
Proactive Failure Detection Learning Generation
Patterns of Large-scale Network Logs

Tatsuaki Kimura, Akio Watanabe, Tsuyoshi Toyono, and Keisuke Ishibashi
NTT Network Technology Laboratories, NTT Corporation,

Mushishino-shi Tokyo, 180-8585 Japan
Email: {kimura.tatsuaki, watanabe.a, toyono.tsuyoshi, ishibashi.keisuke}@lab.ntt.co.jp

Abstract—With the growth of services in IP networks, network
operators are required to perform proactive operation that
quickly detects the signs of critical failures and prevents future
problems. Network log data, including router syslog, are rich
sources for such operations. However, it has become impossible
to find genuinely important logs that lead to serious problems
due to the large volume and complexity of log data. We propose
a log analysis system for proactive detection of failures. Our
key observation is that the abnormality of logs depends on not
just the keywords in the messages (e.g. ERROR, FAIL), but
generation patterns such as burstiness. Our system consists of
three functions: (i) extracting log templates automatically and
quickly from a massive amount of unstructured log data; (ii)
constructing log feature vectors to characterize the generation
patterns of logs; and (iii) using a supervised machine learning
approach to associate failures with the log data that appeared
before them. We validated our system using real log data collected
from a large network and determined its effectiveness.

I. INTRODUCTION

Various services (e.g. IPTV, video streaming, VoIP, and
internet gaming) have been deployed on recent large IP
networks, in which network operators are required to perform
proactive operations not current reactive operations. Service
providers in fierce competition demand higher quality and
reliability of the network than in previous decades. Network
operators need to detect even a slight temporal event, such
as a minute disconnection, because it may lead to a serious
problem and service providers may suffer significant loss.

Router syslogs and alert logs generated in Network Manage-
ment Systems (NMSs) are important information for current
network operation. Alert messages include Simple Network
Management Protocol (SNMP) trap messages Table I lists
examples of logs messages. These logs contain detailed infor-
mation of network elements: not only critical hardware failures
but also reports on the normal status of various protocols and
layers. Therefore, network log data can be considered as rich
sources for performing proactive operations.

However, it has become difficult to find genuinely important
log messages that are related to major network problems due
to the following two reasons. First, log messages are a large
number of text messages written in an unstructured format. In
a large production network, the total volume of log messages
may be more than tens of millions per day. In addition, since
the format of logs vary by vendors or services, the types of log
messages are also large in multi-vendor environment. Second,
log messages are highly diverse because they contain various

types of network events ranging critical hardware failures
to normal login events of operators. It thus requires great
experiences and previous knowledge to find meaning of log
messages and make use of them.

In this paper, we propose a log analysis system for proactive
failure detection. The system automatically learns the rela-
tionship between critical failures and log messages without
using any previous knowledge on logs. By noticing such
anomalies in advance, network operators can perform proac-
tive operations such as preventive maintenance or arrangement
of spares. For a given chunk of log messages that has appeared
recently, the system automatically characterizes the generation
patterns of log messages and classifies whether the current
state may lead to critical failures. To use the rich features of
log data, we developed an online template extraction method
for our system. It can automatically and quickly transforms log
messages into log templates by using a similarity score based
on the tendency of each word to belong to a log template.
The log templates are messages without parameters, such as
IP addressees, and hostnames, and enables us to characterize
the statistical features of log messages. Next, we create log
feature vectors that characterize the generation patterns of
log messages such as frequency, periodicity, and burstiness.
Our key observation is that the abnormality of logs depends
on not the keywords in log messages but these log generation
patterns. For example, there are log messages that can lead to
failures when they occur in sudden burst, although they do not
affect the network when they occur alone. To automatically
associate the log data with the critical failures in the past,
we take a supervised machine learning approach by using
trouble tickets as training datasets. We validated our system
using a massive number of log data collected from a large
production network. The experimental results show that our
system can detect future network problems and achieve much
better classification than current monitoring systems.

The rest of this paper is organized as follows. Section II
summarizes the work related to our research. In Section III,
we explain our proposed system in detail. In Section IV, we
discuss several experiments that we conducted for evaluating
our system. Finally, we conclude the paper in Section V.

