
o
r 

p
re

d
ic

ti
n
g
 t

h
e
 o

v
e
rl

o
a
d
 s

ta
te

(b) Memory usage data.

H
oltW

in
ters

A
R

(3
0
)

1
st_M

arkov
2
n
d
_M

arkov
PR

E
S
S

A
g
ile

FFN
N

R
N

N

A
vg

M
od

el
C

om
b
in

ed

0.80

0.85

0.90

0.95

1.00

FP
R

 f
o
r 

p
re

d
ic

ti
n
g
 t

h
e
 n

o
t-

o
v
e
rl

o
a
d

(c) CPU usage data.

H
oltW

in
ters

A
R

(3
0
)

1
st_M

arkov
2
n
d
_M

arkov
PR

E
S
S

A
g
ile

FFN
N

R
N

N

A
vg

M
od

el
C

om
b
in

ed

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

FP
R

 f
o
r 

p
re

d
ic

ti
n
g
 t

h
e
 n

o
t-

o
v
e
rl

o
a
d

(d) Memory usage data.

Fig. 7: Overload state results: True Positive and False Positive
Rates for CPU resource data in (a) and (c) and Memory
resource data in (b) and (d).

FFNN outperforms the RNN on forecasting accuracy on the
Memory data, which is also surprising because a FFNN does
not have a way to remember state, which we thought would
be required for accurate overload state predictions. Future
investigation on the root cause of the results, need to be
performed.

Trending and Seasonal/Cyclic workloads present more
overloaded states for longer periods compared Stable and
Bursty workloads which indicates that both neural networks
are able to accurately forecast on these types of workloads.

Investigating PRESS and Agile results: From the results
above we find that PRESS and Agile are outperformed by
other methods, but specifiably both these methods are out-
performed by our AR(30) model. This does not agree with
the results obtained in their respective papers. To investigate
these findings, we identified the following differences in our
implementations compared to the explanations given in PRESS
and Agile’s papers: For PRESS: (1) we performed our
evaluations on Google’s 29 day resources dataset compared
to the 7 hour dataset used in [4]. (2) We performed medium-
to-long term forecasts (using a forecasting window of 30
samples) compared to their short term forecasts. (3) We used
a mean-ratio constraint of 0.1 instead of 0.05, for similar
signature patterns. (4) In our first-order Markov chain, we used
the frequency of state transitions to construct the transition
matrix P, as it was not clear which method PRESS used.

For Agile: (1) the specific wavelet functions employed
in Agile’s wavelet transforms are unknown and we used
wavelet functions provided by the PyWavelet [24] library. (2)
We set the order of our auto-regression model, equal to the

forecasting window (30 samples), which may differ from the
Auto-regression model Agile used to compare their wavelet-
based approach.

To investigate the statistical significance of our AR(30)
results compared to our PRESS and Agile results, we rerun all
evaluations four more times using a new set of 100 random
machines on each run. At a statistical significance level of
α = 0.05, we found that our AR(30) performed better than
both PRESS and Agile, with most p-values practically zero.
The only exceptions where for the Correct estimation rate
(p-value = 0.192) and the True Positive Rate for overloaded
state (p-value = 0.156), when comparing our AR(30) and our
Agile implementation.

VI. CONCLUSION

In this paper, we stated that to improve provisioning of
cloud hosted resources, accurate forecasts of the load ahead
of time are required. The problem this work addresses is that
there does not exist a set of metrics to evaluate the performance
accuracy of forecasting methods and in order to compare
prominent forecasting methods. We contributed by describing
provision specific evaluation metrics collected and adapted
from literature and used these to evaluate forecasting accuracy
of six prominent provisioning methods from literature. Using
the 2011 Google’s Cluster usage trace dataset [9], we evaluated
on CPU and Memory resource usage data and focussed on
comparing the performance of the forecasting methods inves-
tigated.

Our experiments show that:
(1) Auto-regression performs better than other methods when
compared across the majority of metrics on CPU and Memory
usage data.
(2) Holt-Winters’ method under-performed in all metrics ex-
cept for predicting of overload state on CPU usage data.
(3) Our first-order Markov chain method under-performs on
most of the metrics, which may be an indication why PRESS
underperformed as well.
(4) Using the top three methods; AR(30), Agile and Feed-
Forward Neural Network, the ensemble model increase the
forecasting accuracy across the majority of metrics. Our sim-
pler AvgModel performs better than the Combined model, with
the Combined model only showing minor improvements in
some cases.
(5) PRESS and Agile surprisingly under-performs and our
results do not agree with the results obtained in their respective
papers. We found that Auto-regression statistical significantly
outperforms both methods across the majority of metrics.

In future, we want to investigate the poor performance
of our version of PRESS and Agile, possibly comparing the
specific implementations. Furthermore, evaluate the methods
identified in a closed loop cloud environment and investigate
the possible increase in accuracy when having knowledge of
the application or workload. In conclusion, when choosing
forecasting methods for proactive provisioning, we believe that
it is more efficient to use less complex methods like Auto-
regression and put greater focus on tuning the model to the
specific cloud application and workload presented to the cloud
resources.

