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Abstract— Software Defined Networks (SDN) is an emergent
architecture that is dynamic, flexible, manageable, low cost,
consistent with the dynamics of the modern applications. This
paper shows a network representation model using a graph as
the control plane of an SDN controller. The graph approach
provides a globally consistent view of the network in real time.
Our experiments show that graphs are a reliable representation
of the real network, simplifying management in Software Defined
Networking.
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I. INTRODUCTION

Software environments designed to provide SDN appli-
cations are named SDN controllers. They have also been
called network operating systems because they provide a layer
that isolates and control the access to the physical network
elements, providing a standardized interface to them. That
interface may take different forms, like events in NOX [1], an
internal database in Onix [2], a predicate-rule based reasoning
system [3], or a query language in Frenetic [4], for example.

No matter the API, almost all applications of Software
Defined Networks (SDN) need a topological view of the
network; in fact, that global view is one of the key aspects
of that paradigm [5]. Graphs model the network topology in
a direct, natural and precise way, so describing the network
using a graph has become a common practice in many works,
protocols and network software, including those on SDN [6].
In this sense, a graph should be a basic resource of an SDN
controller, providing the network representation, the access
and the control of the network elements in a single structure.
Thus, a graph module can be of multiple uses in this kind of
software.

A graph model would be useful for both the internal
modules of the SDN controller as for the applications using the
controller. They need topological information or just access to
the network data, and the search for and access to the network
entities can be provided by the graph module. It may have the
capacity to notify state changes, be it through events, callbacks
or other notification mechanisms.

Moreover, in practice, many SDN applications use graph
algorithms to obtain informations that affect the control of the
underlying network, such as Shortest Path, Minimum Spanning
Tree, Graph Coloring, etc. The graph module store this kind
of representation directly and execute any of those algorithms

internally, making the results available for other software
modules, with no need for them to repeat the computation,
and for the application developer to re-implement complex
data structures and algorithms. A graph module can be im-
plemented for that goal, avoiding new dependencies among
different modules.

The interactions with the graph module can be encapsulated
and defined as a semantically stable and standardized interface.
Its implementation can be modified to adjust to different
systems, using different resources like local memory, remote
databases, centralized or distributed processing, concurrency
control, parallelism, persistence, performance and other rele-
vant characteristics.

This paper presents a description of a new kind of ab-
straction for network management, integrating elements like
automated fault detection and provision for dynamic graphs,
a real implementation on a system using OpenFlow [7], and
its experimental validation.

The remainder of this paper provides, first, a description
of the POX controller and the design, properties and project
decisions that lead to the graph model implementation. After
that we show some experiments and results obtained in a
network simulation environment, in this case, Mininet [8].
Finally, we discuss some paths for future work and a brief
conclusion.

II. OUR PROPOSED SOLUTION

We adopted POX, a Python-based controller, as the basic
controller for our work [9]. It exports an event-oriented in-
terface, where the major events are the discovery of switches
and the reception of packets send by them to the controller. A
module built on top of POX is a producer/consumer of events.
It can register any event it creates with the core, as well as
subscribe to events registered by other modules. To be able
to handle different SDN protocols, POX encapsulates all the
details of the OpenFlow infrastructure inside an OpenFlow
class hierarchy. On top of these basic events, POX constructs
a set of infrastructure modules that interact a publish/subscribe
interface controlled by a core element.

A. POX original modules

To implement the graph abstraction, we extended some of
the modules already available in POX to get the functionality



we wanted. We first describe the modules already available
and their functionalities as provided by POX. In the following
sections we discuss how they were integrated and how we
created the graph abstraction, with its associated interface.

The major module for our purposes is Topology. In the
original POX implementation, this module is responsible for
maintaining the Network Object Model (NOM), a dictionary of
objects representing each entity (switch, router, host or other
devices) in the network. It exports two methods, addEntity
and removeEntity, which can be called by other modules to
register or delete entities that they are responsible for, and
publishes two events, entityJoin and entityLeave, that may be
used by other modules that want to be notified of changes in
the topology of the network.

As mentioned previously, POX encapsulates all interac-
tion with OpenFlow elements in the OpenFlow class hier-
archy (of). The two major elements for our discussion are
of.discovery and of.topology. The first one imple-
ments the Link Layer Discovery Protocol (LLDP), used to
identify devices in the network [10]. OpenFlow switches
should be able to identify other switches connected to them
using this protocol. The second module is responsible for inter-
facing with Topology to store the identified entities (switches)
in it.