II. RELATED WORK

There are many commercial products for recent complicated
network management and operations. NMSs, e.g., [1], [2], [3],

978-3-901882-77-7 c⃝ 2015 IFIP

TABLE I
EXAMPLES OF LOG MESSAGES

timestamp host messages

1 2015/1/1T00:00:00 HOST X %TRACKING-5-STATE: 1 interface Fa0/0 line-protocol Up− >Down
2 2015/1/1T00:00:00 HOST X %LINK-3-UPDOWN: Interface FastEthernet 0/0, changed state to down
3 2015/1/1T00:00:05 10.1.1.2 %SYS-5-CONFIG I: Configured from console by vty0 (10.1.1.2)
4 2015/1/1T00:00:10 HOST Y 100 login : LOGIN INFORMATION : User XXX logged in from host HOST X on device X
5 2015/1/1T00:00:11 HOST Y chassisd [111] : CHASSISD BLOWERS SPEED : Fans and impellers are now running at normal speed
6 2015/1/1T00:00:15 10.1.1.3 SNMP trap: CPU utilization exceeds threshold (96.9 % > 90 %)
7 2015/1/1T00:01:00 10.1.1.3 Ping Timed Out (6 / 6)

visualizes various metrics of network elements, such as traffic,
and CPU utilization, and raise alarms based on predefined
rules, e.g., keywords, severity. However, these rules often
indicate apparently critical statuses and cannot capture the
temporal abnormal statuses that may cause serious problems
in the future. Splunk [5] is a log analysis platform, which
collects, makes indexes, and visualizes logs. There are also
many similar services that helps in fast analysis of data such
as Logentries [4]. However, it requires great skills and domain
knowledge to make efficient use of these products such as alert
rule finding and log format definition.

Research of machine generated log data has increased in
recent years. Yamanishi et al. [21] proposed a technique to
detect system failure from server syslogs using a mixture of
hidden Markov models. A system log mining method using
only frequency was proposed [13]. Zheng et al. [22] introduced
a log preprocessing method of filtering important logs. Xu
et al. [20] analyzed console logs of large-scale hadoop systems
and proposed a PCA-based anomaly detection method. A
setwork IDS alerts classification method via a frequent item
set mining approach was proposed in [19]. Fu et al. [10]
introduced an anomaly detection technique by learning normal
system behavior with a finite state automaton. The above
studies focused on anomaly detection in an unsupervised
manner; however, we focused on finding the signs of failures
appeared in the past. Thus, we took a supervised machine
learning method and associated failures described in trouble
tickets and log messages occurred before them. SyslogDi-
gest [14] targets the router syslogs in a Tier 1 scale network;
however, it just constructs digest information by grouping log
messages within relevant routers. Kimura et al. [11] proposed
a modeling and event extraction method of network log data
using a tensor factorization approach; however, they did not
focus on detection of anomalies. The most closely related
work is that by Sipos et al. [17]. They presented a multiple-
instance learning approach for predicting equipment failures
by analyzing system log data. In contrast with our work, they
did not use the generation patterns of log data and automatic
template extraction. Similarly, Reidemeister et al. [16] also did
not use these features. They studied recurrent failure detection
from unstructured log based on a decision tree classifier.

III. PROPOSED SYSTEM

In this section, we explain the proposed proactive failure
detection system based on the generation patterns of logs data.

Fig. 1. System overview

A. System Overview
The main objective with our system is to automatically

learn the relationship between critical failures and log data
and to proactively detect an abnormal pattern of log messages
that leads to future problems by analyzing recent logs. Fig. 1
gives an overview of our system. It first splits log messages
by a certain time window (e.g. 15, 30 min.) and groups
them into chunks with the same hosts, called log chunks.
For a given log chunk, our system classifies whether current
status may lead to critical problems and reports it to network
operators. To achieve our goal, the system first preprocesses
unstructured logs and transforms each message into a log
template that enables us to characterize the log generation
patterns (Section III-B). It then creates log feature vectors that
characterize the generation patterns of log messages for each
log template in a log chunk (Section III-C), and the extracted
feature vectors are aggregated within a chunk (Section III-D).
Finally, machine learning classifier detects future failures for
the aggregated log feature vector (Section III-E). The classifier
model is trained offline using network trouble ticket data. We
now give detailed explanation for each component.

B. Online Log Template Extraction
Network logs include various types of messages ranging

from critical failure to normal console logs. We can see from
Table I that there is no unified rule for description of log
messages. Since messages with unique error IDs or process
IDs may never appear twice, it is unrealistic to statistically
analyze raw messages to extract features.Therefore, we need
to focus on not log messages but log templates, in which error
IDs or process IDs are removed. We give an example of log
template in Fig. 2. These log templates can be obtained from
vendors’ support pages or manuals; however, the formats may
change due to OS upgrades or maintenance.

