
Improving Network Security Through SDN in
Cloud Scenarios

Sebastian Seeber and Gabi Dreo Rodosek
Universität der Bundeswehr München, Faculty of Computer Science, 85577 Neubiberg, Germany

E-Mail: {sebastian.seeber, gabi.dreo}@unibw.de

Abstract—The recent emergence of cloud enabled applications
raises security concerns increasingly, since more and more
personal and company data is outsourced. The security of single
systems and services was broadly treated in the past. Cloud
systems and services require a more detailed observation of their
security requirements and fulfillment, since a huge amount of
services and systems coexist on one virtualization layer without
knowing other systems on the same layer. Only the cloud provider
has a rare idea of these systems’ behavior in his own cloud
environment. Therefore this work proposes a network security
approach which is aware of all existing systems and services
hosted by at least one cloud provider. The main idea is to
maintain a logically centralized database that provides latest
security related information about each system or service. Using
this knowledge base, our approach ponders a systems’ security
score, security requirements given by the systems’ owners and
the cloud provider, and reconfigures the network accordingly to
meet the security requirements for every system. In addition,
the reconfiguration process can be used to redirect traffic to
additional security systems, in order to obtain more detailed
information about a system and therefore increase the accuracy
of the specific systems’ security score.

I. INTRODUCTION

Network security remains a major challenge in the Cy-
berspace. The amount of endangerments which could attack
a network is a tough call. Worms, SPAM, Denial-of-Service
attacks or Botnets are only a small piece of threats occurring
every minute thousand fold in networks around the globe.
From inside the network it is necessary to detect such an
offense otherwise no mitigation is possible. In addition to these
two necessities a network can try to obscure their resources
and services to defend attacks. The latter is a more complex
task since a service must be public available, but yet hidden
for attackers at the same time. To face all these issues a holistic
solution has to be implemented, which takes into account
current vulnerabilities of connected systems as well as policies
that regulate access and quality of service. Software defined
networking (SDN) can support these ideas by providing a
logical centralized view and possibilities to steer specific types
of traffic in an easy way. Current approaches lack of a closed
view over a part of the network and don’t take into account
networks and services nearby. To overcome these issues we
propose a solution which benefits from existing approaches in
traditional networks like Intrusion Detection Systems (IDS),
vulnerability scanning, network policy enforcement or feder-
ated identity management to mention only part of them, and
combines these with the advantages of SDN to react in a com-

prehensive way to fulfill policies, defined requirements and
keep the offered service alive while under attack. This can’t
be done by a single SDN controller even if highly accurate
monitoring data is available. Our solution tries to distribute
several agents which are aware of the high level goals of the
policy administrators as well as the security concerns caused
by monitoring data, e.g. IDS and security regulations from
the respective cloud administrator. Afterwards these agents
cooperate together to ensure the compliance of the high level
goals, that result in various low level goals from local devices
or administrators in the observed area of each agent. Since
such a complex solution can’t be established immediately
solutions to implement such a system step-by-step have to
be developed. Our main goal is to investigate how traditional
monitoring and observation data can be used as a basis for
forwarding decisions in SDN enabled networks while ensuring
security and service quality concerns.
The remainder of this paper is organized as follows. Sec-
tion II discusses related work and Section III introduces
basics regarding the evolution of a vulnerability. In Section IV
we describe the problem in detail, whereas in Section V
our proposed approach is investigated. Section VI concludes
the paper and summarizes the next steps to implement our
proposed solution.

II. RELATED WORK

Network security has been a well investigated research area
in the past. Former approaches focus mainly on mitigating
traffic by separating networks in VLANs or blocking traffic
via middle-boxes (e.g. firewalls) [1] - a relatively static
approach. Subsequent efforts introduced a more dynamic
firewall behavior. Later research in this area was done
regarding network intrusion detection [2] and virus or
malware scanning in transparent proxies [3].
Focusing more on cloud security aspects rather than network
security shows a huge number of work already done in
this field. Since cloud computing increases the capacity
(bandwidth, storage, computing power) or even adds new
capabilities in a dynamic manner without investing in new
infrastructure, more and more information about individuals
and companies is placed there. This raises concerns about how
secure such an environment cloud be. Therefore considerable
effort was invested in three main parts of cloud computing,
since every service deployment model has its own security
issues [4]. These are described below:

978-3-901882-48-7 c© 2012 IFIP



a) Software as a Service - SaaS: SaaS can be separated
into a diversity of security issues. This paper aims to give a
short overview without going into details. Network security
issues in this delivery model is often provided via commonly
known SSL encryption endpoints depended on the cloud
provider, e.g. in the case of Amazon Web Services (AWS)
significant protection against traditional network security
issues, such as packet sniffing, MITM (Man-In-The-Middle)
attacks, IP spoofing, port scanning, is provided. The data
location problem, which is mostly tackled if business data is
outsourced in the cloud, is addressed in [5]. Data integrity
and data segregation is investigated in almost all cases
via generally accepted techniques (e.g. XML based APIs,
SOAP and REST services with transactions support and
data validation techniques). On behalf of data access and
authentication/authorization for accessing services, various
approaches were made by the authors of [6], [7], [8].

b) Platform as a Service - PaaS: PaaS tries to give
control to consumers that build applications on platforms.
So the provider should be aware of the security below the
application level (e.g. host and network intrusion prevention).
Most applications leverage the Enterprise Service Bus (ESB).
In these cases the ESB has to be secured directly, e.g. via
Web Service (WS) Security [9].

c) Infrastructure as a Service - IaaS: Customers using
IaaS have to be aware of all possible security issues of
their systems, except a security lack in the hypervisor
of the environment is out of their scope. Since the rapid
emergence of virtualization of everything in information
society, the control over data regardless of its physical
location raised utmost interest. Several techniques which
are applicable to IaaS scenarios are discussed in [10],
whereas the question of responsibility (cloud provider or
consumer) is not clearly answered and differs between all
aforementioned service models. As an example, Amazon’s
Elastic Compute Cloud (EC2) offers infrastructure as a service
where vendor responsibility for security is specified up to
the hypervisor. The consumer is in charge for security that
is related to the IT system including OS, applications and data.

Recent developments in the area of software defined
networking enable, facilitate or enhance security aspects
due to the controller’s central view and its capability to
reprogram the forwarding plane at any time [11], [12], [13].
The authors of [14] and [15] investigated several aspects
of Distributed Denial of Service (DDoS) detection and
mitigation by adding security applications upon the SDN
controller. In respect of botnet and worm propagation the
authors of [16] and [17] consider some concrete use-cases
of such applications. Basically the idea consists of a periodic
collection of network statistics from the forwarding plane in
a standardized manner. Afterwards a classification algorithm
is applied in order to detect any network anomalies. In order

to mitigate an anomaly the application instructs the controller
how to reconfigure the data plane. A different approach
was developed by Jafarian [18], that uses moving target
defense (MTD) algorithm. Implementing MTD algorithms in
traditional network is not a trivial task since there a central
authority is needed to determine - for each part of the system
to be protected - which key properties are hid or changed.
Reasoned in the centrality of the controller in SDN enabled
networks this becomes a straightforward task.

III. CHARACTERISTICS OF VULNERABILITIES

To understand the use case for a security solution based on
reasoned network reconfiguration for vulnerable systems, the
emergence of a vulnerability plays a major role. Therefore
the life cycle of a vulnerability according to [19] and [20] is
described below:

Vulnerability Points in Time: The emergence of a
vulnerability starts with Time of Discovery. At this stage it
poses a security risk, thus the vulnerability is not publicly
known the security risk is kept within limits until the time
it gets disclosed. Further investigations focusing this point
in time have to be made to estimate who and in which
extend could misuse an information about the respective
vulnerability. Subsequently, if an exploit for a vulnerability
is available this point is called Time of Exploitation. It
describes the first point in time where a vulnerability can be
exploited by a sequence of commands, data packages or a
tool originated by a hacker.
Security related information, to identify new threats to
relevant software is available on various places in the internet
(e.g. numerous mailing lists, CERTs, blogs, underground
sources), but typical internet users or system administrators
are not aware of all these information sources. In addition
such sources are not available for all known software
solutions and sometimes lack of reliability. For this purpose
the identification process is mostly done by experts that
provide necessary information about threats in structured
formats. The Time of Disclosure denotes the point in time
when this information is published through a trusted and
independent channel. Furthermore these details are equipped
with knowledge from security experts in a way that a risk
rating information is included.
To protect a system, in case a vulnerability and the respective
exploit is available, the software vendor releases a fix, a
patch or at first only a workaround (e.g. a configuration
change). This date is called Time of Patch. Since third party
developers may not have the insights necessary to solve the
vulnerability comprehensively, these fixes are not considered
here. Unfortunately patches or fixes are usually released after
time of disclosure and the information about the patch must
be manually correlated to the respective vulnerability.
The overall vulnerability life cycle and the three phases of
risk exposure are shown in Figure1. The exact sequence of
Time of Discovery, Time of Exploitation, Time of Disclosure
and Time of Patch is not fixed. Time of Patch and Time of
Exploitation can both be before, at, or after the time where



Time of Exploitation

Time of DisclosureTime of Discovery Time of Patch
Time of Patch 

deployed

Time

Black Risk Gray Risk White Risk

Figure 1. Vulnerability life cycle [19]

the vulnerability is disclosed (Time of Disclosure). The last
point in time when the patch is deployed depends on the
respective responsible or administrator for the vulnerable
system. Although several policies and guidelines facing
the fact of an always patched system exist, when hiring or
operating a server in a network, the numbers say something
else. The well know Heartbleed-Bug (CVE-2014-0160) [21]
was exploited and disclosed in April 2014. Shortly after a
patch was released and after one month half of the vulnerable
systems were patched, but again one and a half month
later (July 2014) the number of patched systems didn’t
increase [22]. The same behavior can be observed in end user
router environments [23]. To protect these systems, where
patches are not installed within a reasonable point in time and
during the time where a vulnerability is exposed and no patch
is available, we propose our approach described in Section IV.

Phases of Risk Exposure: The risks a system is exposed
depends on the vulnerability and the corresponding phase
where the system is currently in [19]. Possible phases can
be extracted from Figure 1 and are described in the following:
In the time between Time of Discovery and the time when
the patch is installed the system and therefore the users of
the systems are at risk. Statistical data regarding these phases
is accessible in [24]. During the first phase (Black Risk) a
closed group is aware of the vulnerability and able to exploit
it. On the one hand these group can consist of all from hackers
to criminals, who misuse the vulnerability for their gain. On
the other hand also researchers and vendors could be part
of this group working on a fix for this vulnerability. Since
the exposure of a vulnerability in this phase can have a high
security impact and the public is not aware of this knowledge,
it is called Black Risk.
The time between disclosure (Time of Disclosure) and
patch (Time of Patch) the user of a vulnerable system is waiting
for a fix or workaround from the vendor. In this case the
public is aware of the vulnerability, but no concrete fix from
the software vendor is provided. However, the fact that the

vulnerability is described in detail during the disclosure it is
possible to implement a third party workaround which may
defend the system from exposing the vulnerability. Another
possibility in this phase (Gray Risk) is to deactivate the system
or at least the vulnerable function. Since this is not applicable
in most cases, especially in cloud environments, our proposed
approach can support the mitigation of attacks facing this
vulnerability.
The duration of the last phase (White Risk) depends on the user
or administrator itself, since this describes the time between
the release of a patch and the implementation of this on the
system. In companies this depends on the information security
management, especially on the patch management process.
Also this phase can be addressed with our approach.

IV. NETWORK SECURITY IN CLOUD SCENARIOS

Network security in cloud provider networks differ from its
counterpart in traditional networks, since their networks in-
clude much more dynamics than traditional networks. Whereas
it is possible in traditional networks that a single administrator
or a small group of network administrators can change a
specific routing table entry or access control lists to change the
behavior of the network, traffic flow or give access to relevant
resources, this is not feasible in highly dynamic networks,
especially in cloud environments where virtual machines and
computing power are allocated and withhold in short time
periods without manual interaction. Another security drawback
in cloud environments is the variety of software and operating
systems, which are not under control of one organization and
therefore lead to new attack scenarios, like establishing access
through an unsecured system to a previously selected target,
which runs inside the same cloud environment.
To prevent such security endangerments in a cloud environ-
ment, access and security policies have to be deployed imme-
diately after a system is set up and redefined after every change
of the system, e.g. configuration changes through the systems’
administrator, updates or service modifications. An approach
has to be aware of all provided services and vulnerabilities
of a system running in the respective cloud. This can be