Just as of.discovery identifies switches, the host tracker
module does the same for hosts. It does so by using a multitude
of techniques to identify and keep track of end hosts. The
major element in its operation is an ARP interceptor: all
switches are programmed to send ARPQuery packets to the
controller. If the query refers to a host already known by the
module, an ARPReply message is built and sent back to the
host that initiated the query. At the same time, the location of
that host is recorded for future use. Periodically, host tracker
issues fake ARPQuery messages to every known host to verify
if they are still up. It may also access every switches counters
to identify activity on each link and infer host presence without
issuing ARP messages.

Recently, POX received a DCHP module (misc.dhcpd) that
can be used to configure hosts in the network. As available in
the distribution, it has no interaction with the topology system.
However, the fact that it can be used to configure end hosts
provided an interesting opportunity in this work.

For our work, the modules just described, already present in
POX, had to be extended to build the complete graph abstrac-
tion to represent a network. Those extensions are described
next.

B. Changes needed for the new architecture

Based on the functionalities of the existing modules, we
extended POX to build the graph abstraction. For that, the
modules were extended to interact more closely with each
other. Figure 1 shows the final architecture.

The entity class was extended through inheritance to hold
all the information about each network element, associated
with the unique identifier already maintained by that mod-
ule. The modules that discover and track network entities,

Figure 1. Module integration

host tracker, of.discovery/of.topology, and misc.dhcpd, create
entities through topology, which trigger events. Those events
are subscribed by the graph module that creates, updates,
deletes, executes algorithms and retrieves data from the net-
work graph.

Topology was extended to keep informations about links as
entities, and to associate events with them (like link up/down);
of.discovery keeps track of links identified using LLDP, and
of.topology was altered to register the links themselves with
Topology.

The new DCHP module (misc.dhcpd) triggers DHCPLease
events every time an IP address is associated with a host.
Host tracker was extended to subscribe to that event. When
notified, it updates its active host database with that informa-
tion, which helps in the process of answering ARP queries
(avoiding broadcasts)

We altered host tracker trigger events whenever a host is
added or removed. Topology listens to those events and updates
its object model accordingly, to keep track of all entities. The
event handler in this later module creates an instance of the
Host class, which is added to the topology. The same behavior
is already used by of.topology to add an instance of the Switch
class to topology when element of that kind is identified in the
network.

Similarly, when a switch stops responding to LLDP, a
SwitchLeave event is triggered by of.topology; when a host
becomes inactive, does not answer to ARP probes sent by
host tracker, or generates no observable traffic, a similar event
is triggered. Topology listens to those events and updates its
database.

C. The graph abstraction and its module

The proposed graph is represented by G = (V,E), in which
V and E are finite sets of vertices and edges, respectively.
Each vertex v ∈ V represents one host or switch in the
network. They are objects of class Entity — to be precise,
of its sub-classes Host or Switch.

Each edge u → v ∈ E represents a link between two ver-
tices. Edges between hosts and switches are derived indirectly



through the events of host addition or removal, assuming there
is a link to the switch where the host is first detected. It is
essential, then, that host tracker notifies topology about the
identity of the new host, as well as the identifier for the
switch and the port used. The system must guarantee that
such events are only generated by the switch to which the
host connects directly. That is achieved in our case because
no other packet can traverse the network from a host before
host tracker identifies it (and its original switch) and adds
forwarding rules at that switch. Edges between switches are
identified by of.discovery in the current implementation. It
publishes a LinkEvent that notifies of.topology whether a link
turns out to be up or down. The later module updates the status
of the associated switches. Originally, that was not informed
directly to topology, though. In our solution, a new kind of
entity, Link, was added, as well as the events LinkJoin and
LinkLeave, to fix that.

The edges weight g(u, v) describes the traffic in bytes
received and transmitted through the edge/link. The edge
weight is obtained by periodically reading the counters from
the OpenFlow switches [11].

On its turn, every time topology identifies a change in the
network, it triggers a related event, topologyUpdate, so that
other modules that may want to keep track of that can do so.
The Graph module will do just that, and react to any changes
triggered by any publisher in one of the channels observed by
topology.