Template extraction methods have been proposed e.g. [18],
[14], [11]; however, they are all offline batch schemes. The

Fig. 2. Examples of template clusters. Words in box represent parameter
words, and newly arriving one will be stacked in same positions.

TABLE II
CLASSES OF WORDS

class definition examples

1 only numbers or numbers
and symbols

1, 0/0, 10.1.1.1

2 numbers and letters host-01, IPv4, L2TP, vty0, Fa0/0
3 symbols and letters class-a, udp-port, aaa.cfg, line-protocol
4 only letters linkdown, state, interface
5 only symbols <, >, =, :

format of messages may dynamically change in the future;
in addition, we need to observe for a long period to capture
all templates. Therefore, we developed an online template
extraction method, which can learn templates in an incremental
manner. The main ideas of the method are: (i) classification of
each word based on the tendency to belong to a log template;
and (ii) online clustering of arriving messages by regarding
a log template as a cluster of messages and by using log
similarity between template clusters and messages based on
the classes of words. We explain the key features of our
method step by step below.
(a) Classification of words From the observation of log
messages, symbol words, such as “=” or “:”, are likely to
belong to log templates; and on the other hand, numerical
words, such as process IDs, can be considered as parameters.
According to this idea, we first classify the words in the sense
of tendency to belong to a log template. The detailed definition
of classification of words is described in Table II. Furthermore,
we define w = [wi] (i = 1, 2, . . . , 5) as a weight vector that
corresponds to the tendency to become log templates for each
class i. According to the definition, the value of w is typically
set as w1 ≤ w2 ≤ · · · ≤ w5.
(b) Online message clustering Next, for each arriving log
message, we perform online clustering so that the message is
assigned to the cluster with the highest similarity. To do this,
we define the following log similarity between a cluster C and
a message X as

LogSimilarity(C,X) = wtx/wtcx,

where x = [xi] represents the number of class i words in
X and cx = [cx,i] represents the number of class i words
appeared in both C and X . If the highest log similarity is less
than a predefined threshold E, then we create a new template
cluster from X .

1: template cluster set C = ∅;
2: for each message X do
3: GetWordClass(X);

C := FindHighestLogSimilarity(C, X);
4: if LogSimilarity(C,X) ≥ E then
5: append X to cluster C;
6: else
7: create a new cluster from X;

C := C ∪ {X};
8: end if
9: end for

Fig. 3. Online template extraction pseudo-code

(c) Parameter optimization To obtain the most efficient
result from our method, we need to optimize the weight
parameter w and E. From the definition of log similarity, we
can consider the problem of assigning a log message to a
cluster as a linear classification problem such that

sign(wt[x− Ecx])

{
≥ 0, assign X to C,
< 0, create a new cluster.

Thus, by feed-backing the result of whether the message is
correctly assigned to the template cluster or separated, we
can update and optimize w. In our experiment discussed
in Section IV, we used PA-I [8] as the learning algorithm,
which is a well-known online supervised classifier. Roughly
speaking, it makes a minimum change to its weight vector
when its prediction is wrong.

Fig. 3 shows the pseudo-code of online template extraction.
Our method first extracts the classes of words of an arriving X .
It then searches the template cluster that achieves the highest
LogSimilarity with X . If the value is larger than E, X is
aggregated to the cluster; otherwise, a new cluster is created
from X . From the definition of E, if E takes a larger value,
our method tends to split clusters more aggressively.

C. Feature Extraction
After template extraction, the system attempts to capture the

features of log templates in each log chunk to characterize the
generation patterns. Suppose that templates in a log chunk at
a host h are {t1, . . . , tN}. We then create a log feature vector
xi (i = 1, . . . , N) for each log template ti. The simplest way
to construct a log feature vector is a bag-of-words expression
of words used in natural language processing area. In this
expression, each element of a feature vector represents the
existence or the number of words in a log template. However,
this approach has a similar problem to a keyword-based
monitoring such that seemingly abnormal words, e.g. ERROR,
DOWN, are not always related to problems. For example, a user
session disconnection event causes log templates; however,
this occurs throughout the network on a daily basis. Therefore,
we focus on not words in log messages but the generation
patterns of log messages such as frequency, periodicity, or
burstiness. For instance, periodic log messages, e.g., those
induced by cron jobs and SNMP polling, can be considered

