
Traffic Flow Analysis of Tor Pluggable Transports  
 

Khalid Shahbar   A. Nur Zincir-Heywood 

Faculty of Computer Science 

Dalhousie University 

Halifax, Canada 

{Shahbar, Zincir}@ cs.dal.ca  

 

 

 
Abstract— Tor provides the users the ability to use the 

Internet anonymously. On the Tor network, the users connect to 

three relays run by volunteers. The addresses of these relays are 

publicly available. Some organizations prevent access to Tor by 

blocking the addresses of these relays. To mitigate this, Tor has 

introduced the concept of bridges and pluggable transports. 

Bridges are relays that do not have publicly available addresses 

so that they can evade the blocking. Pluggable transports are 

used to obfuscate the connection to these bridges. In this paper, 

we investigate the robustness of these pluggable transports in 

evading the flow based traffic analysis and blocking systems.  

Keywords—Tor; Pluggable Transports; Traffic metadata; 

Traffic flow analysis  

I. INTRODUCTION  

The Tor network provides its users the ability to 
anonymously use the the Internet. It hides the users’ identities 
from the websites they browse. It also hides the websites 
visited by the Tor users from an observing entity such as 
censorship or other attacks against the Tor network.  This 
anonymity on the Tor network drove the censorships to search 
for different ways to block or to detect the Tor traffic. This 
starts by blocking the IP addresses of Tor relays run by 
volunteered users. Therefore, the Tor network provides its 
users with the ability to bypass such blocking by connecting to 
special relays, called bridges. Bridges do not have publicly 
available addresses [1]. However, this does not prevent 
censorships discovering these bridges and blocking them [2]. 
To this end, traffic classification (detection) is used to discover 
the Tor users connecting to a bridge. In return, the Tor network 
designed and developed the concept of Pluggable transports [3] 
to form the connection to the bridge and make it look like 
something different from Tor traffic. Therefore, using 
pluggable transports offers the Tor users access to the bridges, 
when the bridges are blocked by the censorship using their IP 
addresses. 

 The pluggable transports systems work different than other 
tools to provide access to the Tor network. Most of the other 
tools concentrate on hiding the content of the packets in a way 
that makes it hard to use deep packet inspection (DPI) to detect 
the connection to the bridges. But DPI is not the only method 
used to detect Tor traffic. Active probing and flow analysis are 
some of the other popular methods used to detect Tor traffic. 

Thus, in this research, we investigate the robustness of the 
pluggable transports in evading such methods.  

 The rest of this paper is organized as follows. Related 
work is reviewed in section II. The background of pluggable 
transports is summarized in section III. Section IV details the 
experiments performed whereas the results and the discussions 
are presented in section V and VI, respectively. Finally, the 
conclusions are drawn and the future work is discussed in 
section VII.  

II. RELATED WORK 

Classifying different types of encrypted traffic is a subject 
of many researches. Hjelmvik and John [4] used statistical 
analysis to do protocol classification. In their experiment, they 
classified the following protocols using SPID algorithm: 
BitTorrent, eDonkey, HTTP, SSL, and SSH. The results 
showed a recall rate of approximately 77%.  

La Mantia et al. [5] classified different applications by 
using stochastic packet inspection. They proposed to use 
multiple flows for the same application and the same two 
communication end points. They aim to extract the right set of 
features for the purpose of application classification.  In their 
experiments, they included HTTP, FTP, IMAP, POP, Skype, 
SMTP, SSH, and other protocols. Their results showed an 
average of 98% of true positive rate. 

Barker et al. [6] run a simulation to distinguish Tor traffic 
from HTTPS traffic. By using three machine learning 
algorithms (Random Forest, J48, and Adaboost), they could 
distinguish between the three classes (HTTPS, HTTP over Tor, 
HTTPS over Tor) with approximately  an average of 96% true 
positive rate in their simulation.  