D. Programming Interface (API)

The graph module has an application programming interface
(API) so that other modules of the controller can retrieve
information about the network topology from it.

The major graph methods are:
• get vertex(id): Returns an entity of the graph

(host/switch).
• get adjacents(id): Returns the adjacency list of a vertex.
• snapshot(): Copy the graph in the form of two collections

(vertices and edges)
• to dot(harq, layout = ”dot”): Create a copy of the graph

to be used by Graphviz [12].
Besides that, the module is fully extensible, and our goal

is that different graph algorithms may be implemented by
developers or the end users, and always retrofitted to the
module, so they can become available to others. By doing
so, code reuse is maximized; anyone implementing a dif-
ferent version of a routing algorithm could benefit from a
previously implemented shortest path algorithm, for example.
Right now, just a minimum spanning tree algorithm has been
implemented, being available through the method get mst().

III. EXPERIMENTS

The operation of the graph module was tested using
Mininet, a simulation system created exactly to simulate SDN
scenarios [8]. We had to extend Mininet with methods to
control the addition and removal of network elements, so we

could observe the system behavior as the topology changes
dynamically.

Besides the code interfaces, which affected different
classes, the standard command interface prompt was extended
with new commands to dynamically add/remove controllers,
switches, hosts, links and network interfaces. All changes were
made with compatibility in mind, so the original Mininet data
structures and interfaces were preserved as much as possible.

The goal of the experiments that follow was to validate and
evaluate the performance of the proposed system. Consider
a network with a simple topology as shown in Figure 2, that
has two switches, each with three hosts; there is an edge (link)
between the switches, and one instance of the POX controller
controls both switches.

Figure 2. Simple topology

A. Entity Detection

When the system starts, the graph is empty. The switches
are the first entities to be identified, because the controller
is directly connected to the switches through the OpenFlow
interface and it sees nothing before those connections are es-
tablished. A ConnectionUp event is triggered at the controller
core. Figure 3 shows the events logged during the start of the
execution.

1 INFO:topology.graph:SwitchJoin id: 2
2 INFO:topology.graph:SwitchJoin id: 1
3 INFO:topology.graph:1, 2
4 DEBUG:openflow.discovery:Dropping LLDP packet ←↩

275
5 INFO:topology.graph:LinkEvent fired
6 INFO:host_tracker:Learned 1 1 7e:e6:9b:89:39:2e←↩

got IP 10.0.0.1
7 INFO:topology.graph:HostJoin id: 7e:e6:9b←↩

:89:39:2e
8 INFO:host_tracker:Learned 2 1 62:77:44:24:13:49←↩

got IP 10.0.0.2
9 INFO:topology.graph:HostJoin id: ←↩

62:77:44:24:13:49

Figure 3. Entity Detection



In the first two lines of the log shown in Figure 3, the graph
module was notified about the discovery of two switches in the
network. Therefore, two vertexes of the switch entity type were
referenced in the graph. Line 4 indicates one event related to
LLDP, when switches start to look for others, and of.discovery
is activated. Right after that, in line 5, we notice the discovery
of a link (between switches). Lines 7 and 9 show two hosts
discovered by topology, as a result of them being discovered
by the host tracker module, possibly during their fist effort
to connect to the DHCP server. Any new package that passes
through a switch and has no installed flow in the flow table
is forwarded to the controller, that triggers a PacketIn event
and identifies the entities (hosts and switches) involved in the
communication. By continuing acting like this, the network
entities are identified and represented in the graph.

B. Removing Entities

Two experiments were executed to observe how the graph
was updated when an entity became unavailable. For the event
of host removal, we turned off one host’s network interface
using the Mininet command prompt. The host tracker module,
in the absence of traffic from a certain host, triggers a timer
event and an ARPRequest message is sent to the missing host.
The module uses a two-out-of-three policy to decide if a host
is down. By doing so, after thirty seconds the host was marked
as unavailable and a HostLeave event was triggered, updating
the graph.

For the second experiment, a switch was turned off using
Mininet. Since the controller had a direct connection to the
switch (for the OpenFlow protocol), once the POX core
detected the loss of the connection to the switch, the graph
was updated, removing the switch and hosts connected to it.