as normal. According to these observations, we select the
following features from log generation patterns:
(1) Frequency: First basic feature is the frequency of log
templates. Typically, frequent log messages, such as firewall
logs and user connection/disconnection messages, can be
considered as normal. On the other hand, operators need to
check infrequent messages.
(2) Periodicity: There are periodic log messages, such as
messages induced by cron jobs, Internet Control Message
Protocol and SNMP polling, and daily maintenance operations.
Although these periodic log message may be infrequent, they
are unlikely to be related to failures. Since a wide range of
granularity for the period can be considered, we define the
periodicity of log templates as the coefficient of variation of
the observed number of templates within each hour, day, and
week. Formally, for each log template t, let

Periodicity(t, ITVL) =
√

σ2
t,ITVL

/
Dt,ITVL,

where ITVL ∈ {hour, day, week} represents an interval and
Dt,ITVL and σt,ITVL are the mean and standard deviation of
the observed number of ts within the intervals. Although there
are many candidates for calculating periodicity, such as Fourier
transform, the reason we choose this simple metric is that
manual daily operation is not strictly periodic (e.g. some are
done in the morning and some are done in the evening).
(3) Burstiness: Some log messages become failures when
they occur in sudden burst, although the message itself is
not critical when it appears alone. For example, a single bit
error at a certain module will be fixed by its error correction
circuit and will not affect the network. However, if the bit
error occurs more frequently than before, the module has the
potential to crash and should be replaced (see e.g. Cisco’s
support page [7]). Therefore, burstiness of log messages is an
important feature for discovering the signs of future failures.

To calculate bursty features, we simply adopt Kleinberg’s
burst detection algorithm [12]. Briefly, this method models
the occurrence of an event using a finite state hidden Markov
model, in which each hidden state corresponds to a different
Poisson process with a different parameter. The state with a
higher Poisson parameter indicates the burst state. Thus, we
use this ‘burst level’ as a bursty feature. Note that we apply
Kleinberg’s algorithm to the log templates in a log chunk
combined with dummy log messages, which are artificially
generated using the mean value of the interval time of each
log template. By adding this, the algorithm can detect the base
line of interval time.
(4) Correlation with maintenance and failures: In an actual
production network, numerous maintenance operations occur
throughout the network daily. These operations cause various
log messages and sometimes confuse network operators be-
cause it is difficult to determine which log message is caused
by maintenance. To take into account the tendency to appear
during maintenance, we add the following feature:

(#of observed templates during maintenance)
(#of template observed in a whole period)

.

To calculate the above value, we use maintenance procedure
data, which describe what kind of maintenance is performed
when and which host. Similarly, we calculate the correlation
to failures by using trouble ticket data. This feature represents
the tendency to appear during the failures.

We calculate the above features (1)–(4) for each log tem-
plate {ti; i = 1, . . . , N}. Features (1) and (2) are also counted
for each tuple (host, log template), i.e., {(h, ti)}, to take into
account the host-specific information. By combining them, we
finally create a log feature vector xti for each log template.

D. Feature Aggregation

Next, our system aggregates log feature vectors and ob-
tains a single vector that fully characterizes the log chunk.
After feature extraction, we obtain the set of log feature
vectors {xt1 , . . . ,xtN } corresponding to log templates ti (i =
1, . . . , N) in a log chunk. To apply a binary classification
problem, the log feature vectors at host h are aggregated into
an aggregated log feature vector xh that has the same dimen-
sions as {xti}. Since each element of a log feature vector
has a different character, we apply a different aggregation
scheme for each element of a feature vector: More specifically,
our system calculate the mean values for (1) frequency, (2)
periodicity, and (4) correlation to failures; the max values for
(3) burstiness; and the minimum values for (4) correlation to
maintenance features, respectively.

E. Machine-Learning-Based Proactive Failure Detection

As a final component of our system, the system determines
whether the current status leads to a future problem for
each aggregated feature vector xh. To detect future failures
accurately, we adopt a supervised machine learning technique
using network trouble ticket data. More precisely, we consider
a binary classification problem in which given h-th failure
label yh ∈ {1,−1} (1 represents failure state, called positive
and −1 is normal state, called negative) and corresponding
feature vectors xh, we classify an unlabeled feature vector into
binaries. In our research, we adopt a support vector machine
(SVM) with the Gaussian kernel [9] for supervised machine
learning. An SVM is a well-known powerful tool for binary
classification. It constructs a hyperplane that maximizes the
margin between two classes corresponding to the labels. By
using the kernel, the input feature space is mapped into a
certain high dimensional space by non linear transformation;
and thus, the model can learn linearly non-separable dataset.