ensured through a requirement for an initial input during the
setup process of a new system, which includes relevant system
information, but it has to be updated continuously. A central
manager has to be aware of all properties of a system at
every point in time. Following this approach policies can
be applied on demand taking into account permanent and
temporary requirements for accessing and securing recently
deployed systems. The major challenges in this environment
are the high dynamics in deploying and displacing services
which includes provisioning of resources, especially network
enabled resources.

V. IMPROVING NETWORK SECURITY THROUGH SDN
As shortly described in Section IV when dealing with

cloud scenarios special requirements arise in respect of
security. Most security concepts work very well on common
data-center hardware and widely used software solutions.
Nevertheless these concepts are also valid in cloud scenarios,
but rather inefficient and error-prone, e.g. enabling a host-
based firewall on every virtual machine in the cloud requires
much more resources than blocking or permitting traffic on
the virtual switch every virtual machine is connected to. Using
SDN as a new promising network paradigm, opportunities
arise to merge service requirements, policies and security
issues that define precise goals and are implemented without
further manual interaction. Possible input values are manifold
and have to be translated into convincing high level goals,
which themselves cause a couple of low level goals and
decisions, being aware of the corresponding context where
they originated. To define such complex dependencies and
hierarchies of service requirements, policies and security
issues of existing approaches have to be adapted to interact
briefly together. The complexity of this approach leads
to a more detailed subdivision. At first Section V-A will
investigate what is the basis for policies. Furthermore Section
V-B explains the policy creation process, whereas Section V-C
describes how the aforementioned policies are applied to the
cloud system.

A. Basis of Policy Creation
Every decision and therefore every policy needs a basis

for decision making and policy creation. This basis needs
various input sources, which are divided based on their timely
changeability. Whereas the system assessment is changing
very slowly in time from the perspective of a single system or
service, the vulnerability assessment is changing faster, since
new CVEs are created, standardized and published based
on information from Computer Emergency Response Teams
(CERT) or in some cases individuals. Furthermore a source
for policy creation is needed, that provides security related
information very soon after an attack or vulnerability occurs.
For this purpose live detection mechanisms are used.

a) System Assessment: As a starting point for further
security, policy and in the end forwarding decisions our
approach starts with an inventory of all systems participating

in the cloud environment where this approach is deployed.
Detailed information (e.g. hardware architecture and
capabilities, operating system, link bandwidth) is necessary to
match common vulnerabilities and exposures (CVE) correctly
to deployed systems and services in the observed cloud
environment. In addition to this initial information a security
requirement criteria provided by the creator of the system is
necessary, since only he can provide information about the
intended security of the deployed system or service.

b) Vulnerability Assessment: Assessments regarding
possible vulnerabilities of installed services and systems in
a cloud environment should be performed by a vulnerability
scanner (e.g. OpenVAS [25], Nessus [26], SAINT [27])
and collected in a distributed database for every part of the
network. Following this approach depending on the network
properties different vulnerability scanners are used to ensure
highly accurate results. Since these results act as a basis
for further decisions they are stored and exchanged in a
standardized manner via common protocols. One could be
the Open Vulnerability and Assessment Language (OVAL),
which represents vulnerable states using an XML based
representation.

c) Live Detection: The latest information about
security incidents are reported from live detection systems,
e.g. different kinds (network-based, host-based, hybrid)
of Intrusion Detection Systems (IDS), firewall logging
or incident reporting from anti virus solutions. Theses
information is exchanged and stored in standardized formats
like IDMEF, as the authors of [28] proposed.

These three categories of data build the basis for the
policy creation process. All results are stored in distributed
databases, because a centralized architecture can pose a target
for attackers and exchanging only necessary information from
these various databases saves traffic. Taking into account all
aforementioned input datasets, for each system and service
three newly introduced scoring values are calculated. With
these values, which are described blow in Section V-B a
policy and forwarding strategy for traffic from and to these
services can be created.