In our previous paper [18], we implemented two different 
techniques to identify the type of application within the 
encrypted Tor traffic: Circuit level classification and Flow 
level classification. We compared different ML algorithms and 
flow exporter tools to achieve the best possible results. The 
evaluations showed that the C4.5 decision tree classifier and 
the Tranalyzer flow exporter performed the best. Based on 
those results, in this paper, we used Tranalyzer as the flow 
exporter and the C4.5 decision tree as the classifier.   

978-3-901882-77-7 © 2015 IFIP



In doing so, we aim to evaluate the implemented Tor 
pluggable transports on a real network environment and 
explore the robustness of these pluggable transports in evading 
the flow based traffic analysis and censorship system. 

 

III. PLUGGABLE TRANSPORTS 

Pluggable transports have become a necessary requirement 
for some of the Tor network users who cannot have access to 
the Tor bridges [8] [9]. Tor provides the framework 
(Obfsproxy [13]) to developers to integrate their obfuscating 
tools with Tor, or to write a completely new obfuscating proxy 
for Tor. 

A. Flashproxy 

FlashProxy [10] is a proxy tool devolved using JavaScript. 
It allows the Tor user to access the Tor relay using 
continuously changing IP addresses. These addresses are used 
to present the visitors to the FlashProxy supported websites. A 
Flashproxy JavaScript code is included in these websites in 
order to provide the Flashproxy services to the Tor users.   

B. Scramblesuit 

Scramblesuit [11] works within the Obfsproxy that Tor 
provides for pluggable transport plugin. This tool works with 
the transport layer to obfuscate the application used. Authors 
claim that Scramblesuit resist the active probing and the flow 
signature used by the censorships to block the services from 
the users.  

C. Format-Transforming Encryption (FTE) 

This tool changes the encrypted traffic to look like another 
protocol such as HTTP. FTE [12] mainly works to evade the 
DPI method from identifying the protocol. It takes any Regex 
that the user wants the traffic to look like. Then lets the 
ciphertext to follow the shape (traffic form) of this regex. This 
way, the DPI identifies the ciphertext as the regex that the user 
wants it to be (such as HTTP).   

D. Meek 

Meek [14] uses popular websites (Google – Amazon –
Azure) to redirect the user request to the Tor bridge. The Tor 
client sends a HTTPS request to one of these sites. The header 
of the HTTPS contains the required connection to the bridge 
running the meek server. The main idea behind this method is 
to use domains (such as Google, Amazon etc.) that are not 
(most likely) blocked. The user can also configure meek to use 
other websites other than the three default ones used by Tor. 
This requires that a Content Delivery Network (CDN) is also 
configured in the new domains that are used. 

E. Obfs3 

Obfs3 [15] is an obfuscator for the TCP protocol layer. It is 
used by Tor to prevent content analysis to discover Tor. Obfs3 
uses modified Diffie Hellman key exchange. The use of Diffie 
Hellman is to enhance the security level for the key exchange 
and prevent compromising of the key during the exchange 
process. Obfs3 does not change the data length. It mainly 
focuses on hiding Tor characteristics to make it hard to detect 
by content search used by the censorships. 

 

IV. EXPERIMENTS AND EVALUATION 

In our experiments, we configured four virtual machines 
and one Ubuntu Desktop 12.04. All the machines configured to 
use one pluggable transport at a time to connect to the Tor 
network. The traffic data are collected from these five 
machines. Once the machines connected to the Tor network, an 
automated script starts to browse different websites then closes 
the connection after the browsing (or watching the videos etc.) 
activities are completed. This process repeats until we collect 
sufficient amount of data. We used Tranalyzer [16] to extract 
the flows and Weka [17] for classification. The following 
details the experiments for each pluggable transport and the 
amount of data collected: 

 

A. Obfs3Traffic 

The data for the Obfs3 bridge connection have been 
collected from connections to two bridges. The first bridge was 
configured by using  the recommended bridge setting in the 
Tor browser (Obfs3). The port used in this bridge was port 80 
(one of the well-known ports assigned for HTTP). Even though 
the flow characteristics do not depend on the port number to 
identify the type of protocol used in the connection, HTTP 
traffic is included in our background traffic to compare the 
ability of the classifier to distinguish between two different 
applications while both use the same port number.  