IV. EXPERIMENTS

In this section, we discuss our experimental results for both
online template extraction and future failure detection.

A. Online template extraction evaluation

We first explain the evaluation results for the online template
extraction part presented in Section III-B. Due to the lack
of ground truth data for log templates, we used the data in
another domain: Blue Gene/P data from Intrepid obtained
from the computer failure data repository (CFDR) hosted

TABLE III
ACCURACY OF TEMPLATE EXTRACTION

clustering threshold E Rand index # of templates

0.70 0.93159 172
0.90 0.93188 432
0.93 0.93190 437
0.95 0.90611 524
0.99 0.90245 538

0.999 0.78480 625

by USENIX [6]. We refer to this as the ‘BlueGene’ data.
BlueGene data consist of RAS log messages collected over
a period of 6 months on the Blue Gene/P Intrepid system
with 11, 054, 588 lines. Each message contains MSG_ID that
represents the types of messages, e.g., KERN_080B and
CARD_0206. Thus, we used this field as the true ‘label’ for
the log template of each message. To quantitatively evaluate
accuracy of log templates, we chose the Rand index [15],
which is a well-known measure for evaluating two different
clustering results. More precisely, for two arbitrary selected
messages X and Y from the data, we first set the following:
• True Positive (TP): X and Y have the same MSG_ID and
our system classifies them into the same template.
• True Negative (TN): X and Y have different MSG_IDs and
our system classifies them as different templates.
• False Positive (FP): X and Y have different MSG_IDs and
our system classifies them into the same template.
• False Negative (TN): X and Y have the same MSG_ID and
our system classifies them as different templates.
Using the above notations, the Rand index is defined as

RAND INDEX =
TP + TN

TP + TN + FN + FP
.

From the definition, the Rand index has a value between 0
and 1, with 0 indicating that the two datatests do not agree
on any pair of points and 1 indicating that the datasets are
exactly the same. In other words, the Rand index can be
considered as an accuracy of clustering. In Table. III, we
show the Rand index for different E. The table indicates
that in all cases, our template extraction method achieve high
Rand index values. Furthermore, we can see from the table
that the maximum score of Rand index was 0.93190 when
E = 0.93 and when E is greater than or less than 0.93, the
result worsened. These results come from the definition of E;
if E is large, then our method tends to split messages and
create more template clusters; otherwise, template clusters are
likely to be aggregated1.

B. Proactive failure detection evaluation
Next, we explain the evaluation results from the proactive

failure detection part of our system (presented in Subsec-
1The performance of our algorithm also depends on w determined by a

supervised classifier (see Section III-B). In this experiment, we chose w as
[0.1, 0.2, 1.0, 2.0, 3.0]. We conducted several experiments with different w
and fixed E, however, we found that E has more impact than varying w.
Thus, we do not discuss in detail here due to space limitations.

tions III-C, III-D, and III-E). We used several months of log
data captured from a certain working network with roughly
300 million lines. We also used 7,000 lines of maintenance
procedures to obtain the ‘correlation to maintenance’ feature.
Furthermore, to create training and test data, we selected
400 trouble ticket data sets. The trouble ticket data describes
when failures occur at which host and when they recover. We
excluded the cases in which network operators did not perform
any recovery from failure (e.g. auto-recovered case). We also
ignored the case when the templates that occurred both before
and after the failures are the same, because they were the out
of the scope of our research. To obtain labeled log chunks,
we extracted log messages in certain time windows before
each failure in the trouble ticket data set. For negative data
sets, we randomly cut certain time window with no failures
or maintenance and extracted log messages within that period.
Finally, we obtained 350 positive and negative samples.
Evaluation metrics: To compare the performance of proac-
tive detection system with different parameter settings, we
calculated AUC as an evaluation metrics. AUC is equal to
the probability that a classifier will rank a randomly chosen
positive vector higher than a randomly chosen negative one.
In other words, it represents how well feature spaces are
separated for given positive and negative instances. We also
calculated Recall, Precision, and F1-score to evaluate the
accuracy of the classification. Note that F1-score is the
harmonic mean of precision and recall, i.e.,

Recall =
TP

TP + FN
, Precision =

TP

TP + FP
,

F1-score =
2Recall · Precision

Recall + Precision
.