B. Scoring and Policy Creation
The aim of the policy creation process is to define high

level goals based on datasets which induce several automated
low level decisions in the forwarding logic of switching
devices. Since SDN controllers expect mainly policies to
configure simple forwarding devices, the aggregation of results
and policy creation is done in an additional management
component. This component calculates three values: Security
Score, Trust Factor and Security Requirement, which are
described in detail below.

a) Security Score: The so called Security Score takes
into account the system and service capabilities together
with the detected security status out of the System and



Internet

IDS

Firewall

Virus Scanning

Security Manager

System / Service Assessment

Vulnerability Assessment

Live Detection

OpenStack Cloud

configuration

assessment

data collection

traffic

Figure 2. Overview of an SDN Enabled Network Security Scenario

Vulnerability Assessment process. Based on these input data,
a value is calculated that reflects a concrete security status for
a system providing a service at a give time. For example the
scoring is low, if an old operating system providing a web
service which has in addition some security gaps is used.
Furthermore this score can be reduced by showing anomalies
in the live detection process from an IDS for example.

b) Trust Factor: To record the security score over time a
trust factor is introduced which represents the trustworthiness
over time of a specific service and the underlying system.
Anomalies over time, like a recruited system as a part of a
botnet, could be detected by classifying normal and abnormal
behavior of a system. If such a modification inside a system
is detected the resultant policy will consider this in the right
way, e.g. forwarding the traffic to a detection system which
is specialized in botnet detection or mitigation.

c) Security Requirement: The security requirement is
dependent on the security needs which is initially defined
by the initiator (customer) of the system with the respective
service and the ones of the cloud provider. Therefore the
cloud provider defines several criteria like a time period,
depending on the contract, after a security patch has to be
installed. On the other side, the customer of a hired cloud
service defines also a security need, e.g. a value between 0
and 10 where 10 refers to a highly secure service, which
charges much more. These security requirements defined by
the customer depend also on the kind of data which is stored
and processed on the respective system.

Combining these three values results in a policy that de-
scribes high level goals e.g. what kind of security systems
have to be passed by traffic reaching or leaving a specific
service. The result is a policy that defines clearly requirements
for every individual service on individual systems in the
cloud environment. These requirements take care of security
considerations from costumers and cloud providers as well as
the current configuration and vulnerability of a service.

C. Policy Implementation
Knowing vulnerabilities of specific systems allows a logi-

cally centralized automation engine to define high level goals
that results e.g. in a reconfiguration of services or an alternative
traffic forwarding through detection and prevention systems
which are responsible for special kinds of vulnerabilities. Since
vulnerabilities can occur in short consecutive time intervals,
an automated traffic forwarding configuration constitutes an
innovation. In addition these network reconfiguration capa-
bilities, based on software defined networking, enable the
possibilities of a dynamic composition of security functions
and a transparent deployment.
The policy derived from the previous steps is applied to the
network via SDN, since this technique is fast and flexible
enough to reconfigure the cloud network environment accord-
ing to predefined and dynamic (e.g. results from live detection)
security requirements.

D. Evaluation Environment
An evaluation for this approach requires a fully configurable

cloud environment which supports SDN. In addition all in-
volved and above described systems for vulnerability scanning
and IDS, as well as cloud provisioning interfaces are required.
OpenStack is an open source software which supports all these
cloud requirements and it provides a virtual switch which can
be configured by an SDN controller. The security services
can be provided using traditional approaches: An IDS (e.g.
Snort [29]) can be attached to a virtual switch controlled by an
SDN controller, a firewall service provided by the commonly
known Packet Filter (pf) [30] used in OpenBSD or anti virus
scanning software integrated in a squid proxy. To start with a
rather simple environment in a first step services like DNS or
NTP can be deployed in the evaluation environment to produce
ground truth data as a basis for further analysis.

All the aforementioned components are put together and
build the environment shown in Figure 2. This scenario uses
traditional vulnerability scanning components and network
security components (e.g. IDS, Firewall, Virus Scanning) com-
bined using the SDN paradigm that enables the environment
to reconfigure the traffic forwarding, based on the proposed
service security score and the resulting policies. Additionally
the infrastructure can be used to transport all the data separated
by slices as proposed in [31] to eliminate the need for a
physically separated secure communication channel delivering
the results from the security components and minimizing
security risks.