The second bridge was configured by running a node as a 
bridge and could accept Obfs3 connections. Then four virtual 
machines running Ubuntu Desktop 12.04 were configured to 
use our Obfs3 bridge to connect to the Tor network. The port 
number used was a dynamic port number. The total amount of 
Obfs3 traffic captured in our experiments is ~20 GB with 
16953 flows. 

B. FTE Traffic 

The FTE data were collected from five machines with 
Ubuntu Desktop 12.04 as the operating system. Four of them 
were running virtual machines. The data were collected via 
connecting to five different FTE servers. The total amount of 
FTE traffic collected is ~23  GB. The number of collected 
flows is 106549.   

C. Scramblesuit Traffic 

In addition to active probing DPI resistance, Scramblesuit 
is designed to resist flow analysis by generating different flows 
for every Scramblesuit server. For this reason, we tried to 
collect different flows from multiple Scramblesuit servers. By 
using the bridge database, we collected our Scramblesuit data 
from connecting to 22 different Scramblesuit servers. The 
importance of having different servers is to have a variety of 
behaviors based on the design of Scramblesuit that changes the 
server flow for every server. The total number of flows 
collected from these 22 servers is 10649. The total amount of 
Scramblesuit traffic collected is ~22 GB.  

 

 

 



 

TABLE I. EVALUATION RESULTS USING 10-FOLD CROSS VALIDATION. 

 

 

 

D. Meek Traffic 

Meek makes connections with popular websites that provide 
services used by a wide range of users. These services include 
Google, Amazon, and Azure. For example, when Google is 
used as the front domain for Meek, then multiple addresses 
appear with this setting all belong to Google. In our 
experiments, the total number of flows is 43152. The data size 
is ~22 GB.   

  

E. Flashproxy Traffic 

In Tor, usually user starts the connection to the bridge. 
However, in Flashproxy, it is the other way around; the Tor 
user will receive connections from the visitors of the 
Flashproxy supported websites. This requires that the user has 
the ability or the access to do port forwarding if he/she is 
behind a NAT or has an open port configured to listen for 
incoming connections. The number of connections is high 
compared to the other pluggable transports. In our experiments, 
the total number of Flashproxy flows is 172331. The data size 
is ~ 11 GB.  

 

F. Other Traffic 

Pluggable transports are used by Tor to obfuscate Tor 
traffic in different flavors. To study the efficiency of these 
tools, pluggable transports traffic should be compared to the 
flavor of traffic they are trying to mimic and with different 
types of encrypted traffic. Thus, we added five different types 
of traffic as the background non-Tor (normal) traffic as 
follows:  ~26 GB of peer-to-peer BitTorrent traffic,  ~24 GB of 
encrypted BitTorrent traffic also collected, ~29 GB of SSH 
traffic, ~1 GB of HTTPS (SSL) traffic, and ~0.5 GB of HTTP 
traffic. 

 

 

Fig. 1 Duration vs Transferred data  

 

 

V. RESULTS  

 

We performed evaluations using the 10-fold cross 
validation technique on the datasets. The detailed results of this 
approach are shown in Table I. The amount of data transferred 
in a specific duration depends on the applications that are 
generating the traffic. For example, HTTP traffic tends to have 
low duration and low traffic volume. BitTorrent has higher 
volume than HTTP because of the file sharing and has low to 
medium duration. On other hand, Obfs3 has high duration and 
the high traffic volume (data transfer). This is because when 
the user connects to Obfs3 bridge, the connection stays active 
as long as the user is using Tor. Fig. 1 shows a sample of 100 
instances; 10 instances for every traffic type from our data set. 