For given labeled data sets, we conducted 10-fold cross
validation.
Comparison across different feature selections: Fig. 4 and
5 show the F1-score, AUC, precision, and recall when se-
lected features are varied. We adopted template-based feature
creation method as our baseline of validation. Sipos et al. [17]
took the similar approach to this feature creation, in which we
created feature vectors using a bag-of-words expression (see
Section III-C) of log templates in a log chunk, while they
used message types described in their data. In the figures, ‘f’
denotes frequency, ‘p’ denotes periodicity, ‘c’ denotes correla-
tion with maintenance or failures, and ‘b’ denotes burstiness.
Furthermore, ‘template’ represents the template-based feature
creation. We can see from the figure that the feature space of
the proposed system achieved higher values than the template-
based feature space. The result indicates that the bag of words
expression is insufficient for detecting the anomalies, although
log templates have much richer information than keywords.
Finally, from Fig. 5, it can be said that the proposed system
improved succeeded in improving both precision (+5.8%) and
recall (+9.5%) simultaneously.
Log generation feature space vs. keyword feature space:
We next compare the feature spaces of the proposed method
with the keyword-based feature spaces. To construct a

 0.5

 0.6

 0.7

 0.8

 0.9

 1

f f+p f+p+c f+p+c+b template

va
lu

e

features

AUC
F-1Score

Fig. 4. F1-Scores and AUC results
for different features selected

 0.5

 0.6

 0.7

 0.8

 0.9

 1

f f+p f+p+c f+p+c+b template

va
lu

e

features

precision
recall

Fig. 5. Precision and recall results
for different features selected

keyword-based feature space, we used a bag-of-words ex-
pression of selected keywords. To do this, we calculate term
frequency and inverse template frequency (tf-itf) as the im-
portance measure of a keyword, and select top-M words. The
tf-itf for a keyword w is defined as the minor modified version
of the well-known tf-idf:

tf -itf(w) =
1

|Tw|
∑

t∈Tw

freq(w)

freq(t)
· log

(
|T |
|Tw|

+ 1

)
,

where T and Tw represent the total set of templates and set of
templates that include w, and freq(·) shows the frequency of a
log template or a word. The tf-itf value increases proportionally
to the number of times a word appears in templates, but is
offset by the frequency of the word in the total set of log
templates. Fig. 6 shows the results of the proposed feature
space against keyword-based feature space when varying the
number of selected keywords. The graph shows that the
features of the proposed method achieve a higher value than
all cases. This result indicates that the abnormality of logs
is determined by their generation patterns, rather than the
keywords in messages.
Impact of size of log chunk: Finally, we investigated the
impact of the size of a log chunk. Since the detection timing of
future failures relies on it, a shorter time window is desirable.
Fig. 7 shows the F1-score and AUC results when varying the
size of log chunks. As we can observe from the graph, AUC
increased with the time window size. The reason for this is
that if the size of time window is larger, more log messages
are included in a chunk; thus, there would be more chance for
a log feature vector to absorb important features. Although
AUC takes the worst value when the time window size is 5
min., it is higher than the cases with keyword-based feature
selection with time window size of 60 min.

C. Example of proactive failure detection
We give an interesting example our system detected. In

Fig. 8, we plot the time series of log templates corresponding
to the detected host. The vertical line shows when a fault
alarm was raised. The figure shows that there are burst log
templates before the fault alarm; and thus, our system proac-
tively detected the future problems. The described message
on this log templates show a pair of link down and up
messages, i.e., a link flap. Since the messages can be caused by
daily maintenance or connecting new subscribers, the network

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 100 200 300 400 500 600

AU
C

of selected keywords as feature

proposed w/ keywords
keyword-based

Fig. 6. Varying number of selected
keywords

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5 10 15 20 30 60

va
lu

e

time window size of log chunk (min.)

AUC
F-1Score

Fig. 7. Comparison with different
time window sizes

Fig. 8. Example of proactively detected failure. Vertical axis represents log
template and horizontal axis represents time. Each point corresponds to
occurrence of log template and vertical line indicates time fault alarm
were raised.

operators did not monitor this messages and missed them. On
the other hand, our system detected them because operations
that causes them are all done manually; and thus they have
less burstiness. In addition, we can see frequent log templates
and periodic ones below the burst ones. These messages are
associated with cron jobs and do not affect the network. As
a result, our system could successfully detect the sign of a
network failure, which cannot be detected by current keyword-
based or template-based monitoring.