Source code available at:
http://github.com/Manrich121/ForecastingCloud.git



REFERENCES

[1] Google, “Compute Cloud Platform.” [Online]. Available:
https://cloud.google.com/

[2] Amazon, “Amazon Elastic Compute Cloud (EC2) - Scalable Cloud
Hosting.” [Online]. Available: http://aws.amazon.com/ec2/

[3] Q. Zhang, L. Cheng, and R. Boutaba, “Cloud computing: state-of-
the-art and research challenges,” Journal of Internet Services and
Applications, vol. 1, no. 1, pp. 7–18, Apr. 2010. [Online]. Available:
http://www.springerlink.com/index/10.1007/s13174-010-0007-6

[4] Z. Gong, X. Gu, and J. Wilkes, “PRESS: PRedictive Elastic
reSource Scaling for cloud systems,” in Proceedings of the 2010
International Conference on Network and Service Management,
CNSM 2010. Ieee, Oct. 2010, pp. 9–16. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5691343

[5] H. Nguyen, Z. Shen, X. Gu, S. Subbiah, and J. Wilkes, “AGILE: elastic
distributed resource scaling for Infrastructure-as-a-Service,” 10th Inter-
national Conference on Autonomic Computing (ICAC 13), p. 14, 2013.
[Online]. Available: http://dance.csc.ncsu.edu/papers/icac2013.pdf
http://cairo.csc.ncsu.edu/icac13/main 20130306120721 v2.pdf

[6] F. Caglar and A. Gokhale, “iOverbook: Intelligent Resource-
Overbooking to Support Soft Real-time Applications in
the Cloud,” in Cloud Computing (CLOUD), 2014 IEEE
7th International Conference on, 2014. [Online]. Avail-
able: http://www.dre.vanderbilt.edu/ gokhale/WWW/papers/CLOUD-
2014.pdf

[7] T. Lorido-Botrán, J. Miguel-Alonso, and J. A. Lozano, “Auto-scaling
Techniques for Elastic Applications in Cloud Environments,” Technical
Report: University of the Basque Country, pp. 11 – 14, 2012.

[8] J. L. Hellerstein, “Google cluster data,” Google research blog, Jan. 2010.
[9] J. Wilkes, “More Google cluster data,” Google research blog, Nov. 2011.

[Online]. Available: http://googleresearch.blogspot.com/2011/11/more-
google-cluster-data.html

[10] J. Huang, C. Li, and J. Yu, “Resource prediction based on
double exponential smoothing in cloud computing,” 2012 2nd
International Conference on Consumer Electronics, Communications
and Networks (CECNet), pp. 2056–2060, 2012. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6201461

[11] A. Chandra, W. Gong, and P. Shenoy, “Dynamic resource
allocation for shared data centers using online measurements,”
Proceedings of the 2003 ACM SIGMETRICS international
conference on Measurement and modeling of computer systems
- SIGMETRICS ’03, p. 300, 2003. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=781027.781067

[12] R. Prodan and V. Nae, “Prediction-based real-time resource provisioning
for massively multiplayer online games,” Future Generation Computer
Systems, vol. 25, no. 7, pp. 785–793, Jul. 2009. [Online]. Available:
http://linkinghub.elsevier.com/retrieve/pii/S0167739X08001933

[13] N. R. Farnum and L. W. Stanton, Quantitative Forecasting
Methods, ser. Duxbury series in statistics and decision sciences.
PWS-Kent Pub. Co., 1990, vol. 41. [Online]. Available:
http://books.google.co.za/books?id=9AWYmbMLYmUC

[14] M. Mao and M. Humphrey, “Auto-scaling to minimize cost and
meet application deadlines in cloud workflows,” 2011 International
Conference for High Performance Computing, Networking, Storage and
Analysis (SC), pp. 1–12, 2011.

[15] R. G. Brown, Smoothing, Forecasting and Predici-
tion of Discrete Time Series, ser. Dover Phoenix
Editions. Dover Publications, 1963. [Online]. Available:
https://books.google.co.za/books?id=XXFNW QaJYgC

[16] P. R. Winters, “Forecasting Sales by Exponentially Weighted Moving
Averages,” Management Science, vol. 6, no. 3, pp. 324–342, 1960.
[Online]. Available: http://dx.doi.org/10.1287/mnsc.6.3.324

[17] R. J. Hyndman and G. Athanasopoulos, Forecasting: Principles and
Practice, 2013. [Online]. Available: http://otexts.com/fpp/

[18] P. Bourke, “AutoRegression (AR),” 1998. [Online]. Available:
http://paulbourke.net/miscellaneous/ar/

[19] M. Craven, “Markov Chain Models (Part 1),” p. 8, 2011. [On-
line]. Available: https://www.biostat.wisc.edu/bmi576/lectures/markov-
chains-1.pdf

[20] J. L. Elman, “Finidng structure in time,” Cognitive Science,
vol. 14, no. 2, pp. 179–211, 1990. [Online]. Available:
http://onlinelibrary.wiley.com/doi/10.1207/s15516709cog1402 1/abstract
http://doi.wiley.com/10.1207/s15516709cog1402 1

[21] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning repre-
sentations by back-propagating errors,” Nature, vol. 323, no. 6088, pp.
533–536, 1986.

[22] Scikit-learn, “3.3. Model evaluation: quantifying the
quality of predictions.” [Online]. Available: http://scikit-
learn.org/stable/modules/model evaluation.html#regression-metrics

[23] Z. Liu and S. Cho, “Characterizing machines and workloads on a
Google cluster,” Proceedings of the International Conference on Paral-
lel Processing Workshops, pp. 397–403, 2012.

[24] F. Wasilewski, “PyWavelets - Discrete Wavelet Transform in Python.”
[Online]. Available: http://www.pybytes.com/pywavelets/#

[25] J. Bergstra and Y. Bengio, “Random Search for Hyper-Parameter
Optimization,” Journal of Machine Learning Research, vol. 13, pp. 281–
305, 2012.