 

 

VI. DISCUSSION  

In our experiments, we observed that the pluggable 
transports could have different flow behaviors than the other 
types of traffic as detailed in the following subsections. 

 

A. Number and repetition of connections 

It is noted that the number of connections made by a Tor 
user, when configuring a Tor browser to use the pluggable 
transport, reflects the type of pluggable transport. Scramblesuit 
and Obfs3 users make connections to one bridge during the 
duration of the user connection to the Tor network. In contrast, 
Flashproxy user receives multiple connections over a short 
period of time from multiple IP addresses. This is based on the 
mechanism that Flashproxy uses and makes using Flashproxy 
hard to block as these connections live for a short period and 

 
Class 

TP 

Rate 

% 

FP 

Rate 

% 

Pre-

cision 

% 

Recall 

% 

F-

Measure 

% 

Background 

Traffic 

HTTP 99 0.1 99 99 99 

HTTPS 94 0 95 94 95 

SSH 99 0 99 99 99 

BT 94 2.5 84 94 89 

BTecr 89 0.9 96 89 92 

Pluggable 
Transports 

Traffic 

FTE 99 0 99 99 99 

Scramble 

suit 
98 0.1 92 98 95 

Meek 99 0 99 99 99 

Flash 

proxy 
99 0.1 99 99 99 

Obfs3 99 0 99 99 99 

Overall 
Correctly 
Classified 
Instances 

97% 



continuously come from different IP addresses.  On the other 
hand, a Meek user makes connections to addresses registered 
with the high level domain name used such as Google. Meek 
uses these addresses as long as the Meek user is still connected 
to the Tor network using the same domain. However, an FTE 
user makes multiple connections resulting in traffic looking 
like HTTP.  

 

B. Transferred data and the number of connections 

While analyzing the amount of data sent and received 
compared to the number of connections that the pluggable 
transport users make, we observed that the relationship 
between these two variables shows which type of pluggable 
transport is used by the user. For example, a non-Tor user 
establishes multiple connections to download a file when using 
BitTorrent. The number of connections is high and at the same 
time the amount of data transferred is relatively high, too. In 
contrast, when using the pluggable transport, especially for 
Flashproxy, the number of connections is high but the amount 
of data is low compared to BitTorrent.  

 

C. Duration 

When the Tor user configures the Tor browser to use one of 
the supported pluggable transports over his/her connection with 
the Tor network, the duration of the connection is relatively 
high compared to a non-Tor user who is browsing websites. 
Even though if the non-Tor user browses only one website for 
a long time, this time is much less than a Tor user who is 
browsing multiple websites. In this case, the duration of the 
browsing of multiple websites associated with the Tor user 
points to one connection. The connection duration in most 
pluggable transports distinguishes the Tor users even if the 
pluggable transport obfuscates the traffic to look like random 
strings or HTTP traffic. 

 

VII. CONCLUSION  

Tor pluggable transports with their different forms provide 
evasions or resistance to censorships. Obfsproxy is the 
framework used by these pluggable transports to obfuscate the 
user connection to the Tor network. This obfuscation mainly 
concentrates on hiding the contents that make the connections 
to the Tor network recognizable. Consequently, using deep 
packet inspection cannot detect them as Tor. Pluggable 
transports successfully obfuscated Tor traffic to look like 
random or different forms of traffic. At the same time, this 
success to hide the content is not for free. The obfuscation in 
the pluggable transports changes the content shape distinct 
from Tor and therefor creates a fingerprint for the obfuscated 
pluggable transports. The results in this work show that 
pluggable transports’ flows have their own unique fingerprints 
which make them recognizable.       

 Future work will explore the usage of other Tor traffic 
traces as well as other data mining algorithms for studying the 
best practices for feature selection and training set formations. 