C. Real-time visualization

Figure 4 shows the graph of a network with 8 switches, each
one with 30 hosts connected, totalizing 248 network entities.
This graph was updated in real time by events that occurred
inside the controller, like entities joining/leaving, observation
of traffic volume in the network, and others.

Events were programmed to occur during a predefined
interval and the final graph was obtained within seconds of
the end of the series of add/remove commands. As observed
previously with the individual events, host removals were
detected withing 30 seconds, host additions were detected in
milliseconds after their first transmission, and switch events
were detected promptly as the OpenFlow connections went
up/down.

D. Network Traffic Identification

We used the Iperf tool as a server on host ’Host 0a’ to
compute the (TCP) traffic on the network shown in Figure 5.
The host ’Host 1e’ connected as a client. As can be seen in
Figure 5, the traffic in bytes on the edges that connect those
hosts is larger than that of the other hosts. In the moment that
the port counters were read and the edges weights computed,

Figure 4. 248 nodes network represented by a graph

the traffic was 55894 bytes through the path between the two
hosts.

The values observed for the other links (41 bytes) are from
the ARP messages sent by those hosts and by host tracker.
The experiment with Iperf shows a forwarding rate (through-
put) between hosts of 300 Megabits per second, confirming
there is no bottleneck due to the graph abstraction.

Figure 5. TCP Traffic (number of bytes) between the hosts ’Host 1e’ and
’Host 0a’ .

E. Minimum Spanning Tree

Minimum spanning trees are essential in many tasks in
network management. Tasks like trigger ’alarms’ when the
tree is disconnected or loops are detected, as presented are
essential [13]. One can think of a distributed system that
uses such a tree to execute a message propagation algorithm
using flooding to limit the number of retransmissions [14]. A
network with multiple paths can implement dynamic load bal-
ancing by computing multiple spanning trees in real time [15].

The minimum spanning tree algorithm implemented in the
graph module was tested by using it to maintain a dynamic
minimum spanning tree as the network was updated. Whenever



the graph was altered by the addition/removal of an edge/ver-
tex in response to a change in the underlying topology, the
minimum spanning tree was re-computed as expected.

IV. RELATED WORK

The idea of representing the network as a graph was
mentioned by Casado et al. in one of the first SDN papers [5].
However, there were no details about their implementation. In
a later work, SDN was used to implement different network
topologies in a datacenter scenario, but that was not done by
implementing a graph abstraction inside the controller [16].

Raghavendra et al. presented a graph module with dynamic
update capabilities and a public API that could be extended to
include different graph algorithms [6]. Although the work was
aimed at SDN/cloud scenarios, there was no actual integration
with any SDN controller, which was the major focus or the
present work.

The Onix controller [2] was designed around the concept
of a network information base (NIB). That base keeps a
global view of the network in a form similar to SNMP’s
MIB. However, the representation of the graph is achieved
by indexing an element’s entry in relation to its neighbors,
not directly.

DSLs (domain specific languages) are presented by Frenetic
[4] and Pyretic [14] as good solutions for the network data
retrieval problem. Neither of them export the network graph
as a first order element, but it can be built externally based on
the information available.

V. CONCLUSION

This paper showed the use of graphs in the Software
Defined Networking context. A real time graph of the network
meets one of the mainly advantages expected from SDN by
decoupling the control plane from data plane, which is to
achieve a global view of the network. It is noted that the
system keeps a reliable, consistent and dynamic representation
of the real network, facilitating the management tasks in a
Software Defined Network.

As a future work we plan to build an on-line graph visualizer
that interacts with the network administrator and shows, in
an easier way, the entire network operation. Various popular
graph algorithms should be provided by the graph module.
Those should be implemented in the future releases of the
system.

One element of concern is reliability: just like POX by itself,
if the controller process is terminated, then the entire graph is
lost. For that, a distributed graph database can be used to store
the network graph in a persistent, reliable and fault tolerant
structure.

Finally, the graph abstraction has been identified in other
network scenarios, like cloud computing. OpenStack, one of
the most popular systems for cloud management/virtualiza-
tion orchestration, includes a network topology view in one
of its modules, Neutron [17]. That abstraction has already
been combined with SDN to implement isolated multi-tenant
networks [18], it might be interesting to consider how they
could be further combined to build a unified, shared view.
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