VI. CONCLUSIONS AND PERSPECTIVES

The new network paradigm software defined networking
offers new opportunities for network security in cloud sce-
narios. It provides more flexibility and a faster reaction time,
if the conditions are changing, e.g. a network is under a
DDoS attack or a new zero-day exploit is up to mischief.
In addition our approach can address vulnerabilities where
a patch not yet exists (Gray Risk) or vulnerabilities where
a patch already exists, but is not implemented yet (White
Risk). Our proposed approach tries to use approved methods to



collect security related information about systems and services
deployed in cloud environments and match them with high
level security requirements defined by cloud providers and
system owners. These information is aggregated and classified
to define individual policies for every cloud service. Based on
these well-defined policies forwarding rules are generated and
implemented via software defined networking configuration
protocols, e.g. OpenFlow. These forwarding decisions can
mitigate malicious traffic from and to the cloud environment,
where the service is placed and they can give our approach
the possibility to obtain more and detailed information about a
service if needed. The evaluation will be done in an OpenStack
environment, since it provides almost all necessities for our
approach, like computing capabilities for service provisioning,
virtual switches for traffic forwarding implementations and
monitoring and measurements capabilities to be aware of what
happens in the evaluation environment. As one part of our
future work we will investigate security scoring mechanisms
to measure and compare the security of individual services.
This will most likely be done with correlation mechanism and
machine learning algorithms since huge datasets have to be
examined in near real time.

ACKNOWLEDGMENT

The authors wish to thank the members of the Chair
for Communication Systems and Internet Services at the
Universität der Bundeswehr München, headed by Prof. Dr.
Gabi Dreo Rodosek, for helpful discussions and valuable
comments on previous versions of this paper.
This work was partly funded by FLAMINGO, a Network of
Excellence project (ICT-318488) supported by the European
Commission under its Seventh Framework Programme.

REFERENCES

[1] A. Wool, “A quantitative study of firewall configuration errors,” Com-
puter, vol. 37, no. 6, pp. 62–67, June 2004.

[2] A. Sundaram, “An introduction to intrusion detection,” Crossroads,
vol. 2, no. 4, pp. 3–7, 1996.

[3] Z. Jiang, L. Zhu, and Q. Xiao, “Semi-proxy based on protocol analysis:
A new design of http anti-virus gateway,” in Networks Security Wireless
Communications and Trusted Computing (NSWCTC), 2010 Second
International Conference on, vol. 2, April 2010, pp. 430–433.

[4] B. Kandukuri, V. Paturi, and A. Rakshit, “Cloud security issues,” in
Services Computing, 2009. SCC ’09. IEEE International Conference on,
Sept 2009, pp. 517–520.

[5] Softlayer. Service level agreement and master service agreement. Last
visited on 2014-07-09. [Online]. Available: http://www.softlayer.com/
sla.html

[6] D. P. Kormann and A. D. Rubin, “Risks of the passport single signon
protocol,” Computer Networks, vol. 33, no. 1, pp. 51–58, 2000.

[7] K. D. Bowers, A. Juels, and A. Oprea, “Hail: a high-availability and
integrity layer for cloud storage,” in Proceedings of the 16th ACM
conference on Computer and communications security. ACM, 2009,
pp. 187–198.

[8] M. Blaze, J. Feigenbaum, J. Ioannidis, and A. D. Keromytis, “The role
of trust management in distributed systems security,” in Secure Internet
Programming. Springer, 1999, pp. 185–210.

[9] Oracle. Wiring through an enterprise service bus. Last visited on 2014-
07-09. [Online]. Available: http://www.oracle.com/technology/tech/soa/
mastering-soa-series/part2.html

[10] S. Subashini and V. Kavitha, “A survey on security issues in service
delivery models of cloud computing,” Journal of Network and Computer
Applications, vol. 34, no. 1, pp. 1–11, 2011.

[11] D. Kreutz, F. Ramos, and P. Verissimo, “Towards secure and depend-
able software-defined networks,” in Proceedings of the second ACM
SIGCOMM workshop on Hot topics in software defined networking.
ACM, 2013, pp. 55–60.