ACKNOWLEDGMENT 
 

This research is partially supported by the Natural Science 
and Engineering Research Council of Canada (NSERC) grant, 
and is conducted as part of the Dalhousie NIMS Lab at 
http://projects.cs.dal.ca/projectx/. The first author would like to 
thank the Ministry of Higher Education in Saudi Arabia for his 
scholarship. 

REFERENCES 

 
[1] Tor Bridges. [Online]. Available: 

https://www.torproject.org/docs/bridges.html.en 

[2] Z. Ling, J. Luo, W. Yu, M. Yang, and  X. Fu, "Extensive analysis and 
large-scale empirical evaluation of tor bridge discovery," in INFOCOM, 
2012 Proceedings IEEE, 2012. 

[3] Tor Pluggable Transports. [Online]. Available: 
https://www.torproject.org/docs/pluggable-transports.html.en 

[4] E. Hjelmvik, and W. John, “Breaking and Improving Protocol 
Obfuscation”. Department of Computer Science and Engineering, 
Chalmers University of Technology, Technical Report No. 2010-05, 
ISSN 1652-926X, 2010. 

[5] G. La Mantia, D. Rossi, A. Finamore, M. Mellia, and M. Meo,“
Stochastic Packet Inspection for TCP Traffic, ” in 2010 IEEE 
International Conference on Communications. IEEE, May 2010, pp. 1–
6. 

[6] J. Barker, P. Hannay, and P. Szewczyk, "Using traffic analysis to 
identify the second generation onion Router," in the   9th IFIP 
International Conference on  embedded and ubiquitous computing, 
Melbourne, AUS, 2011, pp.72-78. 

[7] A. Houmansadr, C. Brubaker, and V. Shmatikov, “The parrot is dead: 
Observing unobservable network communications,” in Proc. of IEEE 
S&P, 2013. 

[8] T. Wilde. Great firewall Tor probing circa. [Online]. Available: 
https://gist.github.com/twilde/da3c7a9af01d74cd7de7  

[9] P. Winter, and S. Lindskog, “How the great firewall of China is 
blocking Tor,” in Proceedings of the 2nd USENIX Workshop on Free 
and Open Communications on the Internet , USENIX Association,2012. 

[10] D. Fifield, N. Hardison, J. Ellithrope, E. Stark, R. Dingledine, D. Boneh, 
and P. Porras, “Evading Censorship with Browser-Based Proxies,” In 
PETS, 2012. 

[11] P. Winter, T. Pulls, and J. Fuss. “ScrambleSuit: A Polymorphic Network 
Protocol to Circumvent Censorship,” In Workshop on Privacy in the 
Electronic Society, Berlin, Germany, 2013. ACM. 

[12] K. Dyer, S. Coull, T. Ristenpart and T. Shrimpton, “Protocol 
Misidentication Made Easy with Format-Transforming Encryption," 
ACM SIGSAC Conference on Computer and Commu- nication 
Security, CCS'13, pp. 61-72, ACM, 2013. 

[13] Obfsproxy. [Online]. Availabe: 
https://www.torproject.org/projects/obfsproxy.html.en 

[14] Meek. [Online]. Available: 
https://trac.torproject.org/projects/tor/wiki/doc/meek 

[15] Obfs3. [Online]. Available: https://gitweb.torproject.org/pluggable-
transports/obfsproxy.git/tree/doc/obfs3/obfs3-protocol-spec.txt 

[16] TRANALYZER2 [Online]. Available: http://tranalyzer.com/ 

[17] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. 
Witten,”The WEKA data mining software: an update,” SIGKDD 
Explorations, vol. 11, no. 1, pp. 10-18, 20 

[18] K. Shahbar, and A. N. Zincir-Heywood, “Benchmarking two techniques 
for Tor classification:  Flow level and Circuit level classification,”. in 
IEEE Symposium on Computational Intelligence in Cyber Security, 
2014. 

 

 