V. CONCLUSION

We proposed a proactive failure detection system from
the generation patterns of network log messages. To extract
features from log data, we developed an online template
extraction method. We also developed a future extraction
method that characterizes the abnormality of logs based on
the generation patterns of logs. We confirmed that our system
can detect failures with higher accuracy than keyword-based
or template-based monitoring.

Although our system currently learns and detects abnormal
logs in offline, automatic update of the features and the model
is important in production networks. Thus, online proactive
failure detection is our future work. Furthermore, from the
observation to log data, there are groups of log messages
because of network topology or layer dependencies (see [11]).
We believe that adding such a characteristic to our features
helps in improving the accuracy of future failure detection.

REFERENCES

[1] CA Spectrum. http://www.ca.com/us/root-cause-analysis.aspx.
[2] HP Software. http://www8.hp.com/us/en/software/enterprise-software.

html.
[3] IBM Tivoli. http://www-01.ibm.com/software/tivoli.
[4] Logentries. http://logentries.com.
[5] Splunk. http://www.splunk.com.
[6] USENIX The computer failure data repository (CFDR). http://www.

usenix.org/cfdr-data.
[7] Cisco 7200 Series Routers Processor Memory Parity Errors Support Page.

http://www.cisco.com/c/en/us/support/docs/routers/7200-series-routers/
6345-crashes-pmpe.html

[8] K. Crammer, O. Dekel, J. Keshet, S. S.-Shwartz, and Y. Singer, Online
Passive-Aggressive Algorithms, In Proc. NIPS, 2003.

[9] C. Cortes and V. Vapnik, Support-vector Networks, Machine Learning,
vol. 20, no. 3, pp. 273–297, 1995.

[10] Q. Fu, J.-G. Lou, Y. Wang, and J. Li. Execution Anomaly Detection in
Distributed Systems through Unstructured Log Analysis, In Proc. ICDM,
2009.

[11] T. Kimura, K. Ishibashi, T. Mori, H. Sawada, T. Toyono, K. Nishimatsu,
A. Watanabe, A. Shimoda, and K. Shiomoto, Spatio-temporal Factoriza-
tion of Log Data for Understanding Large-scale Network Events, In Proc.
INFOCOM, 2014.

[12] J. Kleinberg, Bursty and Hierarchical Structure in Streams, In Proc.
KDD, 2002.

[13] C. Lim, N. Singh, and S. Yajnik, A Log Mining Approach to Failure
Analysis of Enterprise Telephony Systems, In Proc. DSN, 2008.

[14] T. Qiu, Z. Ge, D. Pei, J. Wang, and J. Xu, What Happened in my
Network? Mining Network Events from Router Syslogs, In Proc. IMC,
2010.

[15] W. M. Rand, Objective Criteria for the Evaluation of Clustering Meth-
ods, Journal of the American Statistical Association, vol. 66, no. 336,
pp. 846–850, 1971.

[16] T. Reidemeister, M. Jiang and P. A. S. Ward, Mining Unstructured Log
Files for Recurrent Fault Diagnosis, In Proc. IM (Mini Conf.), 2011.

[17] R. Sipos, D. Fradkin, F. Moerchen, and Z. Wang, Log-based Predictive
Maintenance, In Proc. SIGKDD, 2014.

[18] R. Vaarandi, A Data Clustering Algorithm for Mining Patterns from
Event Logs, In Proc. IPOM, 2003.

[19] R. Vaarandi and K. Podiņs̆, Network IDS Alert Classification with
Frequent Itemset Mining and Data Clustering, in Proc. CNSM, 2010.

[20] W. Xu, L. Huang, A. Fox, D. Patterson, and M. I. Jordan, Detecting
Large-scale System Problems by Mining Console Logs, In Proc. SOSP,
2009.

[21] K. Yamanishi and M. Maruyama. Dynamic Syslog Mining for Network
Failure Monitoring, In Proc. KDD, 2005.

[22] Z. Zheng, Z. Lan, B. H. Park, and A. Geist, System Log Pre-processing
to Improve Failure Prediction, In Proc. DSN, 2009.