[12] S. Scott-Hayward, G. O’Callaghan, and S. Sezer, “Sdn security: A
survey,” in Future Networks and Services (SDN4FNS), 2013 IEEE SDN
for. IEEE, 2013, pp. 1–7.

[13] K. Benton, L. J. Camp, and C. Small, “Openflow vulnerability assess-
ment,” in Proceedings of the second ACM SIGCOMM workshop on Hot
topics in software defined networking. ACM, 2013, pp. 151–152.

[14] K. Giotis, C. Argyropoulos, G. Androulidakis, D. Kalogeras, and
V. Maglaris, “Combining openflow and sflow for an effective and scal-
able anomaly detection and mitigation mechanism on sdn environments,”
Computer Networks, vol. 62, pp. 122–136, 2014.

[15] R. Braga, E. Mota, and A. Passito, “Lightweight ddos flooding attack
detection using nox/openflow,” in Local Computer Networks (LCN),
2010 IEEE 35th Conference on. IEEE, 2010, pp. 408–415.

[16] N. Feamster, “Outsourcing home network security,” in Proceedings of
the 2010 ACM SIGCOMM workshop on Home networks. ACM, 2010,
pp. 37–42.

[17] R. Jin and B. Wang, “Malware detection for mobile devices using
software-defined networking,” in Research and Educational Experiment
Workshop (GREE), 2013 Second GENI. IEEE, 2013, pp. 81–88.

[18] J. H. Jafarian, E. Al-Shaer, and Q. Duan, “Openflow random host
mutation: transparent moving target defense using software defined
networking,” in Proceedings of the first workshop on Hot topics in
software defined networks. ACM, 2012, pp. 127–132.

[19] S. Frei, B. Tellenbach, and B. Plattner, “0-day patch exposing vendors
(in) security performance,” BlackHat Europe, 2008.

[20] BSI-Bundesamt für Sicherheit in der Informationstechnik, “Leben-
szyklus einer Schwachstelle,” https://www.allianz-fuer-cybersicherheit.
de/ACS/DE/_downloads/materialien/sensibilisierung/BSI-CS_027.pdf,
2014, online. Accessed 2014-07-09.

[21] Heartbleed. The Heartbleed Bug. Last visited on 2014-07-18. [Online].
Available: http://www.heartbleed.com/

[22] F. Scherschel, “Heartbleed-Aufräumaktion kommt zum Erliegen,” http:
//heise.de/-2236853, online. Accessed 2014-07-18.

[23] Ronald Eikenberg, “Das Router-Desaster: Fritzbox-Update gerät ins
Stocken,” http://heise.de/-2173043, 2014, online. Accessed 2014-07-18.

[24] S. Frei, M. May, U. Fiedler, and B. Plattner, “Large-scale vulnerability
analysis,” in Proceedings of the 2006 SIGCOMM workshop on Large-
scale attack defense. ACM, 2006, pp. 131–138.

[25] OpenVAS. OpenVAS (Open Vulnerability Assessment System). Last
visited on 2014-07-09. [Online]. Available: http://www.openvas.org

[26] Tenable. Nessus vulnerability scanner. Last visited on 2014-07-09.
[Online]. Available: http://www.tenable.com/products/nessus

[27] SAINT Corporation. System administrator’s integrated network
tool. Last visited on 2014-07-09. [Online]. Available: http:
//www.saintcorporation.com/

[28] R. Koch, M. Golling, and G. Dreo, “Evaluation of state of the art ids
message exchange protocols,” in International Conference on Commu-
nication and Network Security (CNS 2013), 2013.

[29] Sourcefire. Snort - network intrusion prevention and detection system.
Last visited on 2014-07-09. [Online]. Available: https://www.snort.org/

[30] OpenBSD. PF: Packet Filtering. Last visited on 2014-07-09. [Online].
Available: http://www.openbsd.org/faq/pf/filter.html

[31] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M. Casado, N. McK-
eown, and G. Parulkar, “Flowvisor: A network virtualization layer,”
OpenFlow Switch Consortium, Tech. Rep, 2009.


